TABLE: SELECTED DIMENSIONAL EQUIVALENTS

	1 m = 3.280 ft 0.39.37 in
Length	$1 \text{cm} = 10^{-2} \text{ m} = 0.394 \text{ in} = 0.038 \text{ ft}$
	$1 \text{ mm} = 10^{-3} \text{ m}$
	1 micron (m) = 10^{-10} m
	1 Angstrom (°A) 10 ⁻⁶ m
	1 hr = 3600 sec = 60 min
Time	1 milisec = 10^{-3} sec
	1 microsec (μ sec) = 10^{-6} sec
	$1 \text{ nanosec (nsec)} = 10^{-9} \text{ sec}$
	$1 \text{ kg} = 1000 \text{ gr} = 2.2046 \text{ lbm} = 6.8521 \times 10^{-2} \text{ slugs}$
Mass	$1 \text{ slugs} = 1 \text{ lbf.sec}^{-2}/\text{ft} = 32.174 \text{ lbm}$
	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
	$1 \text{ newton} = 1 \text{ kg.m/sec}^2$
Force	$1 \text{ dyne} = 1 \text{ gr.cm/sec}^2$
	$1 \text{ lbf} = 4.448 \times 10^5 \text{ dyne} = 4.448 \text{ newtons}$
	1 joule = 1 kg.m ² /sec ² = 0.239 cal= 0.738 ft.lb = 2.78×10^{-7} kwh
	1 joule = 10^7 erg
	$1 \text{ Btu} = 778.18 \text{ ft.lbf} = 1.055 \times 10^{15} \text{ erg} = 252 \text{ cal}$
Energy	1 cal = 4.186 joule
	$1 \text{ erg} = 1 \text{ gr.cm}^2/\text{sec}^2$
	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ joules} = 160 \times 10^{-12} \text{ erg}$
	$1 \text{ Watt} = 1 \text{ kg.m}^2/\text{sec}^3 = 1 \text{ joule/sec}$
Power	1 hp = 550 ft.lbf/sec
	1 hp = 2545 Btu/hr = 746 Watts
	1 kWatt = 1000 Watts = 3413 Btu/hr
	$1 \text{ atm} = 14.696 \text{ lbf/in}^2 = 760 \text{ torr}$
	$1 \text{ mmHg} = 0.01931 \text{ lbf/in}^2 = 1 \text{ torr}$
	$1 \text{ dyne/cm}^2 = 145.04 \times 10^{-7}$
Pressure	$1 \text{ bar} = 14.504 \text{ lbf/in}^2 = 10^6 \text{ dynes/cm}^2$
	1 micron (μ) = 10^{-6} mHg = 10^{-3} mmHg
	1 hPa = 1 mb
	1 hPa = 100 Pa
Volume	$1 \text{ gal} = 0.13368 \text{ ft}^3$
	1 liter = 1000.028 cm^3
	1 °K = 1 °C = 1.8 °F = 1.8 °R
Temperature	0 °C corresponds to 32 °F, 273.16 °K, and 491.69 °R
	1 eV = 11600 °K
	10. 10.
	1 Gauss = 1 $g^{1/2}$ /cm ^{1/2} .sec
	1 Gauss = 10^3 coul/m.sec for M
	1 Gauss = $(1/4\pi)x10^3$ coul/m.sec for H
	1 Gauss = 10^4 Tesla for B
	1 Tesla = 1 kg/coul.sec
M	$1 \text{ Tesla} = 1 \text{ kg/A.sec}^2$
Magnetic	$1 \text{ nT} = 10^{-9} \text{ Tesla}$
Quantities	1 nT = 10 ⁻⁵ Gauss
	1 gamma = 1 g = 1 nT
	Magnetic Flux: $\phi_B = \int B \bullet dA$, 1 Weber = 1 kg.m²/coul.sec
	, , , , , , , , , , , , , , , , , , ,
	$ \vec{B} = \text{kg/sec.coul}$
	B = kg/sec.coul
	. = .,
Electrical Quantities	E-potential: $\mathcal{E}, d\mathcal{E} = \vec{E} \bullet dl$ E, 1 volt = 1 kg.m ² /coul.sec ²
	E = kg.m/coul.sec
	Current Density: coul/m².sec
	Current: coul/sec
	Resistance (R): $1 \text{ ohm} = 1 \text{ kg.m}^2/\text{coul}^2$.sec

