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INFLUENCE OF TYPE OF INITIATION ON THIOL-ENE “CLICK 

CHEMISTRY” 

 

SUMMARY 

Thermally and photochemically initiated thiol-ene “click” reactions using thiol- and 
allyl- end functionalized linear polystyrenes with various enes (allyl bromide, methyl 
acrylate and methyl methacrylate) and thiol (3-mercaptopropionic acid) have been 
investigated.   

Allyl- and thiol- end-capped polystyrenes with controlled molecular weight and low 
polydispersity were prepared by atom transfer radical polymerization (ATRP) of 
styrene using functional initiator and end group modification approaches, 
respectively. Thiol-ene reactions can be initiated by both cleavage type 
photoinitiators such as 2, 4, 6-trimethylbenzoyl diphenylphosphine oxide (TMDPO) 
and 2, 2-dimethoxy-2-phenyl acetophenone (DMPA) and H-abstraction type 
photoinitiators such as benzophenone (B), thioxanthone (TX), camphorquinone 
(CQ), and classical thermal initiator, 2,2′-azobis(isobutyronitrile) (AIBN) at 80oC. 
The kinetics of the reactions were monitored online with a real time ATR-FTIR 
monitoring system and the conversions were determined by 1H-NMR spectroscopy. 
A comparison of “click” efficiencies of the studied initiator systems was performed. 
Compare to the thermal initiators and H-abstraction type photoinitiators, cleavage 
type photoinitiators were found to induce thiol-ene “click” reactions with higher 
efficiency.    
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TİYOL-EN “CLICK” KİMYASINA BAŞLATICI TİPLERİNİN ETKİSİ 

  

ÖZET 

“Tiyol” ve “en” fonksiyonlu polistirenler ile karşılık gelen “en” (allil bromür, metil 
akrilat and metil metakrilat)  ve “tiyol” (3-merkaptopropiyonik asit) moleküller 
kullanılarak termal ve fotokimyasal başlatılmış tiyol-en “click” reaksiyonları 
incelendi. 
 
Sırasıyla, fonksiyonel başlatıcı ve uç grup modifikasyonu yaklaşımları kullanılarak 
tiyol ve en fonksiyonlu iyi tanımlanmış lineer polistirenler atom transfer radikal 
polimerizasyonuyla sentezlendi. Tiyol-en reaksiyonları hem 2, 4, 6-trimetoksibenzoil 
difenilfosfin oksit (TMDPO) ve 2,2-dimetoksi-2-fenil asetofenon (DMPA) gibi 
kırılma tipi fotobaşlatıcıların yanında  benzofenon (B), tiyoksanton (TX), 
kamforkinon (CQ) gibi H-koparma tipi fotobaşlatıcılarla hem de 2,2′-
azobis(izobutironitril) (AIBN) gibi klasik termal başlatıcılarla 80oC’de başlatılabilir. 
Reaksiyonların kinetiği ATR-FTIR izleme sistemiyle online olarak izlendi ve 
dönüşümler 1H-NMR spektroskopisiyle belirlendi. Çalışılan başlatıcı sistemlerinin 
“click” kimyası etkinliklerinin karşılaştırılmaları gerçekleştirildi. Kırılma tipi 
fotobaşlatıcıların, termal başlatıcılara ve H-koparma tipi fotobaşlatıcılara kıyasla, 
thiol-en “click” reaksiyonlarını yüksek etkinlikle başlattığı bulundu. 
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1. INTRODUCTION 

Over the last decade, growing interest has been devoted to the use of rapid reactions 

that meet the three main criteria of an ideal synthesis: efficiency, versatility, and 

selectivity. To date, the most popular reactions that have been adapted to fulfill these 

criteria are known as ‘‘click’’ reactions. These reactions have been classified in four 

categories: (i) cycloaddition reactions (most commonly Huisgen 1,3-dipolar 

cycloaddition, but also Diels-Alder reaction), (ii) nucleophilic ring-opening reactions 

of strained heterocyclic electrophiles (epoxides, aziridines and aziridinium ions), (iii) 

non-aldol carbonyl chemistry (ureas, oximes and hydrazones) and (iv) additions to 

carbon-carbon multiple bonds (especially oxidative addition, such as epoxidation, 

dihydroxylation and aziridination but also Michael additions) [1-3]. Among them, 

particularly Cu (I) catalyzed Huisgen 1,3-dipolar cycloaddition of azides and 

terminal alkynes to form triazole rings, is the most widely used. “click” reactions 

have been subsequently expanded in macromolecular engineering as a versatile 

method for synthesis of functional monomers and polymers [4-21], bioconjugated 

polymers [22-24], block [25-30], graft [24, 31-36], star [37-41]  and brush 

copolymers [31, 42].  

Despite many potential applications, the existing “click” reactions have several 

disadvantages. For example, the removal of toxic heavy metal impurities from the 

polymer products and the explosive nature of the azide groups are the major concerns 

in the 1,3-dipolar cycloaddition reactions. Moreover, Diels-Alder “click” reaction is 

limited by the reactivities of the reagents and the potential retro reactions at elevated 

temperatures [43]. Although, oxime bond formation does not require any catalyst and 

is proved to be a reaction with very high conversion, the unprotected amine and 

aldehyde/ketone functional groups are unlikely to be compatible. More recently, 

thiol-ene chemistry has been introduced as a new “click” reaction [44] and 

successfully used for bioconjugated polymers [45, 46], modification of polymers 

[47-52] and surfaces [53-55], synthesis of star polymers [56], dendrimers [57] and 

disaccharides [58]. Thiol-ene reactions can be induced photochemically or thermally 
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at ambient temperature in the presence of oxygen without undesirable side reactions 

such as sulfenyl radical coupling [59-62]. Importantly, these reactions can be 

considered as environmentally-friendly processes since they precede in the absence 

of solvent under benign reaction conditions without the use of any potentially toxic 

metal. Recently, Hawker and co-workers investigated and compared the efficiency 

and orthogonality of thermally and photochemically initiated thiol-ene “click” 

coupling reactions. Although only single photoinitiator was tested, the photochemical 

coupling was found to proceed with higher efficiency and required shorter reaction 

time for complete conversion compared to the thermal counterpart [49]. 

