McGraw Hill Introduction To Algorithms (2nd Ed) >>

HEAPSORT (112 - 127) 15 pages 6 1 1,2,3,4,5,6,7 6 2 1,2,3,4,5 6 3 1,2,3 6 4 1,2,3,4 >>


SORTING IN LINEAR TIME (145 - 160) 15 pages 8 1 1,2,3,4* 8 3 1,2,3,4,5* 8 4 1,2 8 Pro 2,4,6 >>


HASH TABLES (192 - 219) 27 pages 11 1 1,2,3 11 2 1,2,3,4* 11 3 1,2,3,4 11 4 1,2,3,4 >>


BINARY SEARCH TREES (220 - 238) 18 pages 12 1 1,2,3,4,5 12 2 1,2,3,4,5,6,7,8,9 12 3 1,2,3,4,6 >>


BINARY SEARCH TREES Search, Minimum, Maximum, Predecessor, Successor, Insert & Delete Operations INORDER-TREE-WALK(x) // LEFT-TOP-RIGHT 1 if x != NIL 2 then INORDER-TREE-WALK(left[x]) 3 print key[x] 4 INORDER-TREE-WALK(right[x]) PREORDER-TREE-WALK(x) // TOP-LEFT-RIGHT POSTORDER-TREE-WALK(x) // LEFT-RIGHT-TOP TREE-SEARCH (x, k) 1 if x= NIL or k = key[x] 2 then return x 3 if k < key[x] 4 then return TREE-SEARCH(left[x], k) 5 else return TREE-SEARCH(right[x], k) SUCCESSOR : minimum key in the right subtree ITERATIVE-TREE-SEARCH(x, k) 1 while x != NIL and k != key[x] 2 do if k < key[x] 3 then x <-- left[x] 4 else x <-- right[x] 5 return x TREE-MINIMUM (x) 1 while left[x] != NIL 2 do x <-- left[x] 3 return x TREE-SUCCESSOR(x) 1 if right[x] != NIL 2 then return TREE-MINIMUM (right[x]) 3 y <-- p[x] 4 while y!= NIL and x = right[y] 5 do x <-- y 6 y <-- p[y] 7 return y TREE-INSERT(T, z) 1 y <-- NIL 2 x <-- root[T] 3 while x != NIL 4 do y <-- x 5 if key[z] < key[x] 6 then x <-- left[x] 7 else x <-- right[x] 8 p[z] <-- y 9 if y = NIL 10 then root[T] <-- z // Tree T was empty 11 else if key[z] < key[y] 12 then left[y] <-- z 13 else right[y] <-- z TREE-DELETE(T, z) 1 if left[z] = NIL or right[z] = NIL 2 then y <-- z 3 else y <-- TREE-SUCCESSOR(z) 4 if left[y] != NIL 5 then x <-- left[y] 6 else x <-- right[y] 7 if x != NIL 8 then p[x] <-- p[y] 9 if p[y] = NIL 10 then root[T] <-- x 11 else if y = left[p[y]] 12 then left[p[y]] <-- x 13 else right[p[y]] <-- x 14 if y != z 15 then key[z] <-- key[y] 16 copy y's satellite data into z 17 return y


RED-BLACK TREES (238 - 261) 23 pages 13 1 1,2,6 13 2 1,2,3 13 3 1,2, 3, 6 13 4 1, 2, 3, 4, 6, 7 >>


B-TREES (371 - 388) 17 pages 18 1 1, 2, 3, 4, 5 18 2 1, 3, 5, 6 >>


BINOMIAL HEAPS (388 - 405) 17 pages 19 1 1, 2 19 2 1, 2, 3, 5, 7 >>


SORTING NETWORKS (614 - 632) 18 pages >>


MATRIX OPERATIONS (632 - 673) 41 pages >>


Show All