PHYSICAL CONSTANTS

Avogadro's Number	$N = 6.025 \times 10^{23} / \text{g.mole}$		
Bolzman's Constant	$k = 1.38 \times 10^{-23}$ joule /°K		
Stefan Boltzmann Constant	$\sigma = 5.7 \times 10^{-5} \text{ erg/cm}^2.\text{sec.}^{\circ} \text{K}^4$		
	$\sigma = 5.67 \times 10^{-8} \text{ joule/m}^2.\text{sec.}^{0}\text{K}^4$		
Gas Constant	R = 1545.33 ft.lbf/lb.mole.°R		
	$R = 8.317$ joule/g-mole. $^{\circ}$ K		
	R = 8317 joule/kg-mole.°K		
	R = 1.986 Btu/lb.mole. R		
	R = 1.986 cal/g.mole. ^o K		
Planck's Constant	$h = 6.625 \times 10^{-34}$ joule.sec		
Biot-Savart Constant	$1/4\pi\epsilon_{\rm o} = 8.987 \times 10^9 \text{ kg.m}^3/\text{coul}^2.\text{sec}^2$		
	$\mu_{o}/4\pi = 1.000 \text{x} 10^{-7} \text{ kg.m/coul}^2$		
Electronic Charge	$e = -1.6021 \times 10^{-7} \text{ coul}$		
Proton Mass	$m_p = 1.67 \times 10^{-27} \text{ kg}$		
Electron Mass	$m_e = 9.1 \times 10^{-31} \text{ kg}$		
Speed of Light	$c = 2.998 \times 10^8 \text{ m/sec}$		
Newton's Constant	$g_c = 32.174 \text{ ft.lbm/lbf.sec}^2$		
Gravitational Constant	$k_G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg.sec}^2$		
Wienn's Constant	$c = 0.28 \text{ cm.}^{\circ} \text{K}$		
Sun-Earth Distance	$1 \text{ AU} = 1.5 \times 10^8 \text{ km}$		
Solar Constant for Earth	$I_o = 1.94 \text{ cal/cm}^2 \text{min}$		
	$I_o = 1370 \text{ Watt/m}^2$		
Sun's Radius	$R_{\rm sun} = 7 \times 10^5 \rm km$		
Sun's Mass	$M_{\text{sun}} = 2x10^{30} \text{ kg}$		
Sun's Surface Temperature	$T = 6000^{\circ} K$		
Sun's Luminosity	$L = 4x10^{26} \text{ Watt}$		
Earth's Radius	$R_{Earth} = 6378 \text{ km}$		
Earth's Albedo	A or $\alpha = \% 33$ or 0.33		
Magnetic Field at the Earths's Equator	$B_o = 0.36 \text{ Gauss (CGS)}$		
	$B_0 = 0.3 \times 10^{-4} \text{ Tesla (MKS)}$		
μ_{o}	$\mu_{\rm o} = 4\pi x 10^{-7}$ (MKS, Henry/m, or		
	$kg.m/coul^2$, $Henry = kg.m^2/coul^2$)		
R : Universal Gas Constant			
R*: Specific Gas Constant			
$R^* = (Rx10^3)/M$, $M = 29$ amu for Air			
$R^* = (8.317 \times 10^3)/29 = 286 \text{ (MKS)}$			
$P = \rho R^* T$ or $PV = RT$			

Symbol	MKS (SI)	CGS (Gaussian System)
Length	1 m	$10^2 \mathrm{cm}$
Mass	1 kg	$10^3 \mathrm{g}$
Time	1 s, 1 sec	1 s, 1 sec
Force	1 N	10 ⁵ dynes
Work or Energy	1 J	$10^7 \mathrm{erg}$
Power	1 W	10^7 ergs/s
Charge	1 C	3x10 ⁹ statcoul
Current	1 A	3x10 ⁹ statamp
Electric Field Strength	1 V/m	$(1/3)$ x 10^{-4} statvolt/cm
Electric Potential	1 V	(1/300) statvolt
Electric Polarization	1 C/m^2	3x10 ⁵ statcoul/cm ²
Electric Displacement	1 C/m^2	$12\pi x 10^5$ statvolt/cm ²
Resistance	1 Ω	$(1/9)x10^{-11}$ s/cm
Capacitance	1 F	9x10 ¹¹ cm
Magnetic Flux	1 Wb	10 ⁸ Maxwells
Magnetic Induction	1 T	10 ⁴ Gauss
Magnetic Field Strength	1 A-turn/m	$4\pi x 10^3$ Gauss