 

In this thesis, a comparative study of the thiol-ene “click” reactions between a library 

of several ene groups such as allyl bromide, methyl acrylate and methyl methacrylate 

with thiol-end functional polystyrene using both cleavage (Type I) and H-abstraction 

type (Type II) initiators, and classical thermal radical initiator is reported. “click” 

reaction was also performed using opposite end functional (ene functional) polymer 

and 3-mercaptopropionic acid. The kinetics of the reactions was followed by a real 

time ATR-FTIR monitoring system and the functionalized polymers were analyzed 

by 1H-NMR. 
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2. THEORETICAL PART 

2.1 “Click” Chemistry 

The term ‘‘click chemistry’’ introduced in 2001 by Sharpless and coworkers[1], as a 

class of efficient and selective reactions that could be used to join molecules together 

rapidly and in high yield. The “click”reactions commonly include the formation of a 

carbon-heteroatom bond and can be ranked in four categories: 

• Cycloadditions of unsaturated species (most commonly Huisgen 1,3-dipolar 

cycloaddition, but also Diels-Alder reaction) 

• Nucleophilic ring-opening reactions of strained heterocyclic electrophiles 

(such as epoxides, aziridines, aziridinium ions and episulfonium ions) 

• Carbonyl chemistry of the “non-aldol” type (ureas, oximes, and hydrazones), 

• Additions to carbon-carbon multiple bonds, (especially oxidative addition, 

such as epoxidation, dihydroxylation, aziridination, and sulfenyl halide addition but 

also Michael additions) 

2.1.1 Copper-catalyzed azide-alkyne cycloadditions 

An extensively studied reaction is copper(I)-catalyzed Huisgen 1,3-dipolar 

cycloaddition (CuAAC) reaction between azides and terminal alkynes, which is the 

most prominent example of “click chemistry”, discovered by the groups of Sharpless 

[2] and Meldal [63] (see reaction 2.1). While traditional uncatalyzed cycloadditions 

of azides and alkynes require long reaction times, high temperatures and produce a 

mixture of the 1,4- and 1,5-triazole products,  Cu(I) catalyzed variation of this 

reaction allows very fast and regioselective formation of only the 1,4-triazoles at 

mild reaction conditions. Since its extraordinary success under different reaction 

conditions, with highly diverse building blocks, in high yields and with no (or 

conveniently separated) by-products, the “click” reaction has been applied widely in 

organic chemistry [63-65], supramolecular chemistry [66, 67], drug discovery [1], 

bioconjugation [23, 68] and materials science [69-74]. 
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(2.1) 

2.1.2 Diels-Alder reaction 

Since reported in 1928 [75], Diels-Alder reaction has been employed in organic 

chemistry for many years. However, this reaction gained increased attention in the 

field of materials science with the discovery of “click chemistry” concept. These 

reactions possess characteristics of “click” reactions in terms of being specific, atom-

economical, and highly efficient. Furthermore, these reactions advantageously 

performed in the absence of a metal catalyst, whereas the majority of “click” 

reactions require metal catalyst. The Diels-Alder reaction involves the [4+2] 

cycloaddition of an electron-rich conjugated diene to an electron-deficient dienophile 

and results with the formation of a partially hydrogenated six-membered ring. On the 

contrary to the majority of “click” reactions, Diels-Alder “click” reactions not only 

create new carbon-heteroatom bonds, but also create carbon-carbon bonds. This 

feature increases the value of this reaction as a synthetic tool. A simple and efficient 

DA cycloaddition reaction can be used in the syntheysis of linear thermoplastic[76] 

and thermosetting polymers[77] such as, polyimides[78-87], polyphenylenes[88-91], 

ladder polymers etc [92, 93] (see reaction 2.2). 

 

(2.2) 

2.1.3 Thiol-ene reaction 

The thiol-ene reaction is, simply, the radical addition of thiols to carbon-carbon 

double bonds, discovered in the early 1900s by Posner [94]. The generally accepted 

mechanism of the thiol-ene free radical addition reaction, first proposed by Kharasch 

and coworkers in 1938 [95]. There have been several efforts since the discovery of 

this reaction to review the use of thiol–ene photopolymerization in material scince. 

Among them two excellent reviews were written by Jacobine [96] and Woods [97]. 
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More recently, thiol–ene chemistry has been introduced as a new “click” reaction and 

successfully used for bioconjugated polymers [45,46], modification of polymers [47–

52] and surfaces [53–55], synthesis of star polymers [56], dendrimers [57], and 

disaccharides [58] (see reaction 2.3.). 

 

(2.3)

Thiols are known transfer agents and their reaction with alkenes can be induced 

photochemically or thermally at ambient temperature in the presence of oxygen 

without undesirable side reactions such as sulfenyl radical coupling. Importantly, 

these reactions can be considered as environmentally friendly processes since they 

preceed in the absence of solvent under benign reaction conditions without the use of 

any potentially toxic metal. In order to ensure completion of reaction without 

byproduct formation, a large excess of one of the reagents should be used.  

Typically, the thiol-ene reaction is conducted through generation of radical centers, 

the most common method photochemically induced. The reaction proceeds through a 

typical chain process which contains initiation, propagation and termination steps, in 

reaction 2.4. Initiation includes the interaction of a thiol with photoinitiator, upon 

light exposure, resulting in the formation of a thiyl radical, RS˙. Propagation involves 

the direct addition of the thiyl radical to the C=C bond and hydrogen abstraction of a 

thiol group by a carbon-centered radical resulting the synchronous generation of a new 

thiyl radical, respectively. Termination takes place via typical radical–radical 

coupling processes. 
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(2.4) 

2.2 Controlled Radical Polymerization  Methods 

Nowadays, radical polymerization is a very useful commercial process for the 

preparation of high molecular weight polymers since it can be employed for the 

polymerization of numerous vinyl monomers under mild reaction conditions, 

requiring an oxygen free medium, but tolerant to water, and can be conducted over a 

large temperature range (-80 to 250oC) [98]. Furthermore, a wide range of monomers 

can easily be copolymerized through a radical route, and this leads to an infinite 

number of copolymers with properties dependent on the proportion of the 

incorporated comonomers. Besides, rigorous process conditions are not needed for 

the polymerization. On the other hand, some important elements of the 

polymerization process that would lead to the well-defined polymers with controlled 

molecular weight, polydispersity, composition, structural architecture, and 

functionality are poorly controlled.  

Advanced structures can be synthesized via living polymerization techniques. 

Moreover, living polymerization techniques allow preparation of macromonomers, 

macro initiators, functional polymers, block, graft copolymers, and star polymers. 

Well known example of these techniques is anionic polymerization [99], which is 

known to allow the synthesis of low PDI materials as well as block copolymers. The 

main disadvantages of anionic polymerization are the limited choice of monomers, 

and the extremely demanding reaction conditions. 
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In order to overcome the disadvantages of RP without sacrificing the above-

mentioned advantages, it was recognized that a living character had to be realized in 

conjunction with the free-radical mechanism. At present three main mechanisms 

exist that ensure this living character by establishing an equilibrium between active 

(radical) and dormant chains. These are atom transfer radical polymerization 

(ATRP), nitroxide-mediated radical polymerization (NMRP) or stable free radical 

polymerization (SFRP) and reversible addition-fragmentation chain transfer 

polymerization (RAFT). In either of these controlled radical polymerization methods 

(CRP), all chains are started early in the reaction, and are allowed to grow 

throughout the reaction. In general, the result of a successful CRP will be a polymer 

with low polydispersities, and predetermined (number-average) molar mass. 

