İTÜ Fen Edebiyat Fak. Kimya Bölümü 34469 Maslak, İstanbul
Research
A New Methodology for the synthesis of fused dithiin and thiophene rings
A new method for the synthesis of fused dithiin and thiophene
heterocycles, starting from 1,8-diketones and using Lawesson’s reagent
(LR) and P4S10 has been developed in our laboratory. This method has
uncovered two interesting reactions of LR and P4S10 which has led to the
development of new fused heterocyclic rings, two types of which are
particularly important in material chemistry i) tetrathiafulvalene (TTF)
and ii) dithienothiophene (DTT).
Synthesis of Derivatives of BEDT-TTF (Bisethylendithio-tetrathiafulvalene)
Part of our research involves the synthesis of analogues of
tetrathiafulvalene (TTF) and bisethylenedithiotetrathiafulvalene
(BEDT-TTF). There has been continuous interest in the synthesis of
derivatives of tetrathiafulvalene. This is due to metallic behavior of
its radical cation salts with mono anions and electron acceptors such as
TCNQ, which exhibit semi-conducting, conducting and superconducting
properties. Electron-donating property of TTF has led to the synthesis
of its various analogues with different potential applications such as
chromophores for dyes, nonlinear optics, synthetic light-harvesting
systems, liquid crystals, dendrimers, phthalocyanines, polymers, and
supramolecular switches. In our laboratory various analogues of TTF have
been synthesized, which involved introduction of hydrogen bonding
groups and 1,4-dithiin and thiophene rings obtained through our
1,8-diketone ring formation reaction. Some of the TTF analogues are
given below
Synthesis of New Dithienothiophenes (DTT) Applying 1,8-Diketone Ring Formation Reaction
Due to its interesting electrochemical and optical properties, DTT has
been receiving an increasing attention. As such compounds are rich in
sulfur, three “S” atoms, they are electron rich species, which make them
good electron donor and important building blocks of a wide variety of
materials for electronic and optical applications such as
electroluminescence, two-photon absorption, exited fluorescence,
photochromism, nonlinear optical chromophores, transistors with high
mobilities of on/off ratios, conducting polymer and charge-transfer
complexes. Easy oxidation of the thiophene sulfur of the middle one
acquires the molecule fluorescence property which makes them good
candidates for labelling, particularly important for biological systems,
and for materials for organic light emitting devices (OLED). We have
developed the DTT derivatives given below. Electropolimerization of some
of them have been performed.
1. Ozturk, T.; Ertas, E.; Mert, O. Tetrahedron, 2005, 61, 1105
2. Olcay Mert, Elif Sahin, Erdal Ertas, Turan Ozturk, Engin A. Aydin, Levent Toppare, J. Electroanal. Chem., 2006, 591, 53-58.
3.E. Sezer, F. Turksoy, U. Tunca, T. Ozturk, Electrochemical Acta, 2004,
570, 101-105.
4. E. Ertas, T. Ozturk, Tetrahedron. Lett., 2004, 45, 3405-3407.
5. F. Turksoy, J. D. Wallis, U. Tunca, T. Ozturk, Tetrahedron, 2003, 59,
8012.
6.N. Saygili, R. J. Brown, P. Day, R. Hoelzl, P. Kathirgamanathan, E. R.
Mageean, T. Ozturk, M. Pilkington, M. M. B. Qayyum, S. S. Turner, L.
Vorwerg, J. D. Wallis, Tetrahedron, 2001, 57, 5015.
7. T. Ozturk, N. Saygili, S. Ozkara, M. Pilkington, C. R. Rice, D. A.
Tranter, F. Turksoy, J. D. Wallis, J. Chem. Soc., Perkin Trans. 1, 2001,
407.
8. E. Ertas, T. Ozturk, J. Chem. Soc., Chem. Commun. 2000, 2039.
9. T. Ozturk, F. Turksoy, E. Ertas, Phosphorous, Sulfur, Silicon and
Related Elements, 1999, 153-154, 417.
10. G. A. Horley, T. Ozturk, F. Turksoy, J. D. Wallis, J. Chem. Soc.,
Perkin I, 1998, 3225.
11. F. Leurguin, T. Ozturk, M. Pilkington and J. D. Wallis, J. C. S.
Perkin Trans. I., 1997, 3173.
12. T. Ozturk, D. C. Povey and J. D. Wallis, Phosphorus and Sulfur,
1997, 122, 313.
13. T. Ozturk, Tetrahedron Lett., 1996, 37, 2821.
14. T. Ozturk, C. R. Rice, and J. D. Wallis, J. Materials Chem., 1995,
5, 1553.
15. T. Ozturk, D. C. Povey and J. D. Wallis, Tetrahedron, 1994, 50,
11205.