To convert to	Multiply by
kilo	10^{3}
mega	10^{6}
giga	109
centri	10^{-2}
mili	10^{-3}
micro	10^{-6}
nano	10 ⁻⁹
pico	10 ⁻¹²
ppmv = one per million	10 ⁻⁶
ppbv = one per billion	10 ⁻⁹
pptv = one per trillion	10 ⁻¹²

LENGTH

l kilometer (km) = 1000 meters (m) = 3281 feet (ft)

= 0.62 mile (mi)

1 mile (mi) = 5280 feet (ft)

= 1609 meters (m) 1.61 kilometers (km)

l centimeter (cm) = 0.39 inch (in.)= 0.01 meter (m)

1 inch (in.) = 2.54 cm

-0.08 ft

1 meter (m) = 100 cm= 3.28 ft

= 39.37 in.

 $1 \text{ micrometer } (\mu \text{m}) = 0.0001 \text{ cm}$ $= 0.000001 \, \mathrm{m}$

UNITS, CONVERSIONS, **ABBREVIATIONS**

AREA

l square centimeter (cm 2) = 0.15 in. 2 l square inch (in. 2) = 6.45 cm^2 $1 \text{ square meter (m}^2) = 10.76 \text{ ft}^2$ $1 \text{ square foot (ft}^2) = 0.09 \text{ m}^2$

VOLUME

l cubic centimeter (cm 3) = 0.06 in. 3 l cubic inch (in. 3) = 16.39 cm^3 $1 \text{ liter (1)} = 1000 \text{ cm}^3$

SPEED

1 knot = 1.15 mph= 0.51 mps = 1.85 kph

l mile per hour (mph) = 0.87 knot = 0.45 mps= 1.61 kph

l kilometer per hour (kph) = 0.54 knot = 0.62 mph

= 0.28 mps

l meter per second (mps) = 1.9 knots = 2.2 mph

= 3.6 kph

MASS

1 gram (g) = 0.035 ounce= 0.002 lb

1 kilogram (kg) = 1000 g $= 2.2 \, lb$

ENERGY

1 joule (J) = 0.239 call calorie (cal) = 4.187 J

PRESSURE

l millibar (mb) = 1000 dynes/cm²

= 0.75 millimeter of mercury

= 0.03 inch of mercury

= 0.01 pound per square

inch (psi)

= 100 pascals (Pa)

l standard atmosphere = 1013.25 mb

= 760 millimeters of

mercury

= 29.92 inches of

mercury

= 14.7 psi

Appendix A Conversion to SI Units

Physical quantity	Unit	SI (MKS) equivalent
Length	ft μm nm	0.305 m 10 ⁻⁶ m 10 ⁻⁹ m
Time	day	$8.64 \times 10^4 \text{ s}$
Mass	lb	0.454 kg
Temperature	"F	$273 + (^{\circ}F - 32)/1.8 \text{ K}$
Volume	liter	10^{-3} m^3
Velocity	$egin{aligned} \mathbf{mph} \\ \mathbf{knots} \\ \mathbf{km} \ \mathbf{hr}^{-1} \\ \mathbf{fps} \end{aligned}$	0.447 m s^{-1} 0.515 m s^{-1} 0.278 m s^{-1} 0.305 m s^{-1}
Force	kg m s ⁻² lb dyne	1 N 0.138 N 10 ⁻⁵ N
Pressure	N m ⁻² bar mb	$ \begin{array}{r} 1 \text{ Pa} \\ 10^5 \text{ Pa} \\ 10^2 \text{ Pa} = 1 \text{ hPa} \end{array} $
Energy	kg m ² s ⁻² Nm erg cal	1 J 1 J 10 ⁻⁷ J 4.187 J
Power	$\begin{array}{c} \text{kg m}^{-2} \text{s}^{-3} \\ \text{J s}^{-1} \\ \text{Langley day}^{-1} \end{array}$	$\begin{array}{c} 1 \text{ W} \\ 1 \text{ W} \\ 4.84 \times 10^{-1} \text{ W m}^{-2} \end{array}$
Specific heat	cal gm ⁻¹	$4.184 \times 10^3 \text{ J kg}^{-1}$
Energy flux	$cal cm^{-2} min^{-1}$	$6.97 \times 10^2 \text{ W m}^{-2}$

