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The figure below shows loop gain frequency response of an unstable (a) and stable (b) feedback system. We will assume ß constant  and 0≤ß≤1. Since ß is constant (i.e. frequency-independent), it will not affect the phase of the loop gain (i.e. L ßH(() ). However, it affects the loop gain magnitude |ßH(()|. As ß is reduced, |ßH(()| curve is shifted to the left, thus a more stable system is obtained since L ßH(() curve remains unchanged. Therefore, the most critical value of ß from stability point of view is 1 (unity-gain or buffer configuration for op amps). That is why we usually analyze H(() instead of ßH(() so as to estimate instability potential of an op amp.
Besides Bode plot, location of the poles of a closed-loop system on a complex plane (root locus) is also important (effect of zeros ignored for now).

Expressing each pole frequency as sp=j(p+p and noting that impulse response of the system includes a term exp(j(p+p)t , we conclude as:

· if sp is in the right half plane (p>0 ), then the system is likely to oscillate (a growing exponential)

· forp=0, the system sustains the oscillation (constant amplitude)
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if p<0, then the exponential tends to zero, thus the system is stable (the time it takes the system to settle to zero is important, because even if the system is stable, “ringing” may be annoying) 

On the right, root locus and time-domain impulse responses are given for three types of systems.
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A one-pole amplifier, whose open-loop transfer function can be expressed as H(s)=A0/(1+s/(o) , when used in negative feedback configuration, yields

[image: image4.png]B=0

jo

B5®

-
p2

-
p1



[image: image5.png]20log|B H (w)]

Wp1 Wp2 (l)pg\  (log scale)

 (log scale)




Bode plot for such a closed-loop system is given below on the left. As can be observed, such a system is unconditionally stable. The closed-loop transfer function Y/X has one pole: sp=-(o(1+ßA0). Thus, root locus is as below.
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For multi-pole systems, total phase shift of the amplifier reaches (or exceeds) 180° as frequency increases, therefore, negative feedback may cause instability.

For a two-pole system, we get a Bode plot of ßH as in the figure on the right. The system is stable since gain crossover (GX) comes before phase crossover (PX). (PX is at infinity) However, it may suffer from ringing.

Reducing ß (i.e. weakening the feedback) shifts GX to lower frequencies, thus a more stable system is obtained.
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Writing open-loop transfer function of a two-pole system as

we obtain Y(s)/X(s) as
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From this transfer function, we obtain the closed-loop poles as

· For ß=0 (i.e. no feedback), s1=-(p1 , s2=-(p2 , as expected.
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For ß>ß1, poles become complex conjugate. 
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A three-pole amplifier, when feedback applied, exhibits a frequency response as in the figure on the right. This system is likely to be unstable, unless ß is reduced.

Root locus of such a feedback system is even more complicated, therefore will not be mentioned here.

Phase Margin: 1) A stable system can still be a “problem child” due to excessive ringing. 2) Even if a closed-loop system is theoretically stable, parasitic poles or tolerances (due to process deviations, mismatch, temperature, aging, etc.) may bring additional phase shifts, thus driving the system into instability.

Taking these two issues into consideration, the designers usually try to make sure a sufficient margin between GX and PX. This margin can be expressed as “the phase differences of GX and PX points”, i.e. phase margin: PM=180°+LßH((=(GX)
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On the right, frequency response of loop gain and closed-loop transfer function are given together with the time-domain pulse response for two systems; one with a small phase margin (a) and the other with a large phase margin (b).

We see that the peak in the closed-loop gain response is a reminder of significant ringing in response to a pulse input. /!\ (NOTE: A too large phase margin will slow the system down)
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For a two-pole feedback system for which |ßH|=1 at =p2 and |p2|<<|p2|, we get PM=45°, as shown in the figure on the right.

Such a system yields a 30% peak at 1 . (note:1 isGX) This is  proven with calculations illustrated with Bode plots of closed-loop transfer function below.

