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INTRAMOLECULAR CROSS-LINKING OF POLYMERS BY USING 

DIFUNCTIONAL ACETYLENES VIA CLICK CHEMSTRY 

SUMMARY 

 

Polymeric nanoparticles (PNP) are fastly sprawling and have crucial role in areas of 

life during last decades. Their incomparable properties increase this trend and give a 

lot of application areas at marked needs such as, medicine to biotechnology, 

conducting materials to sensors and electronics to photonics. Advances in 

polymerization chemistries and the application of reactive, efficient and orthogonal 

chemical modification reactions have enabled the engineering of multifunctional 

polymeric nanoparticles with precise control over the architectures of the individual 

polymer components, to direct their assembly and subsequent transformations into 

nanoparticles of selective overall shapes, sizes, internal morphologies, external 

surface charges and functionalizations.  

Different synthesis methods are described in literature to get polymeric 

nanoparticles. Over the last decade, growing interest has been devoted to the use of 

rapid reactions that meet the three criteria of an ideal synthesis: efficiency, versatility 

and selectivity. The most popular reactions that have been adapted to fulfill these 

criteria are known as “click” reactions. Controlled size and prespecified adjustment 

of functional group polymers give rise to a path of obtainig nanoparticles. With the 

help of functional groups, polymer can cross-link intramolecularly at ultra dilute 

conditions which is one of the most popular synthesis methods of polymeric 

nanoparticles.  

In this study, an efficient approach was described for the intramolecular crosslinking 

of azide functionalized poly(styrene-co-chloromethyl styrene) copolymers (PS-N3) 

with appropriate diacetylene functional compounds in ultra-dilute conditions via 

click chemistry at room temperature. Reaction of azide functionalized poly(styrene-

co-chloromethyl styrene) copolymers (PS-N3) with the appropriate diacetylene 

functional compounds such as 1,4-diethynylbenzene (DEB) and 1,10-dipropargyloxy 

decane (DPD) in ultra-dilute solutions led to unimolecular particle-like structures. 

The resulting molecules are also soluble in common organic solvents. The resulting 

cyclic polymers were characterized in detail by using 
1
H-nuclear magnetic resonance 

spectrometry (NMR), fourier transform infrared spectrometry (FTIR), gel permeation 

chromatography (GPC) and differential scanning calorimetry (DSC) measurements. 

In addition to these analyses, shear rate dependence with viscosity measurements of 

the obtained polymers were investigated.  

In conclusion, the use of click reaction as a versatile synthetic route to prepare cyclic 

polymers was demostrated. Azide functionalized copolymers were intramolecularly 

cross-linked with appropriate diacetylene functional compounds in ultra-dilute 

conditions via click chemistry approach. The structures of obtained particle-like 

structures have been fully characterized. 
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BİFONKSİYONEL ASETİLEN GRUBU İÇEREN POLİMERLERİN KLİK 

KİMYASI YOLUYLA MOLEKÜL İÇİ BAĞLANMASI 

ÖZET 

 

Günlük yaşamın çeşitli bölümlerinde önemli bir yer alan polimerik nanopartiküller 

(PNP) hızla gelişmektedir. Benzersiz özelliklere sahip olmaları, kendilerine olan 

ilgiyi ve kullanım alanlarını arttırmaktadır. Biyoteknoloji, ilaç, iletken polimerler, 

sensörler, elektronikler kullanım alanlarından yalnızca birkaçıdır.  

Polimerizasyon kimyasındaki gelişmeler ve etkili kimyasal modifikasyon 

reaksiyonları çok fonksiyonlu polimerik nanopartiküllerin üretilmesini sağlamakla 

beraber, polimer bileşkilerin istenilen düzeyde kontrol edilmesini, istenilen şekil ve 

boyutlarda sentezlenmesine imkan vermektedir. Buna ek olarak polimerik 

nanopartiküller fonksiyonellik bakımından uygulanacağı alanlarda iç ve dış yüzey 

morfolojilerinde istenilen düzeyde değişiklik yapılmasını sağlamaktadır.  

