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SYNTHESIS AND CHARACTERIZATION OF POLYSTYRENE WITH SIDE 
CHAIN PYRROLE GROUPS BY COMBINATION OF NMRP AND CLICK 
CHEMISTRY 

SUMMARY 

 

Recently, many researchers have developed synthetic methods to control polymer 
architecture and tailor a material’s properties for a specific application. For this 
purpose, post- functionalization of a polymer is a useful technique in which a 
specific polymer is post-synthetically derived . This approach allows introduction of 
molecular diversity in the final step. 

Novel side-chain pyrrole functional polystyrene (PS) was synthesized by using 
“Click Chemistry” strategy. This procedure involves the preparation of polymer and 
pyrrole possessed with the appropriate click components. First, 1-(4-(prop-2-
ynyloxy)phenyl)-1H-pyrrol (propargylpyrrole) terminal groups was synthesized as 
an electroactive click component. A new procedure for the Clauson-Kaas pyrrole 
synthesis was used to synthesize propargylpyrrole The other component, namely 
azide group functional polystyrene (PS-N3) was synthesized independently in the 
presence of NaN3/DMF. Finally, azido functionalized PS was coupled to 
propargylpyrrole with high efficiency by click chemistry. The spectral analysis 
confirmed the presence of pyrrole functionality in the resulting polymer. The strategy 
adopted in this study appears to be entirely satisfactory in terms of efficiency and 
simplicity. Further wok is in progress to expand this approach to other 
functionalities. 
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PİROL YAN GRUPLARI  İÇEREN POLYSTİRENİN NMRP VE KLİK 
KİMYASI İLE SENTEZLENMESİ VE KARAKTERİZASYONU 

ÖZET 

Son zamanlarda, bir çok araştırmacı, polimer mimarisini control etmek ve belirli bir 
amaca uyarlamak için sentetik metodlar geliştirmiştir. Bu amaçla, polimerin önceden 
işlevselleştirilmesi kullanışlı bir metoddur.  

Bu çalışmada, “Klik kimyası” yöntemi kullanılarak, pirol yan grupları içeren 
polisitiren sentezlenmiştir. Bu yöntem hazırlanan polimerin ve pirolun uygun klik 
bileşenleri ile etkileşimi ile olmaktadır. İlk aşamada, 1-(4-(prop-2-ynyloxy)phenyl)-
1H-pirol (propargilpirol) sonlandırıcı grupları elektroaktif klik bileşenleri olarak 
sentezlenmiştir. Propargilpirol yeni bir yöntem olan Clauson-Kaas metodu ile 
sentezlenmiştir. Diğer bileşen olan, azid grubu içeren polistiren  (PS-N3) bağımsız 
olarak,  NaN3/DMF varlığında sentezlenmiştir. Son olarak azidlenmiş polistiren klik 
kimyası yöntemi ile propalgilpirol ile yüksek verimle birleştirilmiştir. Son elde edilen 
polimerdeki pirol fonksiyonel gruplarının varlığı yapılan spektral analizler ile 
kanıtlanmıştır. Bu çalışmada elde edilen verim çalışma kolaylığı memnun edicidir. 
Bu yaklaşımı, diğer fonksiyonel gruplara uygulamak için çalışmalar devam 
etmektedir. 
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1.  INTRODUCTION 

Polymers are widely used in all walks of human life and play a vital role in shaping 

modern man’s activities to be as important and comfortable as they are today. The 

advances in science and technology made in recent decades owe much to 

development of polymer science. The synthesis and design of new polymeric 

materials to achieve specific physical properties and specialized applications, and 

attempt to find interesting applications involving advanced structures and 

architectures, are in continuous development in the period of the polymer science. 

Basically, a polymerization process is based on a repetitive reaction in which a 

monomer is converted into polymer segment. To achieve such a goal, polymer 

chemists have a variety of synthetic processes to choose from reactions with very 

high selectivity when planning a particular synthesis. However, each method has its 

strengths and its weaknesses, and often requires high-purity reagents and special 

conditions. Indeed, the need high-purity monomers and solvents, reactive initiators 

and pure conditions have dramatically limited the industrial application of many 

techniques.  

Electrically conducting polymers such as polyacetylene, polypyrrole, polythiophene 

and polyaniline have been the subject of intensive research due to their useful 

electronic properties and for their application in optoelectronic and display devices, 

and as active electrode materials in primary and secondary batteries. The factor that 

has motivated much of the work on the synthesis of conducting polymers is the need 

to find newer materials having a wide range of physical properties such as flexibility 

and processibility, and conductivity close to that of metals to suit many technological 

applications. 

The two key developments in the early stages of conducting polymer research were 

the discovery of synthetic, free standing, high quality films of polyacetylene and the 

discovery that these films could be doped by electron donors or acceptors to 

conductivity levels (~1000 S/cm) approaching those of some metals. A significant 

breakthrough occurred in 1979 with the discovery that poly(p-phenylene) could also 
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be doped to high conductivity. It demonstrated that polyacetylene is not unique in 

exhibiting high conductivity and led to a number of new polyaromatic based 

conducting systems, including poly(P-phenylene sulfide), polypyrrole, polythiophene 

and polyaniline. 

The incorporation of electroactive sites into polymers is proposed to be a vesetalie 

route to improve the physical properties of the conducting polymers . Various 

controlled polymerizations has been previously used for the preparation of such 

macromonomers. Obviously, these macromonomers were further used in 

electropolymerization in conjunction with the low molar mass monomers such as 

pyrrole and thiophene. 

In this thesis, we described the novel synthetic methodology  to incorporate pyrrole 

units into polystyrene as side chains. The precursor polymers were prepared by 

NMRP which allows control over molecular structure and chain lengt. The 

subsequent click  chemistry step provided quantitative functionalization of the 

polymers with electroactive groups. 
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2.  THEORETICAL PART 

2.1  Conducting Polymers  

2.1.1 History of Conducting Polymers 

Conducting polymers are a relatively new class of materials whose interesting 

metallic properties were first reported in 1977, with the discovery of electrically 

conducting polyacetylene [1]. This chance discovery occurred when a researcher  

accidentally added too much catalyst while synthesising polyacetylene from 

acetylene gas, resulting in a shiny metallic like substance rather than the expected 

black powder.  This shiny semi-conducting material was subsequently partially 

oxidised with iodine or bromine vapours resulting in electrical conductivity values of 

up to 105 s.cm-1, which is in the metallic range [2]. The importance of this discovery 

was recognised in 2000 when the Nobel Prize for Chemistry was awarded to the 

scientists who discovered electrically conducting polyacetylene in 1977: Alan 

MacDiarmid, Alan Heeger and Hideki Shirakawa [3]. 