2.2.1 Atom transfer radical polymerization (ATRP) 

Metal-catalyzed controlled radical polymerization, mediated by Cu, Ru, Ni, and Fe 

metal complexes, is one of the most efficient methods to produce polymers in the 

field of CRP [100]. Among aforementioned systems, copper-catalyzed ATRP in 

conjunction with organic halide initiator and amine ligand received more interest. 

The name ATRP comes from the atom transfer step, which is the key elementary 

reaction responsible for the uniform growth of the polymeric chains. ATRP was 

developed by designing a proper catalyst (transition metal compound and ligands), 

using an initiator with an appropriate structure, and adjusting the polymerization 

conditions, such that the molecular weights increased linearly with conversion and 

the polydispersities were typical of a living process [101]. This allowed for an 

unprecedented control over the chain topology (stars, combs, branched), the 

composition (block, gradient, alternating, statistical), and the end functionality for a 

large range of radically polymerizable monomers [102, 103]. 

 

      (2.5)

A general mechanism for ATRP is represented by (2.5). The radicals, i.e., the 

propagating species Pn*, are generated through a reversible redox process catalyzed 

by a transition metal complex (activator, Mt
n –Y / ligand, where Y may be another 
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ligand or a counterion) which undergoes a one-electron oxidation with concomitant 

abstraction of a (pseudo)halogen atom, X, from a dormant species, Pn–X. Radicals 

react reversibly with the oxidized metal complexes, X–Mt
n+1 / ligand, the deactivator, 

to reform the dormant species and the activator. This process occurs with a rate 

constant of activation, ka, and deactivation kda, respectively. Polymer chains grow by 

the addition of the free radicals to monomers in a manner similar to a conventional 

radical polymerization, with the rate constant of propagation, kp. Termination 

reactions (kt) also occur in ATRP, mainly through radical coupling and 

disproportionation; however, in a well-controlled ATRP, no more than a few percent 

of the polymer chains undergo termination. Elementary reactions consisting of 

initiation, propagation, and termination are illustrated below (2.6a-e) [104]. 

Other side reactions may additionally limit the achievable molecular weights. 

Typically, no more than 5% of the total growing polymer chains terminate during the 

initial, short, nonstationary stage of the polymerization. This process generates 

oxidized metal complexes, the deactivators, which behave as persistent radicals to 

reduce the stationary concentration of growing radicals and thereby minimize the 

contribution of termination at later stages [105]. A successful ATRP will have not 

only small contribution of terminated chains but also uniform growth of all the 

chains; this is accomplished through fast initiation and rapid reversible deactivation. 

 

 
      

     (2.6a) 

 

(2.6b) 
 
 
 
 

(2.6c) 
 

(2.6d) 
 
 
 
 

(2.6e) 
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As a multicomponent system, ATRP includes the monomer, an initiator with a 

transferable (pseudo)halogen, and a catalyst (composed of a transition metal species 

with any suitable ligand). Both activating and deactivating components of the 

catalytic system must be simultaneously present. Sometimes an additive is used. 

Basic components of ATRP, namely, monomers, initiators, catalysts, ligands, and 

solvents are discussed as follows: 

Monomers 

A variety of monomers have been successfully polymerized using ATRP: styrenes, 

(meth)acrylates, (meth)acrylamides, dienes, and acrylonitrile, which contain 

substituents that can stabilize the propagating radicals [102]. In fact, all vinyl 

monomers are susceptible to ATRP except for a few exceptions. Notable exceptions 

are unprotected acids (eg (meth)acrylic acid). Some other monomers may be difficult 

to polymerize since they exhibit side reactions, which may be affected by the choice 

of reaction conditions, nature of the catalyst, etc. An example of such a monomer is 

4-vinyl pyridine (4-VP), which can undergo quaternization by the (alkyl halide) 

initiator [106]. Nevertheless, successful polymerization of 4-VP has been reported. 

The most common monomers in the order of their decreasing ATRP reactivity are 

methacrylates, acrylonitrile, styrenes, acrylates, (meth)acrylamides. 

Initiators 

The main role of the initiator is to determine the number of growing polymer chains. 

The initiation in ATRP may occur in one of two different ways. The common way to 

initiate is via the reaction of an activated (alkyl) halide with the transition-metal 

complex in its lower oxidation state. To obtain well-defined polymers with narrow 

molecular weight distributions, the halide group, X, should rapidly and selectively 

migrate between the growing chain and the transition metal complex. Thus far, when 

X is either bromine or chlorine, the molecular weight control is best. Iodine works 

well for acrylate polymerizations in copper-mediated ATRP and has been found to 

lead to controlled polymerization of styrene in ruthenium and ruthenium-based 

ATRP.  

The alternative way to initiate ATRP is via a conventional free-radical initiator, 

which is used in conjunction with a transition-metal complex in its higher oxidation 

state. Typically one would use AIBN in conjunction with a Cu(II) complex. Upon 
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formation of the primary radicals and/or their adducts with a monomer unit, the 

Cu(II) complex very efficiently transfers a halogen to this newly formed chain. In 

doing so the copper complex is reduced, and the active chain is deactivated. This 

alternative way of initiation was termed “reverse ATRP” [107]. 

Catalysts  

Perhaps the most important component of ATRP is the catalyst. It is the key to 

ATRP since it determines the position of the atom transfer equilibrium and the 

dynamics of exchange between the dormant and active species. There are several 

prerequisites for an efficient transition metal catalyst. 

1. The metal center must have at least two readily accessible oxidation states   

separated by one electron. 

2. The metal center should have reasonable affinity toward a halogen. 

3. The coordination sphere around the metal should be expandable on oxidation to 

selectively accommodate a (pseudo) halogen.  

4. The ligand should complex the metal relatively strongly. 

5. Eventually, the position and dynamics of the ATRP equilibrium should be 

appropriate for the particular system. To differentiate ATRP from the conventional 

redox-initiated polymerization and induce a controlled process, the oxidized 

transition metal should rapidly deactivate the propagating polymer chains to form the 

dormant species [108].  

A variety of transition metal complexes with various ligands have been studied as 

ATRP catalysts. The majority of work on ATRP has been conducted using copper as 

the transition metal. Apart from copper-based complexes, Fe [109], Ni [110], Ru 

[111], etc have been used to some extent.  

Ligands 

The main roles of the ligand in ATRP is to solubilize the transition metal salt in the 

organic media and to adjust the redox potential and halogenophilicity of the metal 

center forming a complex with an appropriate reactivity and dynamics for the atom 

transfer. The ligand should complex strongly with the transition metal. It should also 

allow expansion of the coordination sphere and should allow selective atom transfer 

without promoting other reactions. 
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The most common ligands for ATRP systems are substituted bipyridines, alkyl 

pyridylmethanimines and multidentate aliphatic tertiary amines such as N,N,N′,N″,N″ 

-pentamethyldiethylenetriamine (PMDETA), and tris[2-(dimethylamino) ethyl]amine 

(Me6-TREN). Examples of ligands used in copper-mediated ATRP are illustrated 

below [101, 112]. 