Polimerik nanopartiküller elde etmek için literatürde çeşitli yöntemler 

bulunmaktadır. Geçtiğimiz son on yılda, ideal sentezin üç kriteri olan etkinlik, 

çeşitlilik ve seçicilik özellklerini karşılayan hızlı reaksiyon sistemlerine olan ilgi 

hızla artmıştır. Bu kiriterleri yerine getiren en popüler reaksiyonlar “klik” 

reaksiyonları olarak bilinmektedir. Kontrollu boyutta ve belirlenmiş fonksiyonel 

grupları olan polimerler nanopartikül oluşturmak için bir yöntem sağlamaktadır. Bu 

fonksiyonel gruplar sayesinde, aşırı seyreltik koşullarda polimerlerin molekül içi bağ 

yapmaları sağlanabilmekte ve nanopartikül boyuta ulaşılabilmektedir. Fonksiyonel 

grupları olan polimerler ile nanopartikül boyutta ürün eldesi dikkat çekici ve popüler 

bir yöntemdir. 

Bu çalışmada, etkili bir yöntem olan azit fonksiyonlu poli(stiren-co-klorometil stiren) 

kopolimerinin (PS-N3) ultra saf koşullarda ve oda sıcaklığında klik kimyası yardımı 

ile molekül içi bağlanması tanımlanmıştır. Stiren ve klorometil stiren‟nin öncül 

kopolimerleri 2,2-azobisisobutyronitril (AIBN) ile başlayan serbest köksel atom 

polimerizasyonu yoluyla sentezlenmiştir. Üretilen kopolimerlerin kompozisyonları 
1
H-nükleer manyetik rezonans spektrometrisi (NMR) ile belirlenmiştir. Stiren ve 

klorometil stiren‟nin mol fraksiyonları klorometil stiren (CMS)‟de klorin atomuna 

bağlı metilen protonlarının 4,5 ppm civarındaki sinyal alanlarının 6,6 ppm ile 7,4 

ppm arasındaki, bu alan toplam aromatik protonlarını temsil eder, toplam sinyal 

alanına oranı ile hesaplanmıştır.  

Üretilen poli(stiren-co-klorometil stiren) kopolimerlerinin (P(S-co-CMS))  molar 

kompozisyonları ve ortalama moleküler ağırlıkları jel geçirgenlik kromatografisi 

(GPC) ile belirlenmiştir. Daha sonra azid yan grubu içeren kopolimerleri elde etmek 

amacıyla sodyum azid (NaN3) kullanılarak azidasyon prosedürü gerçekleştirilmiştir. 

Poli(stiren-co-klorometil stiren) kopolimerinin (PS-N3) 
1
H- nükleer manyetik 

rezonans spekturumunda, 4,2 ppm de ortaya çıkan yeni sinyal azid grubuna bağlı 

metilen protonuna ait olup, 4,5 ppm„deki sinyal tamamiyle kaybolmuştur. Klik 

reaksiyonlarında kullanılan diğer komponentler alkin içeren diasetilen fonksiyonel 

bileşikleri olan 1,4-diethynylbenzen (DEB) ve 1,10-dipropargloksi dekan (DPD) 

olarak seçilmiştir. DPD ticari olarak bulunmakla beraber propargil bromid 

kullanılarak basit esterifikasyon reaksiyonuyla sentezlenmiştir.  
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Son adımda, oda sıcaklığında Cu(I) katalizi ile birlikte molekül içi bağlanma klik 

reaksyonu gerçekleştirilmiştir. Bu reaksiyonda azid fonksiyonlu poli(stiren-co-

klorometil stiren) kopolimer (PS-N3) solüsyonu diasetilen içeren solüsyona damla 

damla eklenmiştir. Bu ekleme sonucu  poli(stiren-co-klorometil stiren)  (PS-N3)‟in 

azidleri ile 1,4-diethynylbenzen (DEB) ve 1,10-dipropargloksi dekan (DPD)‟in 

diasetilen fonksiyonları arasında CuBr/bpy ile katalize edilmiş triazol oluşumu 

gerçekleştirlmiştir. Elde edilen polimerler metanol içinde çöktürülerek nicel olarak 

saflaştırılmıştır. Daha sonra polimerler jel geçirgenlik kramotografisi (GPC), Fourier 

transform kızıl ötesi spektrometrisi (FTIR) ve 
1
H-nükller manyetik rezonans (NMR) 

spektrometri yöntemleri ile karakterize edilmişlerdir.        

