McGraw Hill Introduction To Algorithms (2nd Ed) >>
HEAPSORT (112 - 127) 15 pages
6 1 1,2,3,4,5,6,7
6 2 1,2,3,4,5
6 3 1,2,3
6 4 1,2,3,4 >>
SORTING IN LINEAR TIME (145 - 160) 15 pages
8 1 1,2,3,4*
8 3 1,2,3,4,5*
8 4 1,2
8 Pro 2,4,6 >>
HASH TABLES (192 - 219) 27 pages
11 1 1,2,3
11 2 1,2,3,4*
11 3 1,2,3,4
11 4 1,2,3,4 >>
BINARY SEARCH TREES (220 - 238) 18 pages
12 1 1,2,3,4,5
12 2 1,2,3,4,5,6,7,8,9
12 3 1,2,3,4,6 >>
BINARY SEARCH TREES
Search, Minimum, Maximum, Predecessor, Successor, Insert & Delete Operations
INORDER-TREE-WALK(x) // LEFT-TOP-RIGHT
1 if x != NIL
2 then INORDER-TREE-WALK(left[x])
3 print key[x]
4 INORDER-TREE-WALK(right[x])
PREORDER-TREE-WALK(x) // TOP-LEFT-RIGHT
POSTORDER-TREE-WALK(x) // LEFT-RIGHT-TOP
TREE-SEARCH (x, k)
1 if x= NIL or k = key[x]
2 then return x
3 if k < key[x]
4 then return TREE-SEARCH(left[x], k)
5 else return TREE-SEARCH(right[x], k)
SUCCESSOR : minimum key in the right subtree
ITERATIVE-TREE-SEARCH(x, k)
1 while x != NIL and k != key[x]
2 do if k < key[x]
3 then x <-- left[x]
4 else x <-- right[x]
5 return x
TREE-MINIMUM (x)
1 while left[x] != NIL
2 do x <-- left[x]
3 return x
TREE-SUCCESSOR(x)
1 if right[x] != NIL
2 then return TREE-MINIMUM (right[x])
3 y <-- p[x]
4 while y!= NIL and x = right[y]
5 do x <-- y
6 y <-- p[y]
7 return y
TREE-INSERT(T, z)
1 y <-- NIL
2 x <-- root[T]
3 while x != NIL
4 do y <-- x
5 if key[z] < key[x]
6 then x <-- left[x]
7 else x <-- right[x]
8 p[z] <-- y
9 if y = NIL
10 then root[T] <-- z // Tree T was empty
11 else if key[z] < key[y]
12 then left[y] <-- z
13 else right[y] <-- z
TREE-DELETE(T, z)
1 if left[z] = NIL or right[z] = NIL
2 then y <-- z
3 else y <-- TREE-SUCCESSOR(z)
4 if left[y] != NIL
5 then x <-- left[y]
6 else x <-- right[y]
7 if x != NIL
8 then p[x] <-- p[y]
9 if p[y] = NIL
10 then root[T] <-- x
11 else if y = left[p[y]]
12 then left[p[y]] <-- x
13 else right[p[y]] <-- x
14 if y != z
15 then key[z] <-- key[y]
16 copy y's satellite data into z
17 return y
|
RED-BLACK TREES (238 - 261) 23 pages
13 1 1,2,6
13 2 1,2,3
13 3 1,2, 3, 6
13 4 1, 2, 3, 4, 6, 7 >>
B-TREES (371 - 388) 17 pages
18 1 1, 2, 3, 4, 5
18 2 1, 3, 5, 6 >>
BINOMIAL HEAPS (388 - 405) 17 pages
19 1 1, 2
19 2 1, 2, 3, 5, 7 >>
SORTING NETWORKS (614 - 632) 18 pages >>
MATRIX OPERATIONS (632 - 673) 41 pages >>
Show All