Appendix B Thermodynamic Properties of Air and Water

Dry Air

Mean molecular weight Specific gas constant Density Number density (Loschmidt number) Isobaric specific heat capacity Isochoric specific heat capacity Ratio of specific heats Coefficient of viscosity Kinematic viscosity Coefficient of thermal conductivity	$M_d = 28.96 \text{ g mol}^{-1}$ $R = 287.05 \text{ J kg}^{-1} \text{ K}^{-1}$ $\rho = 1.293 \text{ kg m}^{-3} \text{ (at STP*)}$ $n = 2.687 \times 10^{25} \text{ m}^{-3} \text{ (at STP)}$ $c_p = 1.005 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (at 273 K)}$ $c_v = 7.19 \times 10^2 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (at 273 K)}$ $\gamma = c_p/c_v = 1.4$ $\kappa = (\gamma - 1)/\gamma = R/c_p = 0.286$ $\mu = 1.73 \times 10^{-5} \text{ kg m}^{-1} \text{ s}^{-1} \text{ (at STP)}$ $\nu = 1.34 \times 10^{-5} \text{ m}^2 \text{ s}^{-1} \text{ (at STP)}$ $k = 2.40 \times 10^{-2} \text{ W m}^{-1} \text{ K}^{-1} \text{ (at STP)}$
Sound speed	$c_s = 331 \text{ m s}^{-1} \text{ (at 273 K)}$

Water

Mean molecular weight	$M_v = 18.015 \text{ g mol}^{-1}$
	$\epsilon = M_v/M_d = 0.622$
Specific gas constant	$R = 461.51 \text{ J kg}^{-1} \text{ K}^{-1}$
Density (liquid water)	$\rho = 10^3 \text{ kg m}^{-3} \text{ (at STP)}$
Density (ice)	$\rho = 9.17 \times 10^2 \text{ kg m}^{-3} \text{ (at STP)}$
Isobaric specific heat capacity (vapor)	$c_p = 1.85 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (at 273 K)}$
Isochoric specific heat capacity (vapor)	$c_v = 1.39 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (at 273 K)}$
Ratio of specific heats (vapor)	$\gamma = c_p/c_v = 1.33$
Specific heat capacity (liquid water)	$c = 4.218 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (at 273 K)}$
Specific heat capacity (ice)	$c = 2.106 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (at 273 K)}$
Specific latent heat of fusion	$l_f = 3.34 \times 10^5 \mathrm{Jkg^{-1}}$
Specific latent heat of vaporization	$l_v = 2.50 \times 10^6 \mathrm{Jkg^{-1}}$
Specific latent heat of sublimation	$l_s = l_f + l_v$

^{*}Standard temperature and pressure (STP) = 1013 mb and 273 K.

Appendix C Physical Constants

 $N_A = 6.022 \times 10^{26} \text{ mol}^{-1}$ Avogadro's number $R^* = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ Universal gas constant $k = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Boltzmann constant $h = 6.6261 \times 10^{-34} \text{ J s}^{-1}$ Planck constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ Stefan-Boltzmann constant $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Speed of light $F_s = 1.372 \times 10^3 \text{ W m}^{-2}$ Solar constant $a = 6.371 \times 10^3 \text{ km}$ Radius of the earth $g_0 = 9.806 \text{ m s}^{-2}$ Standard gravity $\Omega = 7.292 \times 10^{-5} \text{ s}^{-1}$ Earth's angular velocity

Appendix D

Vector Identities

$$A \times (B \times C) = (A \cdot C)B - (A \cdot B)C$$

$$A \cdot (B \times C) = (A \times B) \cdot C = B \cdot (C \times A)$$

$$(A \times B) \cdot (C \times D) = (A \cdot C)(B \cdot D) - (A \cdot D)(B \cdot C)$$

$$\nabla (fg) = f \nabla g + g \nabla f$$

$$\nabla \cdot (fA) = \nabla f \cdot A + f \nabla \cdot A$$

$$(D.1)$$

$$(D.2)$$

$$(D.3)$$

$$(D.4)$$

$$\nabla \times (fA) = \nabla f \times A + f \nabla \times A \tag{D.6}$$

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$
 (D.7)

$$\nabla \cdot \nabla \times A = 0 \tag{D.8}$$

$$\nabla \times \nabla f = 0 \tag{D.9}$$

$$\nabla \cdot \nabla f = \nabla^2 f \tag{D.10}$$

$$\nabla \times \nabla \times f = \nabla(\nabla \cdot f) - \nabla^2 f \tag{D.11}$$

$$\nabla (A \cdot B) = A \cdot \nabla B + B \cdot \nabla A + A \times \nabla B + B \times \nabla \times A$$
 (D.12)

$$\nabla (A \times B) = B \cdot \nabla A - A \cdot \nabla B + A(\nabla \cdot B) - B(\nabla \cdot A)$$
 (D.13)

$$A \cdot \nabla A = \frac{1}{2} \nabla (A \cdot A) - A \times (\nabla \times A)$$
 (D.14)