Azid fonksiyonlu polimerlerin moleküler ağırlıkları klik reaksiyonları sonucunda 

molekül için bağlanmadan dolayı büyük miktarda azalmıştır. Molekül içi halka 

bağlanmaları molekül içi düz zincirlerin daralmalarına sebep olur. Bu yolla üretilen 

halka polimerlerde polidispersite ve hidrodinamik hacim değişmeden moleküler 

ağırlıklarında büyük miktarda azalmalar meydana gelir. Polimerlerin hidrodinamik 

hacimlerindeki yapısal etkiyi incelemek amacıyla farklı zincir yapılarına sahip olan 

1,4-diethynylbenzen (DEB) ve 1,10-dipropargloksi dekan (DPD) ile ikinci bir set 

polimerler üretilmiştir.   

Sonuçlar 1,10-dipropargloksi dekan (DPD) ile kliklenen polimerin hidrodinamik 

hacminin % 50 oranında azaldığını ancak 1,4-diethynylbenzen (DEB) ile kliklenen 

polimerin hidrodinamik hacminin sadece % 30 oranında azaldığını göstermiştir. 1,4-

diethynylbenzen (DEB) ile kliklenme gerçekleştiğinde meydana gelen düşük 

orandaki, azalma 1,4-diethynylbenzen (DEB)‟in merkez aromatik halkasından dolayı 

sahip olduğu rijit yapısından kaynaklanmaktadır. Ayrıca 1,4-diethynylbenzen (DEB) 

ile elde edilen halka polimerler tetrahydrofuran (THF) ve dimetilformamid (DMF) 

gibi solventlerde düşük miktarda çözünme göstermiştir.  

Molekül içi bağlanmayı doğrulamak amacıyla halka polimerlerden bir tanesi 

seçilerek spektroskopik olarak incelenmiştir. Klik reaksiyonundan önce ve sonra 

çekilen nükller manyetik rezonans spektrometrilerinde 4,2 ppm„de görülen azid 

grubuna bağlı metilen protonlarının tamamiyle yok olarak yerine 5,3 ppm‟de triazol 

halkasına bağlı metilen protonlarının sinyalinin ortaya çıktığı gözlemlenmiştir. 

Fourier transform kızıl ötesi spektrometrisi de başarılı bir klik reaksiyonunu 

doğrulamaktadır. Klik reaksiyonundan sonra 2095 cm
1

 de görülen N3 bandı 

tamamiyle yok olmuştur.  

Jel geçirgenlik kromatografisi (GPC) sonuçları da halka polimerin moleküler 

ağırlığının azid fonksiyonlu başlangıç polimerinin moleküler ağırlığından daha düşük 

olduğunu göstermiştir. Poli(stiren-co-klorometil stiren) kopolimerin (PS-N3) ve halka 

polimerin camsı geçirgenlik sıcaklıkları diferansiyel tarama kalorimetrisi (DSC) ile 

ölçülmüştür. Poli(stiren-co-klorometil stiren) kopolimerinin (PS-N3) camsı 

geçirgenlik sıcaklığı zincir mobilitesi düştüğünden dolayı 95C‟den 132C‟ye 

kaymıştır.  

Poli(stiren-co-klorometil stiren) (P(S-co-CMS))‟in, poli(stiren-co-klorometil stiren) 

kopolimerinin (PS-N3) ve halka polimerlerin viskozitelerine bağlı kayma oranları da 

ayrıca incelenmiştir. Aynı konsantrasyonlar ile incelenen örnekler ile elde edilen data 

viskozitelerde açık bir değişimi göstermektedir. Halka polimerin oluşumundan sonra 

viskozitede meydana gelen azalma polimerin düz bir molekül davranışı yerine 

partikül benzeri davranış göstermesinden kaynaklanmaktadır.   