Since the discovery of polyacetylene there has been much research into conducting 

polymers and many new conducting polymers have been synthesised. The most 

important, and common, of these are polypyrrole (PPy), polythiophene (PTh) and  

polyaniline (PAn). There have been many potential applications suggested for these 

materials, including sensors, electrochromic devices, corrosion inhibitors, 

electrochemical actuators, electromagnetic shielding, polymeric batteries, and 

membrane separations. This wide range of applications is possible in part due to the 

ability to alter the electrochemical, optical, chemical and mechanical properties of 

these polymers by changing the monomer and/or dopant incorporated into the 

polymer. 
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2.1.2  Synthesis of Conducting Polymers 

Conducting polymers such as polypyrrole, polythiophene and polyaniline are 

generally prepared by oxidation of a suitable monomer (Figure 2.1). In the vast 

majority of cases the oxidation is either chemical or electrochemical in nature, 

although limited examples of photochemically and enzymatically-catalysed oxidative 

polymerizations have been reported [3]. 

 

Figure 2.1:  Oxidation of pyrrole to form polypyrrole (X = NH) or thiophene to form             
                   polythiophene (X = S). 

2.1.2.1 Electrochemical Polymerization 

Electrochemical polymerization results in a film deposited on the working electrode 

surface. The electrochemical method is the most useful as it provides greater control 

over the rate of polymerization and results in a more reproducible product. It also 

allows the insertion of a much wider range of dopant anions as any anion present in 

the reaction mixture can be incorporated into the polymer to maintain electrical 

neutrality. 

The polymerization of conducting polymers is classified as a free radical propagation 

reaction and consists of a number of steps. These steps are clearly seen in the 

mechanism for electropolymerization of the 5-membered heterocycles thiophene and 

pyrrole. 

The four steps involved in the mechanism of electropolymerization are: 

Step 1: Oxidation of the monomer, resulting in formation of a radical cation which 

exists in three resonance forms. 

Step 2: The most stable of these resonance forms (the α-radical) couples with another 

α-radical producing a dicationic dimer  

Step 3: The dicationic dimer undergoes a deprotonation reaction leaving a neutral 

dimer. 

Step 4: The neutral dimer is oxidised to a radical cation. This dimer couples with 
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other radical cations leading to chain propagation. Upon reaching a certain length, 

the polypyrrole chain becomes insoluble and precipitates onto the electrode surface 

[4].  

The electropolymerization of aniline occurs in a similar manner. Again, there are 

four key steps involved in the reaction. These steps are: 

Step 1: Oxidation of the monomer, resulting in the formation of a radical cation 

which exists in three resonance forms. 

Step 2: An oxidised aniline species with the radical cation centred on the nitrogen 

atom couples with an oxidised aniline with an unpaired electron centred in the para-

position, forming a dicationic species. Deprotonation of this species results in a 

neutral dimer.  

Step 3: The neutral dimer is oxidised forming a radical cation, with the radical cation 

centred on the nitrogen atom. This couples with an oxidised aniline with an unpaired 

electron centred in the para-position, resulting in chain propagation. 

Step 4: The growing polymer chain is oxidised to a radical cation and doped with 

HA. 

2.1.2.2 Chemical Polymerization 

Typically, chemical polymerization uses a chemical oxidant such as FeCl3 or 

(NH4)2S2O8, which simultaneously oxidises the monomer and provides the dopant 

anion. This approach to producing conducting polymers is extensively used in 

industry (e.g. by DSM, Mitsubishi Rayon, Ormecon Chemie), but is limited to the 

small number of oxidants that can both oxidise the monomer and provide a suitable 

dopant. Chemical oxidation most often results in the formation of a conducting 

polymer powder, which generally displays lower conductivity than electrochemically 

prepared conducting  polymer [5]. This is a result of the lack of control over the 

potential within the reaction mixture, which may rise to a level that over-oxidises the 

polymer, as well as poor doping control [6]. 

The chemical polymerization of pyrrole is thought to occur with a mechanism similar 

to that for electropolymerization. However, for polyaniline the mechanism of 

chemical polymerization is significantly different from that of the 

electropolymerization reaction. This difference occurs in the chain propagation and 
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product formation steps, as the initial product formed is pernigraniline salt. This 

pernigraniline salt is reduced in a subsequent reaction with free aniline, giving 

emeraldine salt and a radical cation of aniline [3]. 

2.1.2.3 Other Polymerization Methods 

Other methods of polymerization have been used for the preparation of conducting 

polymers such as polyaniline and polypyrrole. The enzymatically catalysed synthesis 

of polyaniline has been achieved with the enzyme horseradish peroxidase (HRP) and 

H2O2 as an oxidant. This procedure was limited, however, by the fact that the 

products were generally low molecular weight oligomers with extensive branching.  

Recent  studies have overcome these limitations through the use of polyelectrolyte 

templates, such as poly(styrene sulfonate) PSS or DNA,  in the reaction mixture. The 

template is thought to act by aligning the aniline molecules in such a way as to 

promote head-to tail coupling while providing the localised low pH environment that 

is necessary for PAn growth. Polyaniline has also been synthesised photochemically; 

via electron acceptors; with a plasma polymerization method; and was also found to 

grow spontaneously by an “electroless polymerization” route on platinum or 

palladium foil [3]. Polypyrrole has also been prepared via enzymatic catalysis with 

bilirubin oxidase (BOX) [7]. Pyrrole has also been found to undergo an acid-

catalysed polymerization reaction in strong acid solutions (6.0 M HCl). This 

polymerization occurs via a 2,5-dipyrrol-2-ylpyrrolidine trimer intermediate and 

results in a brown non-conductive powder. This insulating property is explained by 

the polymer possessing alternating pyrrole and pyrrolidine units, with varying 

degrees of ring-opened units and nitrogen loss [8]. 

2.2  General Properties of Conducting Polymers 

Conducting polymers as a class of materials have a number of properties in common, 

even though their structures can differ greatly. The chief property they have in 

common is the fact that, unlike traditional polymers, they conduct electricity. These 

polymers also possess a high degree of conjugation along the polymer chain [9]. This 

conjugation gives rise to the electrical conductivity as it allows the efficient transfer 

of electrons (or positive charges) along the polymer backbone. However, this 

conductivity only exists when the polymer is in an oxidised state [10]. The loss of an 
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electron from a π-bond results in the formation of a radical cation or polaron charge 

carrier. Electrical conductivity arises from the delocalisation of these charge carriers, 

which are capable of both inter- and intra-chain transfer. The positive charge that 

arises during the formation of the polaron charge carriers necessitates the 

incorporation of an anion into the polymer to maintain overall charge neutrality in a 

process known as “doping”. The anions that are incorporated can be anything 

ranging from small ions such as Cl-, to more complex ions including proteins [10]. 

The nature of the dopant has dramatic effects on the electrical, mechanical, physical 

and morphological properties of the polymer.   

Another feature common to all conducting polymers is that they are electroactive and 

can exist in a number of stable oxidation states. In general, it is possible to reversibly 

switch the polymer between these different oxidation states, resulting in changes in 

the electrical, mechanical, physical, chemical and morphological properties of the 

material [5]. Figure 2.2 shows this redox cycling for polypyrrole. 

 
Figure 2.2 : Redox cycling between the oxidised (conducting) and reduced     
                    (insulating) forms of polypyrrole (where n is number of monomer units    
                    per positive charge, m determines molecular weight and A- is dopant    
                    anion). 

