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So as to take the advantage, Vshift must be positive; therefore
|VGS3|>|VGS4| must be satisfied ( Choose
IB2<½IB2 and/or  β3<β4 ).
There exists a type of very-low-VOUTmin

and high-output-resistance current
source structure that deserves
mentioning. The conceptual structure is
shown on the right.

Although the employed technique is not
widely applicable, it can be very helpful for
biasing of several widely-used structures,
including differential pairs and regulated-
cascode transconductors.

The technique works in circuits where a copy (kIBIAS: e.g. ½IBIAS)
of the supplied bias current IBIAS can be supplied for a prompt
evaluation in a feedback loop. The differential TransImpedance
Amplifier (TIA) helps keeping IBIAS=IREF  (or  IBIAS=IREF/k).
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! ! ! The stability of the utilized loop is another important issue.

H.W.#2 : Find and explain one transistor-level example for this circuit.

Constant-gm rail-to-rail input stages
The input stage of an operational amplifier is very typically a
differential pair (often called “long tailed pair”).

For linear applications, opamps are usually used in local closed loop
configurations, therefore the differential input voltage is quite small.
Therefore, the main voltage swing limitation comes from the
common-mode (CM) input
voltage swing.

CM input voltage swing of
the conventional differential
pair is very good in one
direction, but restricted in
the other direction.
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For LV operation, the CM input range must be widened as much as
possible. A rail-to-rail CM input range would be appreciated a lot.

Combining one pMOS-input and one nMOS-input differential pair
helps obtaining an almost rail-to-rail input CM voltage swing.
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An only-pMOS or only-
nMOS differential pair
would supply an almost
constant transconductance
(if body effect and channel

length modulation effects are ignored). However, a
primitive combination of pMOS and nMOS input pairs,
to avail a rail-to-rail input CM range, yields an effective
transconductance varying significantly along the CM
input voltage range. Typically, 3 different Gm levels are
observed, corresponding to 3 different regions of

operation summarized below:

VCM close to GND :  pMOS pair operates, nMOS pair OFF
VCM close to VDD :  nMOS pair operates, pMOS pair OFF
VCM close to ½VDD :  both pairs operate

... but, why
“constant-gm” ?
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Down to the CM input voltage limit (VCM=VX),  a
conventional differential pair is biased by an
almost constant tail current IB=IBnom; thus the
transconductance of the differential pair is almost
constant:   Gm= ∂(I1-I2)/∂(vI1-vI2)=2gm1vGS1/(2vGS1)= gm1,2

As shown above (body effect omitted for brevity),
the transconductance of the differential pair is
equal to the transconductance of the input
transistors.

For the pMOS-nMOS combination case, a
basic summation of the currents of the
pairs will supply the replacement of I1 with
I1n-I1p= I1n+|I1p| and I2 with I2n-I2p= I2n+|I2p|.

Thus, the new  I1 and I2 currents will
allways be non-zero (though not constant), as
VCM is sweeped from one rail to the other.
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On the right, the tail currents are
supplied for such a rail-to-rail input
stage. There seems to exist 3 different
regions (as mentioned before).

The equivalent transconductance
(GmT) will simply be the the sum of
the transconductances of the nMOS
and pMOS input transistors.

GmT = ∂[( I1n+|I1p|)-(I2n+|I2p|)]/∂(vI1-vI2)
      = gmn+ gmp = √(βnIBn) + √(βpIBp)

It is apparent that a non-zero GmT is
available for the whole input CM
range; thus amplification will allways
be possible.

... BUT, what is the reason forcing us to keep the
transconductance (GmT) of the input stage constant?
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For low frequencies, the open-loop small-signal differential voltage
gain for a typical 2-stage CMOS opamp can be generalized as

Av = GmRout1Av2

where Gm and Rout1 are respectively the transconductance and the
output resistance of the first stage, and Av2 is the gain of the second
stage (the signs of the gains are deliberately omitted). The dominant pole
frequency of such an amplifier is created (forced to be located) at
roughly fp,d=1/(2π Rout1Av2Cc) . Here, Cc is the artificial (compensation)
capacitance, used to shift the dominant pole away from the second
(non-dominant) pole, towards low frequencies (Actually, what helps to
create a dominant and a non-dominant pole is nothing but compensation).

The value of Cc is chosen such that, the non-dominant pole is
located after the GBW frequency (after |Av(f)| drops below 1), to supply
a sufficient phase margin. Since bandwidth will be approximately
equal to the dominant pole, the gain-bandwidth product is,

GBW = Av fp,d= GmRout1Av2 /(2π Rout1Av2Cc) = Gm/(2πCc)
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This result says, “ The GBW is directly dependent on Gm ! ”

So, a  varying  Gm ( i.e. a varying GBW ) will require much more strict
precautions to guarantee stability (e.g. Choosing a very large Cc to
achieve a large enough phase margin for the worst-case GBW value), in
turn, slowing down the amplifier severely.