Sonuç olarak, halka polimerlerin sentezinde uygulanabilen klik reaksiyon profili 

gösterilmiştir. Azid fonksiyonlu kopolimerler uygun diasetilen fonksiyonlu bileşikler 

ile ultra saf koşullarda klik kimyası yoluyla molekül içi bağlanmıştır.  
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Son zamanlarda benzersiz özelliklere sahip olmaları, biyoteknoloji, ilaç, iletken 

polimerler, sensörler, elektronikler gibi kullanım alanlarına sahip olan bu partikül 

benzeri yapılar nükleer manyetik rezonans spektrometrisi (NMR), fourier transform 

kızıl ötesi spektrometrisi (FTIR), diferansiyel tarama kalorimetrisi (DSC) ve jelleşme 

geçirgenlik kromatograifis gibi yöntemlerle karakterize edilmiştir. Elde edilen 

polimerlerin viskozitelerine bağlı kayma oranları da ayrıca incelenmiştir.       
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1. INTRODUCTION 

There has been revitalized interest in the preparation of polymeric nanoparticles due 

to the use of these tailor-made materials in a variety of applications such as 

microelectronics [1, 2], drug delivery systems [3-7], polymer processing [8-10], etc. 

Recently, several strategies were employed for the preparation of polymeric 

nanoparticles including intramolecular cross-linking of single polymer chains 

containing cross-linkable groups at ultra-diluted reaction conditions [11-17] and 

single-chain collapse of macromolecules containing suitable reactive groups along 

the chain with bifunctional cross-linkers [18, 19]. 

Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reactions [20] between an azide 

and an alkyne, known as “click” reactions have attracted much attention due to their 

important features such as high yields, short reaction times, high tolerance of 

functional groups, and selectivity [21-23]. The Diels-Alder cycloaddition reaction 

[24-26] and thiol-ene chemistry [27, 28] have recently been introduced as alternative 

click routes for providing new materials. Click reactions have been widely used for 

the synthesis of polymers with different compositions and topologies, ranging from 

linear (telechelic [29], macromonomer [30, 31], macrophotoinitiator [32, 33] and 

block copolymer [34-36]) to nonlinear macromolecular structures (graft [37-39], star 

[40, 41], miktoarm star [42, 43], H-type [44], dendrimer [45-47], dendronized linear 

polymers [48, 49], macrocyclic polymers [50, 51], self-curable polymers [52-54], 

network systems [55, 56] and polymeric nanoparticles [14, 57]). The development 

and application of click chemistry in polymer and material science have recently 

been extensively reviewed [58-63]. 
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2. THEORETICAL PART 

2.1 Polymerzation Processes 

Basically, a polymerization process is based on a repetetive reaction in which a 

monomer converted into a polymer segment. The word polymer is derived from a 

classical Greek poly meaning “many” and meres meaning “parts”. Thus a polymer is 

a large molecule build up by the repetition of small chemical units. There can be 

hundreds or more monomer units linked together in a polymer molecule.  

Throughout improvement of polymer science, two types of classification have come 

into use. First one is based upon structure and divides polymers as condensation and 

addition polymers, the other one classified the polymers by their polymerization 

mechanizms, as the terms addition and chain.  Probably the most general 

classification is based on polymerization mechanism involved in polymer synthesis. 

Under this scheme, polymerization processes are classified as step-reaction 

(condensation) or chain reaction (addition) polymerization [65].  

Because of most condensation polymers formed by step polymerization and most of 

addition polymers produced by chain polymerization, the terms condensation and 

step are often used as synonymously as the terms addition and chain [66]. The 

following section will deal with, Condensation Polymerization and Chain 

Polymerization.  