2.3 Applications of Conducting Polymers 

Conducting polymers have been used in a range of electronic devices. One of the 

first applications of these materials was in rechargeable batteries. Bridgestone has 

produced a battery with a polyaniline cathode and a lithium-aluminium alloy anode 

[11]. A polypyrrole/lithium-aluminium battery was commercialised by Varta and 

BASF [12]. During cell discharge electrons flow from the anode to the cathode, 

reducing the polymer to its undoped state. The dopant anions are ejected into the 

electrolyte phase, while the lithium from the anode dissolves into the electrolyte as 

lithium ions. During recharging this process is reversed - the dopant anions flow 

from the electrolyte  phase into the polymer, oxidising it, while the lithium ions are 

deposited at the anode as lithium metal. Poor recycling of the lithium metal is the 

limiting factor in the lifetime of the batteries [12].  
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A potential use for conducting polymers such as polyaniline, polyfuran and 

polythiophene are as gas sensing devices. The conductivity, optical absorption and 

electrical capacitance of metal-polymer interfaces are strongly affected by the 

presence of certain gas molecules. Thin-film polyaniline-based gas sensing elements 

are inexpensive, and have been shown to be sensitive to gases such as CO, NH3, HCl 

and HCN. Polyfuran and polythiophene have been considered as humidity sensors, 

radiation detectors and gas sensors [13]. 

2.4  Polypyrrole 

2.4.1 General Overview 

Polypyrrole is one of the most widely studied conducting polymers and has been well 

characterised. This is in part due to the fact that it is known to exhibit a relatively 

high conductivity of up to 100 s.cm-1 and good environmental stability [14]. Like 

most conducting polymers, polypyrrole is electroactive and can act as an anion 

exchanger. During the synthesis of polypyrrole, dopant anions (A-) are incorporated 

to balance the positive charges that develop on the oxidised polymer. Upon reduction 

of polypyrrole the positive charges are removed and hence the dopant anions are 

expelled from the polymer. Upon reoxidation of the polymer, anions from the 

supporting electrolyte will be incorporated to balance the developing positive 

charges. However, if large and immobile dopants anions such as polyelectrolytes 

(PE-) are incorporated into the polymer matrix during growth, then they will be 

almost completely retained upon reduction of the polymer (Figure 2.3). In order to 

maintain charge neutrality, cations (X+) from the surrounding solution are therefore 

taken up by the polymer. These cations will be expelled from the polymer when it is 

reoxidised, opening up the possibility of using these polymers as cation-exchangers 

[15].   

Polypyrrole varies in colour from pale yellow for the fully reduced (de-doped) form 

to black for the fully oxidised (doped) form. The UV-vis spectrum of polypyrrole has 

been found to be highly dependent upon the doping level of the polymer[3]. Fully 

doped polypyrrole generally shows three absorption bands: a low wavelength (ca. 

350 nm) π - π* transition and two bipolaron bands at ca. 475 nm and 1240 nm. 

However, the position and shape of these bands is highly dependent on the 
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environment the polymer is in. For example, polypyrrole films on a hydrophilic glass 

surface have been shown to have a bipolaron absorption band at 1180 nm, while 

similar films on hydrophobic silanised glass surfaces have an intense free carrier tail 

that extends well into the near infrared (2600 nm) [3]. This is thought to signify a 

shift in the conformation of the polymer chains from “compact coil” to “extended 

coil”. 

                           
Figure 2.3 Redox cycling of polypyrrole with different ion exchange properties    
                  (where n is number of monomer units per positive charge, m determines  
                  molecular weight, A- is a dopant anion, PE- is a large dopant anion such  
                  as a polyelectrolyte, X+ is a cation). 

 
The rigidity of the polypyrrole backbone means that it is an intractable material in 

the conducting state [16]. Polypyrrole is generally insoluble in water and common 

organic solvents, and does not melt upon the application of heat, but instead 

decomposes. This is due to a high degree of both ionic and covalent cross-linking 

[3,17]. There are also usually strong inter-chain interactions within polypyrrole that 

tend to cause aggregation  to form non-uniform particles [18]. In many cases this has 

meant that polypyrrole is yet to come close to realising its potential and therefore 

there is much interest in preparing more processable polypyrroles [17]. Some 

progress has been made in this area through counter-ion induced solubility as well as 

from functional pyrrole monomers [3,18]. The preparation of colloidal dispersions of 

polypyrrole has also been investigated.  

2.4.2 Synthesis of Polypyrroles 
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Polypyrrole and its derivatives can be easily synthesised either chemically [19] or 

electrochemically [20] . Chemical polymerization is carried out by reacting pyrrole 

monomer with an oxidant in a suitable solvent whereas electrochemical 

polymerization is formed by the oxidation of pyrrole monomer at a suitable anode 

upon the application of a positive potential. The polymerization process in both cases 

involves the incorporation of certain charged anionic species into the polymer. A 

simplistic representation of the polymerization process can be expressed as: 

                     (2.1) 

where A
- 

represents the counterion incorporated into the polymer to balance  the 

charge, n is the number of pyrrole monomers per positive charge (usually 2~3), and 

m is the number of the counterion incorporated into the polymer. 

The overall polymerization process involves several discrete steps as shown in 

(Equation 2-1) [21]. The first step is the oxidation of the monomer A to form a 

delocalized radical cation B. This radical cation can possibly exist in resonance 

forms C, D and E. The next step involves the dimerization of the radical cation, 

which occurs via radical-radical coupling at the π-position. The coupling is 

accompanied by the expulsion of two protons to form the neutral dimer F which can 

be further oxidised to form dimer radical. This can then combine with other 

monomeric, dimeric, or oligomeric radicals in a similar sequence of events to extend 

the polymer chains.   

It is generally agreed that for preparation of free-standing conducting polymer 

actuators, electrochemical polymerization is an optimal technique compared to 

chemical polymerization. The electrochemical method allows the insertion of  a wide 

range of anions into the polymer to form different anion doped polymer species. Also 

by controlling the electrochemical polymerization parameters, such as applied 

current, potential, time, electrolytes, temperature and substrates etc, polypyrrole can 

be varied with different morphology and hence mechanical and electrical properties.   
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2.4.2.1 Switching Properties of Polypyrrole 

After polymerization, polypyrroles exist in their oxidised states. By applying 

electrochemical stimulation, polypyrroles are capable of switching between their 

oxidised and reduced states. The switching processes are often described as below: 

 

                                                              (2.2) 

   

 (2.3) 

 

where A
- 
represents the counterion incorporated into the polypyrrole, X

+
 represents 

the cation from the electrolyte, n is the number of pyrrole monomers for each A
-
 

incorporated, m is the number of polypyrrole repeat unit to determine molecular 

weight of polymer.  

The changes in polypyrrole redox states are usually accompanied by ion exchange 

between the polymer and electrolyte. As the polymer is reduced, anions are detached 

and leave the polymer backbone to maintain the neutral state (Equation 2.2). 

However, in the case of bulky anions, such as dodecyl benzene sulfonate (DBS
-
), 

which are immobile due to their large size, the charge compensation may be 

achieved by incorporation of cations from the electrolyte (Equation 2.3). When the 

polymer is oxidised again, it is possible for the charge to be balanced by either 

incorporating further anions or releasing newly incorporated cations. In some cases, 

there is mixture of both cation and anion movement during the redox process [22]. 