 

Figure 2.1 : Examples of ligands used in copper-mediated ATRP 

In addition to those commercial products, it has been demonstrated that 

hexamethyltriethylene tetramine (HMTETA) provides better solubility of the copper 

complexes in organic media and entirely homogeneous reaction conditions [113]. 

Since copper complexes of this new ligand are almost insoluble in water, ATRP 

technique can be employed in preparing poly(acrylate esters) in aqueous suspensions 

[114]. 

Solvents 

ATRP can be carried out either in bulk, in solution, or in a heterogeneous system 

(e.g., emulsion, suspension). Various solvents, such as benzene, toluene, anisole, 

diphenyl ether, ethyl acetate, acetone, dimethyl formamide (DMF), ethylene 

carbonate, alcohol, water, carbon dioxide, and many others, have been used in the 

polymerization of different monomers. A solvent is sometimes necessary, especially 

when the polymer is insoluble in its monomer (e.g., polyacrylonitrile). ATRP has 

been also successfully carried under heterogeneous conditions in (mini)emulsion, 

suspension, or dispersion.  
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2.2.2 Nitroxide-mediated radical polymerization (NMRP) 

Nitroxide-mediated radical polymerization (NMRP) belongs to a much larger family 

of processes called stable free radical polymerizations. In this type of process, the 

propagating species (Pn
·) reacts with a stable radical (X·) as seen in reaction 2.5 

[115]. The most commonly used stable radicals have been nitroxides, especially 

2,2,6,6- tetramethylpiperidine-N-oxyl (TEMPO). The resulting dormant species (Pn-

X) can then reversibly cleave to regenerate the free radicals once again. Once Pn· 

forms it can then react with a monomer, M, and propagate further.  

 

(2.5) 

Two initiation systems have been generally employed in the NMRP. First is a 

bimolecular system consisting of conventional radical initiator such as BPO or 

azoisobutyronitrile (AIBN), and a nitroxide (i.e., TEMPO). The conventional radical 

initiator is decomposed at an appropriate temperature to initiate free-radical 

polymerization. The initiator-monomer adduct is trapped by the nitroxide leading to 

formation of the alkoxyamine in situ. Second is the unimolecular system using the 

alkoxyamine that is decomposed into a nitroxide and an initiating radical. This 

radical subsequently initiates the free-radical polymerization (2.5). By using the 

unimolecular initiator, the molecular weight can be properly controlled, because the 

number of initiating sites per polymeric chain is defined. In addition, functionalized 

unimolecular initiators can afford the fully functional groups at the ends of the 

polymer chain. 

Unfortunately, TEMPO can only be used for the polymerization of styrene-based 

monomers at relatively high temperatures (>120ºC). With most other monomers, the 

bond formed is too stable and TEMPO acts as an inhibitor in the polymerization, 

preventing chain growth.  Numerous advances have been made in both the synthesis 

of unimolecular initiators (alkoxyamines) that can be used not only for the 

polymerization of St-based monomers, but other monomers as well [116-120]. Most 

recently, the use of more reactive alkoxyamines and less reactive nitroxides has 

expanded the range of polymerizable monomers to acrylates, dienes, and acrylamides 
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[121-123]. Several nitroxides that have been employed as mediators in stable free-

radical polymerizations [124]. 

2.2.3 The reversible addition–fragmentation chain transfer process (RAFT) 

Reversible addition-fragmentation chain transfer polymerization is one of the most 

efficient methods in controlled/living radical polymerization. An important 

advantage of this method over ATRP and NMRP is its tolerance to a wide range of 

functionalities, namely -OH, -COOH, CONR2, NR2, SO3Na, etc., in monomer and 

solvent. This provides the possibility of performing the polymerization under a wide 

range of reaction conditions and polymerizing or copolymerizing a wide range of 

monomers in a controlled manner. In contrast to the previously described NMRP and 

ATRP, this system relies on chain transfer for the exchange between active and 

dormant chains. The chain end of a dormant chain carries a thiocarbonylthio moiety, 

which is chain-transfer-active. Upon chain transfer, the thiocarbonylthio moiety is 

transferred to the previously active chain, which now becomes dormant, and the 

previously dormant chain carries the radical activity and is able to propagate. 

There are four classes of thiocarbonylthio RAFT agents, depending on the nature of 

the Z group: (1) dithioesters (Z = aryl or alkyl), (2) trithiocarbonates (Z = substituted 

sulfur), (3) dithiocarbonates (xanthates) (Z = substituted oxygen), and (4) 

dithiocarbamates (Z = substituted nitrogen.  

The RAFT system basically consists of a small amount of RAFT agent and monomer 

and a free-radical initiator. Radicals stemming from the initiator are used at the very 

beginning of the polymerization to trigger the degenerative chain transfer reactions 

that dominate the polymerization. Free radicals affect both the molecular weight 

distribution of the polymer as the dead polymer chains of uncontrolled molecular 

weight are formed and the rate of polymerization. Therefore, the concentration of 

free radicals introduced in the system needs to be carefully balanced. In RAFT 

polymerization radicals may be generated in three different ways: (1) by 

decomposition of organic initiators, (2) by the use of an external source (UV–vis or 

γ-ray), and (3) by thermal initiation. Polymerization temperature is usually in the 

range of 60–80 oC, which corresponds to the optimum decomposition temperature 

interval of the well-known initiator AIBN. However, even room temperature and 

high-temperature conditionscan also be applied [125, 126]. Generally, a RAFT 
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agent/free-radical ratio of 1:1 to 10:1 yields polymers with narrow molecular weight 

distributions.  

 

Figure 2.2 : Examples of the different classes of thiocarbonylthio RAFT agents. 

The mechanism of RAFT polymerization with the thiocarbonylthio-based RAFT 

agents involves a series of addition–fragmentation steps as depicted below (reaction 

2.6 a-e). As for conventional free-radical polymerization, initiation by decomposition 

of an initiator leads to formation of propagating chains. In the early stages, addition 

of a propagating radical (Pn·) to the RAFT agent [S=C(Z)SR] followed by 

fragmentation of the intermediate radical gives rise to a polymeric RAFT agent and a 

new radical (R·). The radical R· reinitiates polymerization by reaction with monomer 

to form a new propagating radical (Pm·). In the presence of monomer, the 

equilibrium between the active propagating species (Pn· and Pm·) with the dormant 

polymeric RAFT compound provides an equal probability for all the chains to grow. 

This feature of the RAFT process leads to the production of narrow polydispersity 

polymers. When the polymerization is complete, the great majority of the chains 

contain the thiocarbonylthio moiety as the end group (reaction 2.6e) which has been 

identified by 1H-NMR and UV–vis spectroscopy [127]. Additional evidence for the 

proposed mechanism was provided by the identification of the intermediate thioketal 

radical ((A) and/or (B), reaction 2.6b,d) by ESR spectroscopy [128, 129]. 
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(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

2.3 Photoinitiating Systems 

Photochemistry is concerned with chemical reactions induced by optical radiation 

[130-132]. The radiation is most often ultraviolet (200–400 nm) or visible (400–800 

nm) light but is sometimes infrared (800–2500 nm) light.  