2.1.1 Condensation polymerization 

Historically the oldest class of common synthetic polymers are condensation 

polymers, also known as step growth polymers.  Condensation polymerization occurs 

when a polymer is formed from a reaction that leaves behind a small molecule, often 

water (Scheme 2.1).  Condensation polymerization involves a series of reactions 

inwhich two species (monomers, dimers, trimers, etc.) can react at any time, leading 

to a larger molecule. Condensation accompanied by the elimination of small 

molecules such as HCl or water as a by-product.  Step-growth polymerizations 

generally involve either one or more types of monomer. In either case, each 

monomer has at least two reactive groups. In cases where only one type of monomer 

http://www.cartage.org.lb/en/themes/Sciences/Chemistry/Organicchemistry/Organicindex/Polymers/Polymers/Polymers.htm
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is involved, which is known as A-B step-growth polymerization, the fuctional groups 

on monomer are different and capable of intramolecular reactions.  An example is 

the  polymerization reaction involving terephthalic acid and ethylene glycol, both of 

which are bifunctional. 

                     

Scheme 2.1 : Example of condensation polymerization 

The monomers that are involved in condensation polymerization are not the same as 

those in addition polymerization. The monomers for condensation polymerization 

have two main characteristics. 

a) Instead of double bonds, these monomers have functional groups (like 

alcohol, amine, or carboxylic acid groups). 

b) Each monomer has at least two reactive sites, which usually means two 

functional groups. 

Some monomers have more than two reactive sites, allowing for branching between 

chains, as well as increasing the molecular mass of the polymer. To get the polymers, 

the monomers must be at least difunctional; monofunctional reactants disrupt the 

polymer growth. [65-66].    

2.1.2 Chain-reaction polymerization 

Chain-reaction polymerization, is one of the most important industrial method to get 

polymers, which involves the addition of unsaturated molecules to a rapidly growing 

chain (Scheme 2.2).  Olefins are the most common unsaturated compounds that go to 

chain reaction polymerization. 
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          Scheme 2.2 : Example of vinyl polymerization by chain-reaction     

                       polymerization.       

       

The growing polymer in chain-reaction polymerization is a free radical, and 

polymerization proceeds via chain mechanism. Chain-reaction polymerization is 

indused by the addition of free radical forming reagents by ionic initiators. Like all 

chain reactions, it involves three fundemental steps: the reaction gets 

started initiation, the reaction keeps going propagation, and the reaction stops 

termination. The first reactant is known as a monomer, link in a polymer chain. It 

initially exists as simple units. Generally, the monomers have at least one carbon-

carbon double bond. The other reactant is catalyst. In chain- reaction polymerization 

a free radical is formed which is a chemical component that contains a free electron 

and forms a covalent bond with an electron on another molecule so polymerization 

occurs.  

First step Initiation involves the development of an active side by the monomer. 

This may occur spontaneously by the absorbtion of heat, light,  or high energy 

irradiation. The double of monomer breaks apart, monomer bond to free radical and 

the free electron is transferred to the outside carbon atom in this reaction. 

Second step Propagation, the initiated monomer adds to the other monomer. 

Addition of free radical to the double bond of monomer, with regeration of another 

radical.  

The active center is thus continuously relocated at the end of growing polmer chain. 

Propagation is able to occur  consistently because the energy in the chemical system 

is lowered as the chain grows. This step continues until the growing chain radical is 

deactivated by chain termination. 

The last step Termination the growth activity of a polymer chain radical is 

destroyed by reaction with another free radical in the system to produce polymer 

molecules. Termination reactions are more important in polymer production are 

combination and disproportionation. In termination by combination, two growing 

polymer chain react with eachother and destruct the growing activity. In 

http://tureng.com/search/consistently
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disproportionation, unstable atom transferred from one polymer chain to the other. 

Coupling reactions generate a single polymer where as disproportionation generates 

two polymers from two reacting polymer chain radicals. The dominant termination 

depends on nature of the reactant monomer. Disproportionation needs energy to 

break the chemical bonds and take place at high reaction temperatures. Combination 

of growing polymer radicals predominates at low temperatures. [65-66].    