The dominating ion movements at oxidation and reduction are affected by a series of 

factors, such as counterion size, mobility, charge density, electrolyte and 

temperature.  

The ion exchange processes occurring during polymer oxidation/reduction causes 

significant mass and volume changes in the polymer. These polymer volume changes 

form the basis of conducting polymer electrochemical actuators. 
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2.5  Controlled Free Radical Polymerization 

Many vinyl monomers can be polymerized by a conventional free radical 

polymerization. However, conventional free radical polymerization does not allow to 

prepare polymers with well-defined structures. Previously, only ionic methods were 

used to synthezie such controlled macromolecular structures. However, recent 

breakthrough in controlled free radical polymerization made it possible to obtain 

polymers with low-polydispersity and contolled structures. Today, there exist several 

controlled polymerization methods. In the present study we have utilized Nitroxide 

Mediated Radical Polymerization (NMP) as the controlled polymerization as it is 

particularly useful for styrene based monomers. The details of this polymerization 

will be given below. 

2.5.1. Stable Free Radical Polymerization (SFRP) 

The first such mechanism, SFRP (Equation 2.4), is a polymerization with reversible 

termination by coupling with a persistent radical (e.g. nitroxide).   

N
Pn

kact

k deact

+ Monomer
Polymer

+O
N

O

kp

Pn

(T) (T )

                                        (2.4) 

The key reactions in this system have been shown to be the alternating activation–

deactivation process, in which the polymer-nitroxide adduct Pn-T (dormant species) 

is reversibly activated by thermal homolysis into the polymer radical (Pn
·) and the 

stable nitroxyl (T·). This dramatically lowered the concentration of active chain 

species in the polymerization system and, coupled with the inability of the nitroxide 

radicals to initiate new chains lead to a controlled polymerization [23]. These 

activation–deactivation cycles allow all the chains to propagate at nearly equal rate, 

thus controlling the chain length and its distribution. The most commonly used stable 

radicals have been nitroxides, especially 2,2,6,6-tetramethylpiperidinoxy (TEMPO). 

TEMPO (2, 2, 6, and 6- tetramethylpiperidinyl) is used for the reversible trapping of 

growing radicals. At a temperature below 100°C the resulting alkoxyamine is stable 

whereas at higher temperature the C-O bond undergoes homolitic cleavage thus 
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allowing again the propagation. These systems have been shown to be efficient for 

controlled polymerization of styrene and substituted styrene. 

Although SFRP is one of the simplest methods of controlled free radical 

polymerization (CRP), it has many disadvantages. Many monomers will not 

polymerize because of the stability of the dormant alkoxyamine that forms. Also, 

since the reaction is kinetically slow, high temperatures and bulk solutions are often 

required. Also, the alkoxyamine end groups are difficult to transform and require 

radical chemistry.  

Recent work in SFRP has revolved around the synthesis and evaluation of new 

nitroxide radicals, chain end fictionalization, and the exploration of the synthesis of 

block, random, star, and graft copolymers. A review has recently been published 

which covers these topics in detail [24].  

2.6 Polystyrene 

2.6.1 History of Polystyrene 

It may well be argued that the history of polystyrene is more closely bound up with 

the history of the 20th century than is the case with any other plastics material. 

In the US semi-plant-scale work at the Dow Chemical Company showed promise of 

commercial success in 1934. As a consequence there became available shortly before 

World War II a material of particular interest because of its good electrical insulation 

characteristics. 

In 1942 the US Government initiated a crash programme for the installation of plants 

for the manufacture of a rubber from butadiene and styrene. This product, then 

known as GR-S (Government Rubber-Styrene), provided at that time an inferior 

substitute for natural rubber but, with a renewed availability of natural rubber at the 

end of the war, the demand for GR-S slumped considerably [25]. 

After the war, however, there was a large surplus capacity of plant for the 

manufacture of styrene and polystyrene together with a great deal of knowledge and 

experience that had been collected over the war years. It was therefore found 

possible to produce polystyrene, not as an expensive electrical insulator, but as a 

cheap general purpose thermoplastic. 
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In the late 1990s a crystalline form of polystyrene, syndiotactic polystyrene became 

commercially available but unless otherwise stated references to polystyrene in this 

chapter will refer to the traditional amorphous polymer. The rarely used systematic 

IUPAC name for polystyrene is poly-(1 -phenylethylene). 

2.6.2 Preparation of Polystyrene 

Production of PS is based on polymerization of styrene. This polymer has an 

enormous industrial importance. 

In 1869 Berthflot reported the production of styrene by dehydrogenation of 

ethylbenzene. This method is the basis of present day commercial methods. Over the 

year many other methods were developed, such as the decarboxylation of acids, 

dehydration of alcohols, pyrolysis of acetylene, pyrolysis of hydrocarbons and the 

chlorination and dehydrogenation of ethylbenzene [25]. 

2.6.2.1 Dehydrogenation 

Styrene is produced from the ethylbenzene by a process of dehydrogenation  

(Equation 2.5) 

 

 

(2.5) 

This is an endothermic reaction in which a volume increase accompanies 

dehydrogenation. The reaction is therefore favoured by operation at reduced 

pressure. In practice steam is passed through with the ethylbenzene in order to reduce 

the partial pressure of the latter rather than carrying out a hightemperature reaction 

under partial vacuum. By the use of selected catalysts such as magnesium oxide and 

iron oxide a conversion of 35-40% per pass with ultimate yields of 90-92% may be 

obtained [26]. 

There are today two methods of interest, (a) the laboratory preparation, and (b)  

commercial preparation. 

Laboratory Preparation 

The principal constituent of storax is cinnamic acid and for laboratory purposes 

styrene is still most easily obtained in high purity but dry distillation of cinnamic 

acid and its salts under atmospheric pressure (Equation 2.6). 
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(2.6)

 

 

(2.7)

The cinnamic acid is readily prepared by heating benzaldehyde with acetic anhydride 

and sodium acetate (Equation 2.7). 

Commercial Preparation 

The bulk of commercial styrene is prepared by the Dow process or some similar 

system. The method involves the reaction of benzene and ethylene to ethylbenzene, 

its dehydrogenation to styrene and a final finishing stage. It is therefore useful to 

consider this process in each of the three stages. Ethylbenzene is prepared by 

reaction of ethylene and benzene in the presence of a Friedel-Crafts catalyst such as 

aluminium chloride at about 95°C (Equation 2.8). 

 

 

(2.8)

To improve the catalyst efficiency some ethyl chloride is added which produces 

hydrochloric acid at the reaction temperatures. 

2.6.3 Polymerization of Polystyrene 

Polystyrene was first made by E. Simon in 1839 who at the time believed he had 

produced an oxidation product, which he called styrol oxide. Since that time the 

polymerization of styrene has been extensively studied. In fact a great deal of the 

work which now enables us to understand the fundamentals of polymerization was 

carried out on styrene.  

Styrene can be polymerized by ionic, free-radical or coordination polymerization. 