The chemical moiety, like phenyl rings or carbonyl groups, responsible for the 

absorption of light and defined to as chromophoric groups. Typical chromophores 

contain unsaturated functional groups such as C=C, C=O, NO2, or N=N [133-136]. 

Absorption of a photon of light by any compound causes electronic excitation. The 

energy causing excitation, E, is described by E=hc/ where h is Planck’s constant, c 

is the speed of light, and ‚ is the wavelength of the exciting light. Light absorption is 

described by A= Cl, where  is the molar absorptivity (extinction coefficient), C is 

the concentration of the species, and l is the light path length. 
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A photoinitiator is a compound that, under absorption of light, undergoes a 

photoreaction, producing free radicals. These species are capable of initiating the 

polymerization of suitable monomers. Photoinitiators are generally divided into two 

classes according to the process by which initiating radicals are formed.  

Compounds which undergo unimolecular bond cleavage upon irradiation as shown in 

reaction 2.7 are termed as Type I photoinitiators [137]. 

 

(2.7) 

If the excited state photoinitiator interacts with a second molecule (a coinitiator) to 

generate radicals in a bimolecular reaction as shown in reaction 2.8, the initiating 

system is termed as “Type II Photoinitiator” [137].  

 

(2.8) 

Efficient photoinitiators of both classes are known and find everyday usage. Type I 

photoinitiators are highly reactive UV photoinitiators, but are less frequently used in 

visible light curing systems. Type II photoinitiators are versatile initiators for UV 

curing systems and visible light photoinitiators belong almost exclusively to this 

class of photoinitiators. 

2.3.1 Type I photoinitiators (Unimolecular photoinitiator systems) 

Photoinitiators termed unimolecular are so designated because the initiation system 

involves only one molecular species interacting with the light and producing free-

radical active centers. These substances undergo a homolytic bond cleavage upon 

absorption of light (reaction 2.9). 

 
(2.9) 
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(2.10) 

(2.11) 

Type I photoinitiators which undergo a direct photofragmentation process (α or less 

common β cleavage) upon absorption of light and formation of initiating radicals 

capable of inducing polymerization. As illustrated in reaction 2.10, the photoinitiator 

is excited by absorption of ultraviolet light and rapid intersystem crossing to the 

triplet state. In the triplet state, the bond to the carbonyl group is cleaved, producing 

an active benzoyl radical fragment and another fragment. The benzoyl radical is the 

major initiating species, while, in some cases, the other fragment may also contribute 

to the initiation. The  most  efficient  Type  I initiators are benzoin  ether derivatives,  

benzil  ketals,  hydroxylalkylphenones, α-aminoketones and acylphosphine oxides 

(Table 2.1) [138-141]. 

Photoinitiators Structure λmax (nm) 

 
Benzoin ethers 

 
R1 = H, alkyl 

R2 = H, substituted alkyl 

 
323 

 

 
Benzil ketals 

 
R = CH3, C3H7, CH2

 
365 

 
Acetophenones 

 
R1 = OCH3, OC2H5 

R2 = OCH3, H 
R3 = C6H5, OH 

 
340 

Table 2.1 : Structures of typical Type I radical photoinitiators 
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Benzyl oximes 

 
R1 = H, SC6H5 

R2 = CH3, C6H13 

R3 = C6H5, OC2H5

 
335 

 
Acylphosphine oxides 

 
R = C6H5 or OCH3

 
380 

 
Aminoalkyl phenones 

 
R1 = SCH3, morpholine 

R2 = CH3, CH2Ph or C2H5 

R3 = N(CH3)3, morpholine 

 
320 

 

2.3.2 Type II photoinitiators (Bimolecular photoinitiator systems) 

Bimolecular photoinitiators are so-called because two molecular species are needed 

to form the propagating radical: a photoinitiator that absorbs the light and a co-

initiator that serves as a hydrogen or electron donor. These photoinitiators do not 

undergo Type I reactions because their excitation energy is not high enough for 

fragmentation, i.e., their excitation energy is lower than the bond dissociation energy. 

The excited molecule can, however, react with co-initiator to produce initiating 

radicals (reactions 2.12). In this case, radical generation follows 2nd order kinetics. 

 (2.12) 

In these systems, photons are absorbed in the near UV and visible wavelengths. Free 

radical active centers are generated by hydrogen abstraction or photo-induced 

electron transfer process aforementioned.  

Hydrogen abstraction 

Photoinitiators that proceed via a hydrogen abstraction mechanism are exemplified 

by combination of benzophenone and a hydrogen donor (reaction 2.13). When R-H 

is an amine with transferable hydrogen, benzophenone undergoes an electron transfer 

followed by a hydrogen abstraction to produce an initiating species and semipinacol 

radical. The semipinacol radical does not efficiently initiate polymerization and 
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typically react with other radicals in the system as a terminating species causing a 

reduction in the polymerization rate. 

 

(2.13)

Photosensitizers of Type II system including benzophenones, thioxanthones, 
camphorquinones, benzyls, and ketocoumarins are listed in Table 2.2.  

Photosensitizers Structure 
λmax 
(nm) 

Benzophenones 335 

Thioxanthones 
S

O

R

R = H, Cl, isopropyl

390 

Coumarins 370 

Benzils 340 

Camphorquinones 470 

 

The co-initiators such as an amine, ether, thiol or alcohol with an abstractable α-

hydrogen are also classified in Table 2.3. 

Table 2.2 : Structures of typical Type II photosensitizers 
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Hydrogen 
Donors 

Structure 

Aliphatic 
Amines 

Aromatic 
Amines 

Polymeric 
Amines  

polymer = poly(methyl methacrylate)s,
polyacrylates or polyurethanes

N
CH3 CH3

Dendrimeric 
Amines 

Acrylated 
Amines 

Alcohols 

Ethers 

Thiols 

 

Photoinduced electron transfer reactions and subsequent fragmentation 

Photoinduced electron transfer is a more general process which is not limited to a 

certain class of compounds and is more important as an initiation reaction 

comprising the majority of bimolecular photoinitiating systems. The photoexcited 

compounds (sensitizer) can act as either an electron donor with the coinitiator as an 

electron acceptor or vice-versa. The radical ions obtained after the photoinduced 

Table 2.3 : Structures of typical Type II hydrogen donors
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electron transfer can generally undergo fragmentation to yield initiating radicals 

(reaction 2.14).   