This is a critical problem in a basic rail-to-rail opamp
where, with its primitive form, GmT will have 3 different
values, depending on the common-mode input level VCM .

“Constant-gm rail-to-rail input stages” come as a solution for
this problem. There are several different techniques trying to
“regulate” the transconductance of such an input stage along
the rail-to-rail  input common-mode range.

Numerous constant-gm rail-to-rail input stage structures
(more than 5 different approaches) will be described throughout
this course.
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Let’s recall the transconductance of the rail-to-rail input stage:

GmT = gmn+ gmp

 = √(βnIBn) + √(βpIBp)
 = βn(VGSn-VTHn) + βp(VGSp-VTHp)

Keeping GmT constant along the CM input range can be
achieved by using the one (or simultaneously more the one) of the
following methods:

Current-based methods
•  Set  βn=βp (not easy) and try to keep √IBn + √IBn constant.
•  Try to keep √(βnIBn) + √(βpIBp) fixed ( βn= βp not required ).
•  Increase one IB to 4IB when the other is OFF ( βn=βp required ).

Voltage-based methods
•  Use a Zener diode (or equivalent) to keep VGSn+ VGSp constant.
•  Insert a voltage level shifter between inputs of p and n pairs.
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Set  βn=βp and try to keep √IBn + √IBn constant :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2 circuits using this method will be supplied. First one is shown
above. In this circuit, I8=I7 with the help of the current mirror M7-M8.
From the circuit, we observe I7 = I11+ I12+|I1a| and  I8 = I9+ I10+|I2a|.
Then, since I9 = IBr1 and  I12= IBr2 , we obtain

IBr1+ I10+|I2a|= I11+ IBr2+|I1a|

Setting IBr1= IBr2  yields I10+|I2a|= I11+|I1a|. Also, it is apparent from
the circuit that, IBn= I10 and IBp= I11. Therefore, we can write

IBn+|I2a|= IBp+|I1a|

Since |I2a|+|I1a| = IBa , i.e. |I2a|= IBa-|I1a|, we obtain

IBn+ IBa-2|I1a|= IBp

This means, if  IBn starts to decrease, |I1a| will also decrease (|I2a|
will increase) to satisfy the equation (actually, the equation is satisfied
with aid of the feedback). Then, for the I8=I7 equality to hold, I11 must
be larger than I10 ; so it increases. Thus, IBp increases together with
I11 . In this way, the a reduction in gmn is compensated by a counter
action (increment in gmp) to keep overall GmT constant (Proven below).
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Using the loop along VGS voltages of M9 , M10 , M11 , M12 , we obtain

VGS9- VGS10+ VGS12- VGS11= 0   Æ  VGS9 + VGS12 = VGS10+ VGS11

Assuming all these transistors matched, we get

√I9 + √I12 = √I10 + √I11

Since I9 and I12 are constant and IBn= I10 and IBp= I11 , finally

√IBn + √IBp = √2 IB1 = constant

is obtained ( βn=βp should be achieved, which is not easy).

Although this result theoretically estimates
a constant GmT , especially because of the
deviations from the square law and due to
body effect, practically GmT will not be
absolutely constant along the CM range. A
max. relative decline of 15% (or a bit more)
from the nominal GmT value is typical.
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The second circuit using the same method has a different topology
but makes use of a similar approach (A loop along VGS voltages).

MBn• supplies an exact copy of IBn to M3, in addition to IB1. Thus,
|I7|=|I4|=|I3|=IBn+IB1. Also, |I5|=IB2+IB3 and |I6|= IB3 can be observed.
It is obvious that, |VGSBp|+|VGS7|=|VGS5|+|VGS6|. Then, if all these
four transistors are matched, we obtain

√IBp+ √(IBn+IB1)  =  √(IB2+IB3) + √IB3
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Then, choosing IB1<< IBn will be enough for
achieving  √IBp+ √IBn = constant .

Compared to the first circuit, this circuit
seems to be achieving a less GmT error along
the CM input range; probably because a
loop along VGS voltages of pMOS transistors
(free of body effect) are utilized. The relative
GmT error can be kept less than 10% .

A note by A.Z.: Actually, using only IB3 would be sufficient; IB1 and IB2

seem useless. In this case, mathematically, √IBp+ √IBn = constant is
achieved more accurately (√IBp+ √IBn= 2√IB3).

However, IB1 and IB2 are probably used for trimming purposes. i.e. to
compensate for the errors caused by the deviation from square law,
body effect, βn vs. βp inequalities, etc.