2.2 Click Chemistry 

Sharpless introduced the click chemistry at 2001 and to form the substances quickly 

and confidently by joinig small parts together. [67] Sharpless also introduced lots of 

advantages of click reactions which are, high yielding, create only innocuous by-

products, are stereospecific, simple to perform and that need riskless or easily 

removed solvent. Click chemistry concept was developed with the interest in the 

pharmaceutical, materials, and other industries. There are several processes have 

been identified under this term in order to meet these criterias such as nucleophilic 

ring opening reactions; non-aldol carbonyl chemistry; thiol additions to carbon–

carbon multiple bonds (thiol-ene and thiol-yne); and cycloaddition reactions. 

Copper(I)-catalyzed azide-alkyne (CuAAC) and Diels-Alder (DA) cycloaddition 

reactions and thiol-ene reactions are much popular among the chemists either the 

synthetic or the polymer chemists. The “click”reactions generally include the 

formation of a carbon-heteroatom bond and the following classes of chemical 

transformations ; 

 Cycloadditions of unsaturated species generally take place with Huisgen 1,3-

dipolar Cycloaddition and Diels-Alder reaction. 

 Nucleophilic ring-opening reactions of  strained heterocyclic electrophiles  

(such as epoxides, aziridines, aziridinium ions and episulfonium ions) 

 Non-aldol type carbonyl chemistry (such as formation of aromatic 

heterocycles, oxime ethers, amides and hydrazones) 

 At the oxidative cases addtion of carbon-carbon multiple bonds. 

2.2.1 Copper-catalyzed azide-alkyne cycloadditions 

Rolf Huisgen and co-workers in the 1950s to the 1970s  were subject of intensive 

research about 1,3-Dipolar cycloaddition reactions which called as copper(I)-

catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) reaction between azides and 

http://tureng.com/search/innocuous
http://tureng.com/search/riskless
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terminal alkynes. That is the most prominent example of “click chemistry”, 

discovered by the groups of Sharpless [68] and Meldal [69] (Scheme 2.3). The Cu-

catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC) dramatically accelerates 

the reaction of azides with terminal alkynes. It is very robust, general, insensitive, 

and orthogonal to most other chemistries used in synthesis of polymers [70]. Click 

chemistry used at a lot of  fields of chemistry such as, pharmaceutical chemistry [67], 

supramolecular chemistry [71], and widely at organic chemistry because of its 

favourable advantages. Unlikely uncatalyzed cycloadditions of azides and alkynes, 

Cu(I) catalyzed reactions allows very fast and regioselective formation of only the 

1,4-triazoles at mild reaction conditions such as low temperatures and absence of 

side products. 

 

Scheme 2.3 : General represantation of thermal and cupper catalyzed            

               cycloaddition. 

2.2.2 Diels-Alder click chemistry 

Professor Otto Diels and his student Kurt Alder received the Nobel Prize in 1950 for 

their discovery of a reaction which is called by their name “The Diels-Alder “(DA) 

reaction. [72]. The Diels-Alder (DA) reaction is one of the most common reactions used 

in organic chemistry and is a type of cycloaddition reactions.  Two in a diene and one 

in a dienophile, totaly three p bonds, recompose to give a six-membered ring in all 

Diels-Alder reactions. Although Diels-Alder reaction are used in organic chemistry 

for many years, it gained  popularity in the field of materials science with the 

discovery of “click chemistry”. The majority of “click” reactions generally create 

new carbon-heteroatom bonds, where as  Diels-Alder “click” reactions create new 

carbon-heteroatom bonds and carbon-carbon bonds. This property increases the 

http://tureng.com/search/favourable
http://tureng.com/search/recompose
http://tureng.com/search/gain%20popularity
http://tureng.com/search/property
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interest on this reaction at the chemistry world. The DA reaction, shown its general 

form in Scheme 2.4, involves a [4+2] cycloaddition reaction between an electron-rich 

diene (furan and its derivatives, 1,3 cyclopentadiene and its derivatives etc.) and an 

electron-poor dienophile (maleic acid and its derivatives, vinyl ketone etc.) to form a 

stable cyclohexene adduction [73-74]. 