Ionic polymerization is used mostly for manufacture-specialty polymers. In industrial 

manner, free-radical polymerization is preferred more than other types because the 

yield of the reaction is nearly the same with other methods’ yields and during this 
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reaction, impurity affects the yield less. The rate of free-radical polymerization can 

be controlled by the choice of initiator and by changing the reaction conditions [25].  

Polymerization methods of styrene are mainly; mass (bulk), solution, suspension and 

emulsion. An industrially important method of production is emulsion 

polymerization [26].  The key feature of polystyrene is its insolubility in its 

monomer. Instead of solution, it is negligently swollen by styrene. Also, this is 

another differing point of polystyrene, neither well swollen nor poorly swollen by its 

monomer, so its emulsion polymerization is not a regular heterogeneous process 

[26].     

2.6.4 Properties and Structure of Polystyrene 

Polystyrene has the simple repeating structure shown in (Figure 2.4) and as might be 

expected from such a substantially linear polymer it is thermoplastic. As with 

polypropylene, PVC and other vinyl compounds there is the possibility of various 

stereo-regular forms. Because of its amorphous nature the commercial polymer has 

for long been regarded as atactic. As with poly(methy1 methacrylate)  subsequent 

work has, however, indicated that the syndiotactic segments are more frequent than 

atactic segments and it appears that this may be a common feature of most free-

radical initiated vinyl polymers. The specific position of the benzene ring is, 

however, sufficiently random to inhibit crystallization [25]. 

 
                                               Figure 2.4 Polystryene 

 

 

Because of the chain-stiffening effect of the benzene ring the Tgs of commercial 

materials are in the range 90-100°C and isotactic polymers have similar values  

(approx. 100°C). A consequence of this Tg value plus the amorphous nature of the 

polymer is that we have a material that is hard and transparent at room temperature. 

Isotactic polystyrenes have been known since 1955 but have not been of commercial 

importance. Syndiotactic polystyrene using metallocene catalysis has recently 

become of commercial interest. Both stereoregular polymers are crystalline with T, 

values of 230°C and 270°C for the isotactic and syndiotactic materials respectively.  
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The presence of a benzene ring results in polystyrene having greater reactivity than 

polyethylene. Characteristic reactions of a phenyl group such as chlorination, 

hydrogenation, nitration and sulphonation can all be performed with polystyrene. 

Chain rupture and discolouration are frequently additional effects of such reactions. 

The pure hydrocarbon nature of polystyrene gives it excellent electrical insulation 

characteristics, as a result of both the fundamentally good characteristics of the 

material and to the low water absorption of such a hydrocarbon polymer. The 

insulation characteristics are therefore well maintained in humid conditions [26]. 

Polystyrene is a hard, rigid transparent thermoplastic which emits a characteristic 

metallic ring when dropped. It is free from odour and taste, burns with a sooty flame 

and has a low specific gravity of 1.054. Because of its low cost, good mouldability, 

low moisture absorption, good dimensional stability, good electric insulation 

properties, colourability and reasonable chemical resistance it is widely used as an 

injection moulding and vacuum forming material. Additionally the low thermal 

conductivity has been made use of in polystyrene foam used for thermal insulation. 

The principal limitations of the polymer are its brittleness, inability to withstand the 

temperature of boiling water and its mediocre oil resistance [27]. 

2.7 Click Chemistry 

The reaction that gives opportunity to attach ligands onto polymers for modification 

is called click reaction and it is also known as Sharpless ‘click’ reaction [28, 29]. 

This modification process provides; a) often quantitative yields, b) a high tolerance 

of functional groups c) an insensitivity of the reaction to solvents and d) reaction at 

various types of interfaces such as solid/liquid, liquid/liquid, or even solid/solid 

interfaces [29,30] . Click reactions are preferable reactions for modification because 

of moderate reaction conditions, high yields, short periods of reaction times and high 

selectivity [31, 32, 33]. There is a wide range of application field of this reaction, 

which varies with the sort of polymers [34]. Click reactions enabled the C-C bond 

formation in a quantitative yield without side reactions and requirement for 

additional purification steps.  Click reactions are particularly important in preparative 

methods, in which high conversion of functional groups is desirable [35-36]. 

Numerous applications of click chemistry in polymer science as well as molecular 

biology and nanoelectronics have recently been reviewed [28, 29, 31]. 
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Click reactions are derivatives of Huisgen 1, 3 dipolar cyloaddition reactions and 

occurs between terminal acetylenes and azides by metal catalyst at room temperature 

(Figure 2.5) [28, 37, 38]. Ru, Ni, Pt, Pd and especially Cu (I) species can be used as 

catalyst for click reactions [32-39]. As stated by several authors, these metals speeds 

up the reactions [33, 39]. 

 

 

 

 

 

Figure 2. 5 :Azide/alkyne-type click reactions 

2.7.1 Suitable Compounds for Click Reactions 

Exceptions of self-reactive reagents and materials that can produce stable complexes 

with Cu (I), all functional groups are suitable for click reactions [40,41]. The figure 

2.6 shows the compounds, which are not suitable for, azide/alkyne-type click 

reactions because of the Huisgen 1, 3 dipolar cyloaddition side reactions [42,43]. 

 

 
Figure 2. 6 : Suitable compounds for azide/alkyne type click reaction 
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2.7.2 Mechanism of Click Reactions 

As it mentioned before click reactions occurs between terminal acetylenes and azide 

by metal catalyst. The mechanism of click reactions first explained by Meldal and 

co-workers and Sharpless and co-workers [40, 44, 45]. Multifarious catalytic systems 

are present to affect the 1, 3-dipolar cycloaddition process. Cu (I) salts can be 

directly used or Cu (I) species can be obtained from the reduction of Cu (II) by 

sodium ascorbarte or metallic copper in catalytic systems [40, 45, 46]. The 

mechanism of click reactions, shown below, depends on the Cu-acetylide formation 

[40, 45]. 

 

 

                                Figure 2.7 :   Mechanism of click reaction 

Terminal alkynes and Cu (I) particles produce a π-complex (Cu-acetylide) to lower 

pKa value of the terminal alkynes that allow attack onto C-H bond [32,45]. In 

addition, 1-5 equivalents of base have positive influences on the formation of the 
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copper (I)-acetylide. THF, diethyl ether, DMF, DMSO or halogenated solvents are 

applicable for click reactions. And also, water/alcohol or water/toluene systems can 

give excellent results [47-48]. 
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3.  EXPERIMENTAL 

3.1  Materials  

Chloroform (99%, Sigma), dimethylformamide (DMF, 99%, Aldrich), ethanol 

(99.5%, Aldrich), tetrahydrofuran (THF, 99.8%, J.T. Baker), diethylether (98%, 

Sigma-Aldrich), methanol (99%, Acros Organics), dimethyl sulfoxide (DMSO, 99%, 

J.T. Baker), anhydrous pyridine (99.5%, Lab-Scan), sodium azide (98.5%, Carlo-

Erba Reagent), copper(II) sulfate (CuSO4.5H2O) (98%, Fluka), L-ascorbic acid 

sodium salt (99%, Acros), toluene-4-sulfonic acid monohydrate (PTSA, 99%, Fluka), 

sodium hydride (98%, Fluka), propargyl bromide (80 vol % in toluene, Fluka), and 

1-pyrene methanol (98%, Sigma-Aldrich), dNbipy (Acros Organics %99),   were 

used as received. 