For1 , closed-loop transfer function Y/X takes the value below:
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Since |ßH|=1 at =p2 and sincep2 is located at =GX=1 for this system, then |H(=1)|=1/ß. As a result we obtain |Y/X|=1.3/ß for =1.(note: |0.29-0.71j|=0.76=1/1.3)
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As a result, such a system exhibits a closed-loop frequency response with a 30% peak at=GX , as shown on the left.

Similarly, it can be shown that a system with get PM=60°, exhibits a negligible peak. Systems with PM>60° don’t exhibit peaks in the frequency response but slows down. 

A comparison of time-domain responses is given below. The system with PM=60° seems to exhibit an optimum settling behavior.
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Frequency compensation

So as to guarantee a stable closed-loop circuit and a well-behaved time-domain response, we usually modify the open-loop transfer function of the op amp. Such a modification could be done in two ways:
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1°) Move PX out

(i.e. minimize the phase shift)

( (a) in the figure)

OR

2°) Push GX in 

(i.e. start to drop gain at lower freq.)

( (b) in the figure)

We usually aim a minimized no. of poles (choice (1°) ) while meeting the requirements, then apply compensation (choice (2°) ). (e.g. A one-stage op amp minimizes the phase shift but usually don’t meet the gain and voltage swing requirements. Therefore, first meet the requirements, then apply compensation) 
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One-stage op amps usually show good stability properties. 

However, two-stage op amps usually need compensation.
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An example is given on the right.

Three effective poles come from nodes E, X  and A (or F,Y and B), as can be observed from the Bode plots on the left.

We can compensate this circuit by reducing p,E , which can be done by increasing the node capacitance at node E (by connecting a large capacitor).

[image: image21.png]20log|p H (w)|

Unstable

Excessive

A

 (log scale)

-180° -

/BH ()

(a)

 (log scale)

Excessive

Phase

20log|p H ()| !

Stable

=

------------------- \ o (log scale)

-180°

/BH ()

o (log scale]

(b)



Miller compensation is a useful method since it avoids use of large capacitors, thus saving chip area. The method is illustrated below.

The compensation capacitor CC is reflected to node E as (1+|A2|)CC , with aid of the negative-gain amplifier A2 , thus a dominant pole (p,E) is created.  
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In the given two-stage op amp, CC should be connected between nodes A and E.
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A simplified circuit showing this connection is given on the right, where RS denotes the output resistance of the first stage and RL=ro9||ro11.

Thus, using previous results we obtained for this two-stage op amp, we conclude with

where|p1|<<|p2| is assumed (note: p1=p,E  ,  p2=p,A).

Note that onlyp,E is reduced but alsop,A is increased in this type of compensation. This is called “pole splitting”.

Assuming CC+CGD9>>CE (a reasonable approximation), we obtain p2=p,A=gm9/(CE+CL) ≈ gm9/CL (since we can also assume CE<<CL). Since the output pole before compensation was p,A=1/(RLCL) this means that Miller compensation increases the magnitude of the output pole by a factor gm9RL . (In practice, we need to iterate to find the proper value for CC).
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The right-half-plane zero at z=gm9/(CC+CGD9) is omitted in the stability concerns. This zero reads in the numerator of H(s) as (1-s/z) and besides increasing the loop gain magnitude, unlike left-half-plane zeros, it reduces the phase further, as shown in the figure on the right. (Note that z usually remains small since gm9 is relatively small and CC is large).
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The right-half-plane zero can be moved to the left half plane by inserting a resistor RZ in series with the compensation capacitor, as shown in the figure. Then, it can be shown that the zero takes the valuez=1/[(gm9-1-RZ)CC]. Thus, choosing RZ ≥ gm9-1 is enough to satisfyz≤0. In practice, z is pushed further into the left half plane so as to be coincided with the first non-dominant pole (p,A) so as to cancel its effect. This is achieved if the condition below is satisfied
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that is, if RZ is chosen as  

However, the exact value is very hard to be met since load conditions is usually subject to changes.