 

(2.14)

2.4 Telechelic Polymers 

Telechelic polymers are macromolecules that contain reactive end groups that have 

the capacity to enter into further polymerization or other reactions. The range of 

monomers and functional groups employed in the preparation of telechelic polymers 

has been expanded in recent years owing to developments in the controlled radical 

polymerization routes as well as metathesis polymerization. A lot of new catalysts, 

used in metathesis polymerization, have been developed and applied to the 

preparation of advanced materials [142, 143].  

 

Figure 2.1 : Various architectures obtained by the reactions of telechelics. 
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A telechelic contains end groups that react selectively to give a bond with another 

molecule. Depending on the functionality, which must be distinguished from the 

functionality of the end group itself, telechelics can be classified as mono-, di-, tri-, 

and multi-functional telechelics (polytelechelics). 

Telechelic polymers can be used as cross-linkers, chain extenders, and precursors for 

block and graft copolymers. Furthermore, star and hyper-branched or dendritic 

polymers are obtained by coupling reactions of monofunctional and multifunctional 

telechelics with appropriate reagents (Figure 2.1).                
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3. EXPERIMENTAL WORK 

3.1 Materials and Chemicals 

3.1.1 Reagents for synthesis of ene-monomer 

Styrene (St; 99%, Aldrich) : Styrene was passed through a basic alumina column to 

remove the inhibitor.used as received. 

Methyl methacrylate (MMA, 99%, Aldrich): Methyl methacrylate was passed through 

a basic alumina column to remove the inhibitor. 

Methyl acrylate (MA, 99%, Aldrich): Methyl acrylate was passed through a basic 

alumina column to remove the inhibitor. 

3-Mercaptopropionic acid (MPA, >98%, Fluka) 

3-Mercaptopropionic acid was used as received. 

Trimethylolpropane tris(2-mercaptoacetate) (technical grade, Aldrich) : 

Trimethylolpropane tris(2-mercaptoacetate) was used as received.  

3.1.2 Solvents 

Methanol (Technical) : Methanol was used for the precipitation of polymers without 

further purification. 

Toluene (Aldrich 99%) : Toluene was dried with calcium chloride and distilled over 

sodium wire. 

Tetrahydrofuran (THF) (99.8%, J.T.Baker) : Tetrahydrofuran was used as received.  

Dichloromethane (99.8%, J.T.Baker ): Dichloromethane was dried with P2O5. 

3.1.3 Other chemicals and reagents 

2,2-dimethoxy-2-phenylacetophenone (DMPA, Ciba) : It was used as received. 

Benzophenone (BP, 99%, Acros) : It was used as received. 
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Thioxanthone (TX, Aldrich) : It was used as received. 

Camphorquinone (CQ, 98%, Fluka) : It was used as received. 

(2,4,6 trimethylbenzoyl) diphenylphosphine oxide (TMDPO, Ciba) : It was used as 

received.  

2,2′-azobis(isobutyronitrile) (AIBN, 98%, Aldrich) : It was used as received. 

Ethyl-2-bromopropionate (>99%, Aldrich) : It was used as received. 

N, N, N′, N′′, N′′ -Pentamethyldiethylene triamine (PMDETA, Aldrich) :  PMDETA 

was used as a ligand, was distilled before used. 

Copper bromide (CuBr, 98%, Acros) : It was used as received. 

3.2 Equipments  

3.2.1 Photoreactor 

Photoreactor (Rayonet) equipped with 16 lamps emitting light nominally at 350 nm 

was used for photopolymerization of formulations containing DMPA which absorbs 

around 350 nm. 

3.2.2 1H-Nuclear magnetic resonance spectroscopy (1H-NMR) 

1H-NMR spectra of 5–10 % (w/w) solutions in CDCl3 with Si(CH3)4 as an internal 

standard were recorded at room temperature at 250 MHz on a Bruker DPX 250 

spectrometer.  

3.2.3 Infrared spectrophotometer (IR) 

FT-IR spectra were recorded on a Perkin-Elmer FT-IR Spectrum One spectrometer 

via attenuated total reflectance (ATR) technique with 4 scans for each sample. 

3.2.4 Gel permeation chromatography (GPC)  

Gel permeation chromatography (GPC) measurements were obtained from a 

Viscotek GPCmax Autosampler system consisting of a pump, a Viscotek UV 

detector and Viscotek a differential refractive index (RI) detector. Three ViscoGEL 

GPC columns (G2000HHR, G3000HHR and G4000HHR), (7.8 mm internal diameter, 

300 mm length) were used in series. The effective molecular weight ranges were 



25 
 

456–42,800, 1050–107,000, and 10,200–2,890,000, respectively. THF was used as 

an eluent at flow rate of 1.0 mL min-1 at 30C.  Both detectors were calibrated with 

PSt standards having narrow molecular weight distribution. Data were analyzed 

using Viscotek OmniSEC Omni-01 software.  Molecular weights were calculated 

with the aid of polystyrene standards. 

3.3 Preparation Methods 

3.3.1 General procedure for atom transfer radical polymerization 

To a Schlenk tube equipped with a magnetic stirring bar, the degassed monomer (St, 

44 mmol), ligand (PMDETA, 0.44 mmol), catalyst (CuBr, 0.44 mmol), initiator 

(ethyl-2-bromopropionate, 0.44 mmol for PSt-Br (monomer/initiator/ 

CuBr/PMDETA: 100/1/1/1, 90 oC, 50 min) or allyl bromide, 0.22 mmol for PSt-allyl 

(monomer/initiator/CuBr/PMDETA: 200/1/1/1, 110 oC, 180 min)) and deoxygenated 

solvent toluene were added respectively. The tube was degassed by three freeze-

pump-thaw cycles, left under vacuum, and placed in a thermostated oil bath. After 

the polymerization, the reaction mixture was diluted with THF and then passed 

through a column of neutral alumina to remove metal salt. The excess of THF and 

unreacted monomer were evaporated under reduced pressure. The polystyrene was 

dissolved in THF, precipitated in 10-fold excess methanol. The polymers were dried 

in vacuum at RT. Molecular weights and molecular weight distributions of polymers 

(Mn= 2500 g/mol, PDI= 1.18 for PSt-Br and Mn= 3900 g/mol, PDI= 1.09 for PSt-

allyl were determined by GPC. The thiol end-functional polystyrene (Mn= 2600 

g/mol, PDI= 1.15 for PSt-SH) was synthesized from PSt-Br by organic substitution 

reaction following the literature [144].  

3.3.2 General procedures for thiol-ene “click” reactions 

A solution of PSt-SH (1 equiv, 10-2 mmol) ene (10 equiv, 10-1 mmol) and a 

photoinitiator (1 equiv, 10-2 mmol) in 1 mL of CH2Cl2 were introduced in a Pyrex 

tube and irradiated at 350 nm at room temperature for 4 h. Light intensity was 1.04 

mW cm-2 as measured by Delta Ohm model HD-9021 radiometer. After this time, 

polymers were first precipitated in methanol then reprecipitated in acetonitrile for the 

removal of homopolymer formation of (meth)acrylates. Thermally initiated reactions 
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were conducted in the presence of AIBN (1 equiv, 10-2 mmol) at 80 °C for 4 h. 