3.2 Synthesis of    4-(1H-pyrrol-1-yl)phenol       

A cooled solution of (6.45 g, 60 mmol) of p-aminophenol in 50 ml glacial acetic acid 

is placed in a round –bottomed flask equipped with a reflux condenser and a 

magnetic stirrer. 2,5-dimethoxytetrahydrofuran (7.5 ml, 58 mmol)  is added to the 

cooled solution during 10-15 minutes. The solution refluxed for 1.5 hour, during 

which time the solution turns deep red to black in color. The heating discontinued 

and the acetic acid is removed by distillation. The dark residue was dissolved in 20 

ml methanol and subsequently poured into water. The precipitate was filtered and 

washed with water, then dissolved in chloroform and filtered again to remove 

insoluble products. Chloroform was boiled off, and the remaining residue dissolved 

in 20 ml methanol to precipitate in water. Precipitates were filtered and washed with 

water then dried. Beige coloured solid was obtained.  

3.3 Synthesis of   1-(4-(prop-2-ynyloxy)phenyl)-1H-pyrrol  

In a flask, (1) (5.5 g, 35 mmol) was dissolved in 100 ml NaOH (0.8 N) solution. The 

mixture was heated at 60 oC until a clear solution was formed. 
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Tetrabutylammoniumbromide (1.12 g, 35 mmol) of   was added to this solution as a 

phase transfer catalyst. A solution of propargyl bromide (4.28 g, 35 mmol.) in 50 ml 

toluene was added portionwise to the solution. The mixture was kept stirring at 60 °C 

for 24 h. The precipitetes were filtered and washed with copious amount of water. 

Then, the solid was recrystallized from 1:1 MeOH/water.  

3.4 General Procedure For  Synthesis Of   Polystyrene-co-chloromethyl styrene  

     PS-co-PCMS copolymers 

PS-co –PCMS  copolymers containing various amount of CMS moleties  (% 20, 30 

and  40) were prepared  via nitroxide-mediated radical polymerization  (NMP) of  st 

and CMS of 125 °C . 

3.5 Synthesis Of   (PS-co-PMS-N3) copolymer   

PS-co-PCMS copolymers  dissolved in  N,N-dimethylformamid  (DMF), NaN3  (2 

times exess  to the mole of chloro group of each copolymers) was added. The 

resulting solution was allowed to stir  at 25 °C overnight  and precipitated into 

methanol/ water mixture (1/1 by volume). 

3.6 Procedure For The  “Click “ Coupling Of Azide  

In a flask, PVA-N3 (0.1 g), propargyl pyrrole  (0.04489 g, 0.45 mmol) dissolved in 5 

mL of DMF.  Freshly prepared aqueous solution of sodium ascorbate (0.06451 g, 

0.34 mmol) was added followed by aqueous solution of copper(II) sulfate 

pentahydrate (0.012186 g, 0.068 mmol), so that the final concentrations of sodium 

ascorbate and copper(II) sulfate pentahydrate in the mixture 30 and 6 mM, 

respectively. The ratio of azide and alkyne groups was 1. The mixture stirred for 2 

days of ambient temperature. Functionalized polymer precipitated in diethyl ether 

(10 times excess), filtered and dried under vacuum. 
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4.  CONCLUSION AND RECOMMENDATIONS 

Pyrrole side-chain polystyrene was synthesized by using “Click Reaction” concept. 

This procedure involves the preparation of polymer and pyrrole possessed with the 

appropriate click components. First, pyrrole monomer with acetylene terminal groups 

was synthesized. The other component, namely azide group functional polystyrene 

was synthesized independently. The click reactive molecules were then combined to 

yield the desired polymers. The details of the procedure will be given below.  

4.1 Synthesis and Characterization of 1-(4-(prop-2-ynyloxy)phenyl)-1H-pyrrol  

In this study, 1-(4-(prop-2-ynyloxy)phenyl)-1H-pyrrol (propargylpyrrole) was 

synthesized as electroactive click component. A new procedure for the Clauson-Kaas 

pyrrole synthesis was used to synthesize propargylpyrrole (Equation 4.1). This 

method was reported by Smith et al. [49] and  led to the formulation of a new 

procedure that avoids the contact of pyrroles to heat or strongly acidic conditions that 

cause decomposition of the desired products.  The procedure involves mild 

hydrolysis of 2,5-dimethoxytetrahydrofuran in water to the activated species 2,5-

dihydroxytetrahydrofuran that reacts with primary amines  in an acetate buffer at 

room temperature to give N-substituted pyrroles in high yield. In our case,  

propargylpyrrole was obtained in high yield and purity after two stages, and used to 

synthesize propargyl pyrrole as a readily available monomer for click type reactions.  
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(4.1) 

The chemical structure of sythesis of propargylpyrrole was confirmed by both FT-IR 

and 1H-NMR.  The characteristic absorptions of pyrrole  structure appeared at 1455 

cm-1 due to the C=C ring streching and  at 1244 cm-1 streching of  C-N  proved the 

presence of pyrrole (Figure 4.1).  

 
Figure 4. 1 FT-IR spectrum of 1-(4-(prop-2-ynyloxy)phenyl)-1H-pyrrol. 

The 1H-NMR spectrum of propargylpyrrole gave further support to its chemical 

structure (Figure 4.2.). The propargylpyrrole was characterized with the absorption 

peaks at 6.25 (-C=CH-C-) and 7.03 ppm (-N-CH=C-). The characteristic absorbtion 

peaks belong to phenol was observed at 4.95 ppm (-Ar-OH-). Also, H C  and CH2 

(propargyl) protons are detectable at 2.5 ppm and  at 4.75 ppm. 



 

 25

Figure 4. 2 1H-NMR spectrum of 1-(4-(prop-2-ynyloxy)phenyl)-1H-pyrrol. 

4.2 Synthesis and Characterization of Azide Functional PS 

For the synthesis of parent azide functionalized polymer, we first prepared 

poly(styrene-co-chloromethylstyrene), P(S-co- CMS), via nitroxide-mediated radical 

polymerization (NMP) of styrene (S) and chloromethylstyrene (CMS) at 125 °C. The 

composition of copolymer was determined using 1H NMR spectroscopy. The mole 

fractions pf CMS and S were calculated from the ratio of the peak areas around 4.5 

ppm, corresponding to two methylene protons of in the side chain of CMS to the 

total area between 6.3 and 7.4 ppm, which was attributed to the total aromatic 

protons. (PS-co-CMS) with Mn(GPC) = 6.197 and 54.10 mol % chloromethyl groups 

was then quantitatively converted into polystyrene-azide (PS-N3) in the presence of 

NaN3/DMF at room temperature. 

From the 1H NMR spectrum of PS-N3 shown in Figure 4.3, it was observed that 

while the signal at 4.5 ppm corresponding to CH2-CI protons of the precursor (PS-

co-CMS) completely disappeared, and a new signal appeared at 4.25 ppm due to CH2 

linked to azide groups. 
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Figure 4. 3 1H-NMR spectrum of PS-N3. 