Appendix E Curvilinear Coordinates

Spherical Coordinates (λ, ϕ, r)

$$\nabla \psi = \frac{1}{r \cos \phi} \frac{\partial \psi}{\partial \lambda} e_{\lambda} + \frac{1}{r} \frac{\partial \psi}{\partial \phi} e_{\phi} + \frac{\partial \psi}{\partial r} e_{r}$$

$$\nabla \cdot A = \frac{1}{r \cos \phi} \frac{\partial A_{\lambda}}{\partial \lambda} + \frac{1}{r \cos \phi} \frac{\partial}{\partial \phi} (\cos \phi A_{\phi}) + \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} A_{r})$$

$$\nabla \times A = \frac{1}{(r^{2} \cos \phi)} \left\{ r \cos \phi \left[\frac{\partial A_{r}}{\partial \phi} - \frac{\partial (r A_{\phi})}{\partial r} \right] e_{\lambda} + r \left[\frac{\partial}{\partial r} (r \cos \phi A_{\lambda}) - \frac{\partial A_{r}}{\partial \lambda} \right] e_{\phi} + \left[\frac{\partial (r A_{\phi})}{\partial \lambda} - \frac{\partial}{\partial \phi} (r \cos \phi A_{\lambda}) \right] e_{r} \right\}$$

$$\nabla^{2} \psi = \frac{1}{r^{2} \cos^{2} \phi} \frac{\partial^{2} \psi}{\partial \lambda^{2}} + \frac{1}{r^{2} \cos \phi} \frac{\partial}{\partial \phi} \left(\cos \phi \frac{\partial \psi}{\partial \phi} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \psi}{\partial r} \right)$$

$$\nabla^{2} A = \left[\nabla^{2} A_{\lambda} - \frac{A_{\lambda}}{r^{2} \cos^{2} \phi} + \frac{2}{r^{2} \cos \phi} \frac{\partial A_{r}}{\partial \lambda} + \frac{2}{r^{2} \cos^{2} \phi} \frac{\partial A_{\phi}}{\partial \lambda} \right] e_{\lambda}$$

$$+ \left[\nabla^{2} A_{\phi} - \frac{A_{\phi}}{r^{2} \cos^{2} \phi} + \frac{2}{r^{2}} \frac{\partial A_{r}}{\partial \phi} - \frac{2}{r^{2}} \frac{\sin \phi}{\cos^{2} \phi} \frac{\partial A_{\lambda}}{\partial \lambda} \right] e_{\phi}$$

$$+ \left[\nabla^{2} A_{r} - \frac{2}{r^{2}} A_{r} - \frac{2}{r^{2} \cos^{2} \phi} \frac{\partial}{\partial \phi} (\sin \phi A_{\phi}) - \frac{2}{r^{2} \cos \phi} \frac{\partial A_{\lambda}}{\partial \lambda} \right] e_{\phi}$$

Cylindrical Coordinates (r, ϕ, z)

$$\nabla \psi = \frac{\partial \psi}{\partial r} e_r + \frac{1}{r} \frac{\partial \psi}{\partial \phi} e_{\phi} + \frac{\partial \psi}{\partial z} e_z \tag{E.6}$$

$$\nabla \cdot A = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$
 (E.7)

$$\nabla \times A = \left[\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right] e_r + \left[\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right] e_{\phi}$$

$$+ \left[\frac{1}{r} \frac{\partial (rA_{\phi})}{\partial r} - \frac{1}{r} \frac{\partial A_{r}}{\partial \phi} \right] e_{z}$$
 (E.8)

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{\partial^2 \psi}{\partial z^2}$$
 (E.9)

$$\nabla^{2} A = \left[\nabla^{2} A_{r} - \frac{A_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial A_{\phi}}{\partial \phi} \right] e_{r} + \left[\nabla^{2} A_{\phi} - \frac{A_{\phi}}{r^{2}} + \frac{2}{r^{2}} \frac{\partial A_{r}}{\partial \phi} \right] e_{\phi} + \nabla^{2} A_{z} e_{z}$$
(E.10)