Synthesis of New Fluorescent Sensors based on 3-Hydroxyflavone
3-Hydroxyflavones (3HF) 1 are important candidates as fluorescent
molecular sensors since they have interesting fluorescent properties,
resulting from their excited state intramolecular proton transfer
(ESIPT) reaction.1 This property leads to two well-separated, highly
intense and solvent-dependent emission bands, the ratio of the
intensities of which is strongly sensitive to the polarity and hydrogen
bonding perturbations1c in proteins,2 micelles,3 and polymers.4 These
bands originate from the normal excited form (N*) and the phototautomer
(T*).1a,5 It has been disclosed that the introduction of an electron
donor groups to the 4’-position of the 3HF increases the sensitivity of
fluorescence spectra of the molecule, which has attracted the interest
of research groups as two-band fluorescent dyes with a ratiometric
response to different perturbations.6 This resulted in a variety of
applications for substituted 3HFs as ion sensors7 and probes in the
studies of organized systems such as micelles8 and phospholipid
vesicles.3,9 Our group has developed various analogues of 3HF.6d-g,10,
1. a) Sengupta, P. K.; Kasha, M. Chem. Phys. Lett. 1979, 68, 382-385; b) Woolfe, G. E.;
Thistlewaithe, P. G. J. Am. Chem. Soc. 1981, 103, 6916-6923; c) Chou,
P.; McMorrow, D.; Aartsma, T. J.; Kasha, M. J. Phys. Chem. 1984, 88,
4596-4599; d) McMorrow, D.; Kasha, M. J. Am. Chem. Soc. 1983, 105,
5133-5134; e). McMorrow, D.; Kasha, M. J. Phys. Chem. 1984, 88,
2235-2243; f). Strandjord, A. J. G; Barbara, P. F. J. Phys. Chem. 1985,
89, 2355-2361.
2. Sytnik, A.; Gormin, D.; Kasha, M. Proc. Natl. Acad. Sci. USA 1994, 91, 11968-11972.
3. Sarkar, M.; Ray, J. G.; Sengupta, P. K. Spectrochim. Acta A, 1996, 52, 275-278.
4. Dharia, J. R.; Johnson, K. F.; Schlenoff, J. B. Macromolecules, 1994, 27, 5167-5172.
5. Formosinho, J. S.; Arnaut, G. L. J. Photochem. Photobiol. A: Chem. 1993, 75, 21-48.
6. a) Chou, P.-T.; Martinez, M. L.; Clements, J. H. J. Phys. Chem. 1993,
97, 2618-2622; b) Swiney, T. C.; Kelley, F. D. J. Chem. Phys., 1993,
99, 211-221; c) Ormson, S. M.; Brown, R. G.; Vollmer, F.; Rettig, W. J.
Photochem. Photobiol. A: Chem. 1994, 81, 65-72; d) Klymchenko, A. S.;
Ozturk, T.; Pivovarenko, V. G.; Demchenko, A. P. Can. J. Chem. 2001, 79,
358-363; e) Klymchenko, A. S.; Ozturk, T.; Pivovarenko, V. G.;
Demchenko, A. P. Tetrahedron Lett. 2001, 42, 7967-7970; f) Klymchenko,
A. S.; Ozturk, T.; Demchenko, A. P. Tetrahedron Lett. 2001, 43,
7079-7082; g) Klymchenko, A. S.; Pivovarenko, V. G.; Ozturk, T.;
Demchenko, A. P. New J. Chem. 2003, 27, 1336-1343; h) Klymchenko, A. S.;
Demchenko. A. P. Phys. Chem. Chem. Phys. 2003, 5, 461-468.
7. Roshal, A. D.; Grigorovich, A. V.; Doroshenko, A. O.; Pivovarenko, V.
G.; Demchenko, A. P. J. Phys. Chem. A, 1998, 102, 5907-5914.
8. a) Pivovarenko, V. G.; Tuganova, A. V.; Klymchenko, A. S.; Demchenko,
A. P. Cell. Mol. Biol. Lett. 1997, 2, 355-364; b) Klymchenko, A. S.;
Demchenko, A. P. Langmuir, 2002, 18, 5637-5639.
9. a) Bondar, O. P.; Pivovarenko, V. G.; Rowe, E. S. Biochem. Biophys.
Acta 1998, 1369, 119-130; b) Duportail, G.; Klymchenko, A. S.; Mely, Y.;
Demchenko, A. P. FEBS Lett. 2001, 508, 196-200; c) Duportail, G.;
Klymchenko, A. S.; Y. Mely, Y. Demchenko, A. P. J. Fluorescence, 2002,
12, 181-185.
10.Klymchenko, A. S.; Duportail, G.; Ozturk, T.; Pivovarenko, V. G.;
Mely, Y.; Demchenko, A. P. Chenistry and Biology 2002, 9, 1199
11. M’Baye, G.; Klymchenko, A. S.; Yushcheno, D. A.; Shvadchak, V. V.;
Ozturk, T.; Mely, Y.; Duportail, G. Photochem. Photobiol. Sci., 2007, 6,
71-76