4.3 Synthesis and Characterization of Pyrrole Functional PS 

Pyrrole functional polystyrene was synthesized with click chemistry which is 

modular, wide in scope and also it gives very high yields. For the click reaction, the 

PS-N3 was dissolved in dimethyl sulfoxide (DMF) and reacted with propargylpyrrole 

in the presence of aqueous solution of sodium ascorbate and copper(II) sulfate 

pentahydrate at room temperature (Equation 4.2). The substituted polymer was 

precipitated and dried under vacuum.  

 

  (4.2) 
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Evidece for the occurrence of the “click reaction” obtainn from 1H NMR and IR 

spectroscopy.  The extent of conversion of the side azido moieties to triazoles was 

monitored by spectroscopy by observing the appearance of the new methylene 

protons adjacent to the triazole and pyrrole  ring at 5.10 and 5.31 ppm (triazole-CH2-

O-CH2-Py) and the triazole proton (N-CH=C-) at 7.60 ppm (Figure 4.4). The peaks 

between 5.10 and 5.20 ppm, characteristic for –CH- protons of pyrrole ring were also 

observed.  

 

 

 

Figure 4.4. 1H-NMR spectrum of PS-N3 and PS-pyrrole. 

Moreover, the band corresponding to -N3 group at 2105 cm-1 completely disappeared 

(Figure 4.5). Moreover, C=C ring streching at 1455 cm-1 and C-N streching at 1244 

cm-1 proved the presence of pyrrole moieties in the substituted  polymer. Thus, the 

side group click reaction was efficient, as evidenced by near-quantitative 

functionalization.  
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Figure 4.5. FT-IR spectrums of PS- N3  and PS-pyrrole. 

4.4. Conclusion 

In summary, we have demonstrated a novel route, for the introduction of pyrrole 

functional groups to polystyrene via click [3+2] chemistry. The process involves the 

synthesis of azide functionalized PS and reaction of these functional groups with 

pyrrole as electroactive molecules also possessing propargyl groups as the 

components of the click reaction. The spectral analysis confirmed the presence of 

pyrrole functionality in the resulting polymer. The strategy adopted in this study 

appears to be entirely satisfactory in terms of efficiency and simplicity. Further wok 

is in progress to expand this approach to other functionalities. 

The new polymer is expected to undergo electropolymerization leading to 

crosslinked polymers having conjugated segments side-chain, so electrochemical 

properties will be characterized. 

 

 



 

 29

 

REFERENCES  

[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. 
,1977. Synthesis of Electrically Conducting Organic Polymers -
Halogen derivatives of Polyacetylene,   Chem. Soc. Chem. Commun., 
578 - 580. 

[2] A. J. Epstein, 1997. Polymeric Materials Encyclopedia Vol 3, 22, 16. 

[3] G. G. Wallace, G. M. Spinks, L. A. P. Kane-Maguire, P. R. Teasdale,  ,2003. 
Conductive Electroactive Polymers: Intelligent Materials Systems, 
Second Edition, (CRC Press: Boca Raton). 

[4] J. M. Davey, 2000. Synthesis and Characterisation of Novel Conducting     
Electroactive Polymers for Metal Ion Transport, PhD Thesis, 
University of Wollongong. 

[5] T. W. Lewis, G. G. Wallace, 1997. Communicative polymers: The basis for 
development of intelligent materials J. Chem. Educ.,74, 703 - 708. 

[6]  H. Eisazadeh, G. M. Spinks, G. G. Wallace, 1994. Electrochemical Produciıon 
of Polypyrrole Colloids Polymer, 35, 3801-3803. 

[7] M. Aizawa, L. Wang, 1996. Polymeric Materials Encyclopedia, Vol. 3 (J. C. 
Salamone, Eds), 2107 (CRC Press: Boca Raton). 

[8] S. J. Hawkins, N. M. Ratcliffe, 2000. A study of the effects of acid on the 
polymerisation of pyrrole, on the oxidative polymerisation of pyrrole 
and on polypyrrole J. Mater. Chem., 10, 2057-2062. 

[9] J. Heinze, 1990. "Electronically Conducting Polymers" in Topics in Current 
Chemistry,  152, Electrochemistry IV (M. J. S. Dewar, J. D. Dunitz, K. 
Hafner, E.  Heilbronner, S. Ito, J. M. Lehn, K. Niedenzu, K. N. 
Raymond, C. W. Rees,F.  Vögtle, Eds), 1-48 (Springer-Verlag: 
Berlin). 

[10]  J. N. Barisci, T. W. Lewis, G. M. Spinks, C. O. Too, G. G. Wallace, 1998. 
Factors affecting the electrochemical formation of polypyrrole-nitrate 
colloids  J. Intell. Mat. Sys. Struct., , 9, 723. 

[11] N. Arsalani and K. E. Geckeler, J. Prakt. ,1995. Conducting Isopolymers - 
preparation, properties, and applications Chem., 337, 1-11. 

[12] C.-T. Kuo, S.-A. Chen, G.-W. Hwang and H.-H. Kuo, 1998. Synth. Metals, 
93, 155. 

[13] D. Kumar and R. C. Sharma, 1998. Advances in conductive polymers Eur. 
Polym. J., 34, 1053. 

[14] Y. Qui, J. R. Reynolds, 1991. Dopant Anion Controlled Ion-Transport behavior 
of Polypyrrole Polym. Engineering Sci.,  31, 417. 

 



 

 30

[15]  J. M. Davey, S. F. Ralph, C. O. Too, G. G. 1999. Synthesis, Characterisation 
and ion Transport Studies on Polypyrrole/Polyvinylphosphate 
Conducting Polymer Materials Wallace, Synth. Met., 99, 191-199. 

[16]  M. D. Butterworth, R. Corradi, J. Johal, S. F. Lascelles, S. Maeda, S. P. 
Armes,  1999 Zeta-Potential Measurements on Conducting Polymer-
lnorganıc Oxide Nanocomposite Particles 5. J. Colloid Interface Sci., 
174, 510-517. 

[17] T. Nagaoka, H. Nakao, T. Suyama, K. Ogura, M. Oyama, S. Okazaki, 1997. 
Electrochemical Characterization of Soluble Conducting Polymers as 
ion Exchangers Anal.  Chem., 69, 1030-1037. 

[18]  J. Y. Lee, D. Y. Kim, C. Y. Kim, 1995. Synthesis of Soluble Polypyrrole of 
the Doped state in Organic-Solvents Synth. Met., 74, 103-106.  

[19] Kanazawa, K. K., Diaz, A. F., Geiss, R. H., Gill, W. D., Wak, J. F., Logan, J. 
A., Raboly, J. F., Street, G. B., 1979. J. Chem. Soc. Chem. Comm., p. 
854 

[20] Bowen, W.R., Kingdom, R.S., Sabuni, H.A.M., 1989. Electrically Enhanced 
Separation Processes J. Membr. Sci., 40, 219-229. 