Conditions and results are summarized in Table 4.1. 

3.3.3 Real-time infrared spectroscopy 

The real time FT-IR experiments were performed using a Perkin-Elmer FTIR 

Spectrum One B spectrometer in attenuated total reflection (ATR) mode. A sample 

drop was deposited and spread out over the ATR diamond crystal by means of a 

quartz plate. A polyethylene film was introduced between this filter and the solution 

drop. UV light (320–500 nm) was applied by a light guide (OmniCure Series 2000) 

with a light intensity of 18.40 mWcm-2 at the level of the surface of the cured 

samples. Series scans were recorded, with spectra taken at the rate of approximately 

4 scans/s. All reactions were performed under ambient conditions. Conversion rates 

of each bond were calculated according to the disappearance of IR absorption bands: 

2570 cm-1  for the thiol of trimethylolpropane tris(2-mercaptoacetate), 1640 cm-1 for 

the methyl acrylate or methyl methacrylate and 1636 cm-1for the allyl of allyl 

bromide. At a subsequent time t, the area of the peak was integrated and the 

conversion at that time was determined as follows: where x(t) is the conversion at 

time t, A0 is the initial absorbance, and At is the absorbance of these bonds at time t. 

x(t) = (A0- At)/ A0 
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4. RESULTS AND DISCUSSION 

4.1 Synthesis and Characterization of Allyl- and Thiol- End Functionalized 

Linear Polystyrenes 

Appropriate allyl- and thiol- end functionalized linear polystyrenes were synthesized 

by ATRP according to the procedures reported by Matyjaszewski and co-workers 

[145] and Hilborn and co-workers [144], respectively. For the thiol-end 

functionalized polystyrene (PSt-SH), ethyl-2-bromopropionate was used as an 

initiator in the ATRP of styrene.  The resulting halide end functional polystyrene was 

then converted to thiol group by organic substitution reaction (Reaction 4.1). The 

polymer (PSt-SH) was characterized by GPC (Mn= 2600 g/mol, PDI= 1.15 for PSt-

SH) and 1H-NMR analyses. The methine proton close to the halide chain end has a 

chemical shift at 4.30–4.42 ppm in Figure 4.1, which shifts quantitatively to 3.80 

ppm, as a result of efficient nucleophilic substitution of the halogen atom at a 

polymer chain end by a thiol. 

 

Figure 4.1 : 1H-NMR spectra of PSt-Br (bottom) and the PSt-SH after the 
nucleophilic substitution (top). 
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(4.1) 

4.2 Thiol-ene “Click” Reactions 

Thiol-ene “click” reactions have been carried out under a variety of initiating 

systems. We started performing the photoinitiating reactions at room temperature by 

irradiation with a UV- lamp (emitting nominally at 350 nm, light intensity= 1.04 

mW.cm-2) in the presence of the Type I photoinitiators, 2, 4, 6 trimethylbenzoyl 

diphenylphosphine oxide (TMDPO) and 2, 2-dimethoxy-2-phenyl acetophenone 

(DMPA) or Type II photoinitiators, benzophenone (BP), thioxanthone (TX), and 

camphorquinone (CQ)[146]. For comparison, thermally initiating system in the 

presence of thermal radical initiator, 2,2′-azobis(isobutyronitrile) (AIBN) was also 

carried out at 80 oC [147]. Summary of the reaction conditions and conversion yields 

for the individual initiating systems are collected in Table 4.1. 

In the case of Type I photoinitiators, TMDPO and DMPA, upon the absorption of a 

photon of light two radicals are formed by a unimolecular cleavage reaction [148].  

Either or both radicals may add into a carbon-carbon double bond directly or abstract 

hydrogen from a thiol group to initiate the thiol-ene coupling reactions (Reaction 4.2) 

(Table 1, Run 1, 2, 7, 8, 13, 14, 19, and 20). 

 

(4.2) 

Thiol-ene “click” reaction can also be initiated by the reaction of the excited state of 

Type II photoinitiator with a thiol. In this case, reactive sulfenyl radicals and 

nonreactive ketyl radicals are concomitantly formed by a hydrogen abstraction 

reaction (Reaction 4.3) (Table 1, Run 3, 4, 5, 9, 10, 11, 15, 16, 17, 21, 22, and 23). 

Only, the sulfenyl radicals initiate the coupling reaction by inserting into the carbon-
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carbon double bond of the enes. The ketyl radicals are usually not reactive toward 

double bond due to the steric hindrance and the delocalization of unpaired electron. 

Runa) Thiol Ene Initiation 
 typeb) 

Initiator Conversion 
 (%)c) 

1 PSt-SH MA Photo, Type I  DMPA 98 
2 PSt-SH MA Photo, Type I TMDPO 96 
3 PSt-SH MA Photo, Type II BP 91 
4 PSt-SH MA Photo, Type II  TX 92 
5 PSt-SH MA Photo, Type II CQ 93 
6 PSt-SH MA Thermal  AIBN 86 
7 PSt-SH MMA Photo, Type I  DMPA 96 
8 PSt-SH MMA Photo, Type I TMDPO 95 
9 PSt-SH MMA Photo, Type II  BP 94 
10 PSt-SH MMA Photo, Type II TX 89 
11 PSt-SH MMA Photo, Type II CQ 93 
12 PSt-SH MMA Thermal  AIBN 89 
13 PSt-SH AllylBr Photo, Type I  DMPA 100 
14 PSt-SH AllylBr Photo, Type I TMDPO 97 
15 PSt-SH AllylBr Photo, Type II BP 95 
16 PSt-SH AllylBr Photo, Type II TX 94 
17 PSt-SH AllylBr Photo, Type II  CQ 96 
18 PSt-SH AllylBr Thermal  AIBN 88 
19 MPA PSt-Allyl Photo, Type I  DMPA 95 
20 MPA PSt-Allyl Photo, Type I TMDPO 95 
21 MPA PSt-Allyl Photo, Type II BP 89 
22 MPA PSt-Allyl Photo, Type II  TX 89 
23 MPA PSt-Allyl Photo, Type II CQ 90 
24 MPA PSt-Allyl Thermal  AIBN 87 

a)Reactions were carried out in CH2Cl2 for 4 h with [PSt-SH]/[ene]: 1/10 mol ratio; b)Photochemical 
reaction which included a photoinitiator was irradiated under 350 nm at room temperature, and the 
thermal reaction which included AIBN was heated to 80 °C. Light intensity is 1.04 mW cm-2; 
c)Percent conversion was obtained from the disappearance of the alkene peaks by 1H-NMR and the 
appearance of peaks corresponding to the product. MA: methyl acrylate, MMA: methyl methacrylate, 
AllylBr: allyl bromide, MPA: 3-mercaptopropionic acid, DMPA: 2, 2-dimethoxy-2-phenyl 
acetophenone, TMDPO: (2, 4, 6 trimethylbenzoyl) diphenylphosphine oxide, BP: benzophenone, TX: 
thioxanthone, CQ: camphorquinone, AIBN: 2,2′-azobis(isobutyronitrile). 