[21] Baker, C. K., Reynolds, J. R., 1988. A Quartz Microbalance Study of the 
Electrosynthesis of Polypyrrole J. Electroanal. Chem, 251, p. 307-
322. 

[22] Khalkhali, R. A., Price, W. E., Wallace, G. G, 2003.  Reactive & Functional 
Polymers, 56, p. 141-146. 

[23]  Fukuda, T., Goto, A. and Ohno K., 2000. Mechanisms and kinetics of living 
radical polymerizations, Macromol Rapid Commun., 21, 151–65. 

[24] Hawker, C. J., Bosman, A.W. and Harth, E., 2001. Chain end 
functionalization in nitroxide-mediated "Living" free radical 
polymerizations Chemical Reviews, ASAP  

[25] Brydson, J.A., 1999. Plastics Materials, Butterworth heınemann, oxford 

[26] Davenport, N. E., Hunbbard, L. W., and Pettit, M. R., 1959,. Brit Plastics, 
32, 549.  

[27] Skinner, S. J., Baxter, S., and Grey, P. J., 1964. Trans. Plastics Inst., 32, 180.  

[28] Binder, W.H. and Sachsenhofer, R., 2007. ‘Click’ Chemistry in Polymer and 
Materials Science, Macromol. Rapid Commun., 28,  15-54. 

[29] Kolb, C.H.,Finn, M.G. and Sharpless, K.B., 2001. Click Chemistry: Diverse 
Chemical Function from a Few Good Reactions, Angew. Chem. Int., 
40, 2004 – 2021. 

[30] Malkoch, M., Thibault, R.J., Drockenmuller, E.,  Messerschmidt, M., Voit, 
B., Russell, T.P, and Craig J. Hawker, 2005. Orthogonal 
Approaches to the Simultaneous and Cascade Functionalization of 
Macromolecules Using Click Chemistry, J. Am. Chem. Soc, 127, 
14942-14949.  

[31] Kolb, H.C. and Sharpless, K.B., 2003. The growing impact of click chemistry 
on drug discovery, Drug Discovery Today, 8,1128-1137. 



 

 31

 [32] Himo, F., Demko, Z.P.,  Noodleman, L. and Sharpless, K.B,2002. 
Mechanisms of Tetrazole Formation by Addition of Azide to Nitriles 
J. Am.Chem. Soc., 124, 12210-12216. 

[33] Himo, F., Lovell, T., Hilgraf, R., Rostovtsev V., Noodleman, L., Sharpless, 
K.B. and Fokin, V.V,2005. Copper(I)-Catalyzed Synthesis of Azoles. 
DFT Study Predicts Unprecedented Reactivity and Intermediates J. 
Am. Chem. Soc., 127, 210-216. 

[34] Demko, Z. P. and Sharpless, K. B. , 2002. A Click Chemistry Approach to 
Tetrazoles by Huisgen 1,3-Dipolar Cycloaddition: Synthesis of 5- 
Acyltetrazoles from Azides and Acyl Cyanides, Chem. Int. Ed., 41, 
2113-2116. 

[35] Binder, W.H. and Kluger, C.,, 2006. Azide/Alkyne-“Click Reactions”: 
Applications in Material Science and Organic Synthesis, Curr. Org. 
Chem., 10, 1791-1815. 

[36] Köhn, M. And Breinbauer, R., 2004. Die Staudinger-Ligation- ein Geschenk 
für die Chemische Biologie, Angew. Chem., 116, 3168-3178.  

[37] Fleischmann, S., Komber, H., Appelhans, D. and Voit, I.B., 2007. Synhesis 
of  Functionalized NMP Initiators for Click Chemistry: A Versatile 
Method for the Preparation of Functionalized Polymers and Block 
Copolymers, Macromolecular Chemistry and Physics, 208, 1050-
1060. 

[38] Huisgen, R. ,Szeimies, G., Mobius L., 1967. General Review,Chem. Ber. 
,100,2494-2501. 

[39] Lewis, W., Magallon, F.G., Fokin, V.V. and Finn, M.G, 2004. Discovery 
andCharacterization of Catalysts for Azide-Alkyne Cycloaddition by 
Fluorescence Quenching J. Am. Chem. Soc., 126, 9152- 9153. 

[40] Molteni, G., Bianchi, C.L,Marinoni, G.,Santo, N. and Ponti, A.,2006.Cu/Cu-
oxide nanoparticles as catalyst int the “click” azide-alkyne  
cycloaddition New.J. Chem.,30, 1137. 

[41] Chan, T.R,  Hilgraf, R., Sharpless, K.B. and Fokin, V.V, 2004. Polytriazoles 
as Copper(I)-Stabilizing Ligands in Catalysis,Org.Lett., 6, 2853-2855. 

 [42] Huisgen, R.,1989. Kinetics and reaction mechanisms: selected examples from 
the experience of forty years, Pure Appl. Chem., 61, 613. 

[43] Huisgen,R., 1988. Advances in Cycloaddition, Vol. I, pp. 1–31.Eds.,  D. P. 
Curran, D. Regnat, E. Peters, K. Peters, H. G. von Schnering., JAI 
Press, London. 

[44] Demko, Z. P. and Sharpless, K. B. , 2002.  A Click Chemistry Approach to 
Tetrazoles by Huisgen 1,3-Dipolar Cycloaddition: Synthesis of 5-
Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides, Angew. 
Chem. Int. Ed., 41, 2110-2113. 

[45] Pachon,  L.D, Maarseveen, J.H. and Rothenberg, G., 2005. Click Chemistry: 
Copper Clusters Catalyse the Cycloaddition of Azides with Terminal 
Alkynes Adv.Synth. Catal., 347, 811. 



 

 32

[46] Lutz, J.F, 2007. 1, 3-Dipolar Cycloadditions of Azides and Alkynes: A 
Universal Ligation Tool in Polymer and Materials Science, Angew. 
Chem. Int., 46, 1018 – 1025. 

[47] Schnabel, W, Levchik, G.F, Wilkie, C.A, Jiang, D.D. and Levchik, S.V., 
1999. Thermal degradation of polystyrene, poly (1, 4-butadiene) and 
copolymers of styrene and 1,4-butadiene irradiated under air or argon 
with 60Co-γ-rays,  Polym Degrad Stab, 63, 365-375. 

[48] Decker, C., Nguyen, T. and Viet T., 1999. Photocrosslinking of functionalized 
rubbers, 8. The thiol-polybutadiene system, Macromol. Chem. Phys., 
200, 1965–1974.  

[49] Brendon, S. Gourlay, Peter P., Molesworth, John H., Ryanb and Jason A. 
Smith, 2006. A new and high yielding synthesis of unstable pyrroles 
via a modified Clauson-Kaas reaction, Tetrahedron Letters, Volume 
47, Issue 5, Pages 799-801. 

 

  

  



 

 33

  



 

 34

 

CURRICULUM VITAE                          

 

Candidate’s full name: Mirnur AŞAN BARIN  

Place and date of birth: İstanbul / 05.01.1980 

Permanent Address: Barış Mah. Barış Apt. No:21/1 Beylikdüzü/İSTANBUL 

Universities and 
Colleges attended:  Trakya University and Istanbul Technical University 

 