 

Table 4.1 : Summary of the reaction conditions and product conversions of the 
thiol-ene “click” reactions. 
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(4.3) 

Thermal decomposition of AIBN and its analogues is generally considered to 

produce cyanoisopropyl radicals which can abstract a hydrogen atom from thiol 

group, forming a sulfenyl radical, which reacts in the usual manner (Table 1, Run 6, 

12, 18, and 24). A more advanced way of investigating the thiol-ene “click” reaction 

is real time FTIR analysis, which allows monitoring the reaction without the need of 

solvent. This system consists of trimethylolpropane tris(2-mercaptoacetate) (TRIS) 

which is known to work efficiently in thiol-ene photopolymerization with as methyl 

acrylate (MA), methyl methacrylate (MMA) and allyl bromide (AllylBr) in the 

presence of Type I or Type II photoinitiator without solvent. As the thiol signal is a 

clearly distinguishable in the region of 2500-2600 cm-1, the decrease in absorbance 

of this signal has been monitored as a function of time. Data presented in Table 1 and 

Figures 4.2-4 show that the initiation with the Type I photoinitiators is more efficient 

than the one with Type II photoinitiators for thiol-ene “click” reactions [149, 150].  

 

Figure 4.2 : Conversion of thiol–ene [trimethylolpropane tris(2-mercaptoacetate) 
and MA] system with the simultaneous FTIR monitoring of the thiol 
(S–H, 2570cm-1) peak: (□) TMDPO, (○) CQ. 
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This behavior is due to the fact that, in the latter case, reactive radicals are produced 

by a bimolecular reaction with a lower quantum yield. When using Type I 

photoinitiators, the transient excited states (singlet and triplet) have very short 

lifetimes, thus preventing any quenching by the thiol [151]. Interestingly, the 

photochemical thiol coupling between TRIS and MA gave the lowest conversion 

efficiency, possibly due to the poor miscibility of the photoinitiators in the systems 

(Figure 2) [49]. Notably, thermally initiated thiol-ene “click” reaction reaches the 

lowest conversion of all the ene systems since the side reactions are more favored at 

relatively high temperatures. 

 

 

Figure 4.3 : Conversion of thiol–ene [trimethylolpropane tris(2-mercaptoacetate) 
and MMA] system with the simultaneous FTIR monitoring of the 
thiol (S–H, 2570cm-1) peak: (□) TMDPO, (○) CQ. 
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Figure 4.4 : Conversion of thiol–ene [trimethylolpropane tris(2-mercaptoacetate) 
and AllylBr] system with the simultaneous FT-IR monitoring of the 
thiol (S–H, 2570cm-1 ) peak: (□) TMDPO, (○) CQ. 

Efficiencies of thiol-ene “click” reactions of three different types of ene structures 

such as methyl acrylate, methyl methacrylate and allyl bromide, with thiol end- 

functional polystyrene (Reaction 4.4) have been studied for a molar ratio of 1:10 

(thiol:ene).    
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As shown in Figures 4.5 and 4.6, the signal of the methine proton next to thiol at 3.80 

ppm shifted to 3.40 ppm during the course of the reaction, indicating the conversion 

of the thiol units. Simultaneously, new shifts from the (meth)acrylate protons 

appeared at 3.70 and 2.30 ppm.  

 

Figure 4.5 : 1H-NMR spectra of PSt-SH (bottom) and the product after the thiol-
ene “click” coupling with methyl acrylate (top). 

Examination of the 1H-NMR spectrum of the coupling product between PSt-SH and 

AllylBr (Figure 4.7) clearly shows that the signal of the methine proton of the 

polymer next to thiol at 3.80 ppm is shifted to 3.40 ppm. In addition, the new peaks 

corresponding to methylene atoms of AllylBr (3.05 and 2.30 ppm) were also clearly 

visible in the final product.  In the case of the thiol-ene coupling reaction using 

acrylate or methacrylate group, homo poly(methyl acrylate) and poly(methyl 

methacrylate) formations are inevitable. The process frequently proceeds largely 

through the homopolymerization at early stages of the reaction followed by a more 

like thiol-ene coupling reaction at the end. For the removal of homopolymers, a 

second precipitation in acetonitrile was done before the 1H-NMR measurements. 

After purification, in all cases, almost quantitative functionalizations of PSt-SH (85-

100%) were attained by both photochemical and thermal initiation. 
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Figure 4.6 : 1H-NMR spectra of PSt-SH (bottom) and the product after the thiol-
ene “click” coupling with methyl methacrylate (top). 

 

 

Figure 4.7 : 1H-NMR spectra of PSt-SH (bottom) and the product after the thiol-
ene “click” coupling with allyl bromide (top). 

The other antagonist functional group, alkene was introduced to the polymer chains 

directly by using allyl bromide as an initiator in ATRP of St (Reaction 4.5). The 

molecular weight characteristics and structure of the resulting alkene-end 

functionalized polystyrene (PSt-Allyl) were confirmed by GPC (Mn= 3900 g/mol, 
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PDI= 1.09) and 1H-NMR measurement, respectively.  As can be seen from Figure 

4.8, the resonance of the methylene protons adjacent to the bromine could be found 

at 4.30-4.42 ppm, while that of the allyl protons appeared at 5.56-5.74 and 4.84-4.94 

ppm. 

 

(4.5)

Experiments following the opposite strategy, which consists of the reaction of PSt-

Allyl with 3-mercaptopropionic acid, were also performed under similar 

photochemical and thermal conditions (Reaction 4.6). From the 1H-NMR spectrum 

of the thiol-ene coupling product shown in Figure 2, the resonance of the methine 

protons close to the bromine could be found at 4.30-4.42 ppm, while that of the allyl 

protons at 5.56-5.74 and 4.84-4.94 ppm disappeared completely. Moreover, the allyl-

end groups of the PSt have been switched to terminal carboxylic acid telechelic 

polymer quantitatively by thiol-ene reaction “click” reaction. 
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Figure 4.8 : 1H-NMR spectra of PSt-Allyl (bottom) and the product after the thiol-
ene “click” coupling with mercaptopropionic acid (top). 

In conclusion, in order to evaluate the influence of the type of the initiation on 

polymer functionalization by thiol-ene chemistry, we reported the synthesis of the 

polymeric components, i.e., well defined and narrow molecular weight distributed 

allyl- and thiol- end functionalized polystyrenes by atom transfer radical 

polymerization and organic substitution reactions. The subsequent thiol-ene coupling 

reaction was found to have the characteristics of a “click”reaction. The reactions can 

be initiated using photochemical and thermal radical initiators where the use of a 

Type I photoinitiators led to highest efficiencies. 
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