 

Scheme 2.4 : General mechanism of Diels-Alder/retro Diels-Alder reactions 

               of dienophile and diene.  

2.2.3 Thiol-ene click chemistry 

The  radical addition of thiols to carbon-carbon double bonds is called as  thiol-ene 

reaction and discovered  in the early 1900s by Posner. In Thiol-ene reactions 

(Scheme 2.5)  S-H bonds formed to a double or triple bond by either a free radical or 

ionic mechanism. During the proceeds a typical chain process with initiation, 

propagation and termination steps take place, in Scheme 2.6. At the Initiation step 

thiol interact with photoinitiator, on light exposure, resulting in the formation of a 

thiyl radical, RS˙. Propagation steps incorporate with attachment of thiyl radical to 

the C=C bond and hydrogen abstraction of a thiol group by a carbon-centered radical 

resulting the synchronous generation of a new thiyl radical, respectively and lastly 

Termination takes place radical–radical coupling processes. 

Basically sulfur version of the hydrosilylation reaction is called Thiol-ene reactions. 

Thiols are also  known as transfer agents and their reaction with alkenes conducted 

under  radical conditions, photochemically and thermally [75-78] absence of side 

reactions.Thiol-ene reactions are considered as “click” reactions because of high 

yielding, efficient reactions, tolarence of solvents and functional groups [79]. 
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Scheme 2.5 : Example of conglomeration of Thiol-ene 

These reactions can be considered as friendly to the earth processes because  they 

proceed in the absence of solvent under reversible reaction conditions out of the use 

of any potentially toxic metal. In order to ensure completion of reaction absence of 

byproduct formation, a large excess of one of the reagents should be used. 

 

Scheme 2.6 : Schematic diagram of cross-linking. 

2.3 Crosslinking Reactions of Polymers 

There are a lot of techniques for polymer modifications, Cross linking is one of the 

prime of them. Cross linking is a multicomponent  polymer system. Combining more 

than one functional components in a single polymer makes them attractive in the 

industrial field. 

Crosslinking can be accomplished chemically or by irradiation. Chemically  one 

accomplished by a heat induced reaction between the polymers and a crosslinking 

agent. Crosslinked by irradiation means, high energy electrons bombard the 

insulation system. 

http://tureng.com/search/conglomeration
http://tureng.com/search/friendly%20to%20the%20earth
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Crosslinking is a multidirectional chain extension of polymers by which network 

structures are formed. Cross linking can take place either polymerization of 

monomers with functionality greater than 2 or by covalent bonding between 

preformed polymer molecules. With the help of cross linking polymers get more 

resistance to heat, light, and other physical agencies, giving it a high degree of 

dimensional stability, mechanical strength and chemical and solvent resistance. 

Although some loss of strength still can take place at high temperatures, crosslinked 

molecular chains are much more resistant to flow when stress is applied. Degree of 

cross linking have an important impact on regularity of the network formed, and 

presence and absence of crystallinity in the polymer. If the degree of crosslinking is 

low, the polymer is more elastic, have lower melting point, and become softener. 

Decrease in free volume by closslinking, raises the glass transition temperature of the 

material. Because of these effcets of cross linking on polymers, it can not be avoided 

at the poymer chemistry. 

All materials can not be crosslinked. The polymers should have some properties to 

crosslink, some of these are: Higher tensile strength, Improved fluid resistance,  

Improved abrasion/cut through, Slightly better flame resistance, Better crush 

resistance, No change of electricals, Solder iron resistance, Negligible change in 

thermal stability, Decrease in flexibility, Better over load characteristics, Resistance 

to stress cracking, Improved high temperature mechanicals [80]. 

Cross-linked reactions can take place as intra-molecularly or inter-molecularly 

(Figure 2.1). Intra-molecular cross-linked  reaction form within a polymer molecule, 

and inter-molecular cross-linked reaction that takes place among different polymer 

molecules [81]. 

 

Figure 2.1 : Schematic diagram of (I) intermolecular crosslinking and (II) 

             intramolecular crosslinking. 



11 

 

2.4 Polymeric Nanoparticles 

Particles that have 100 nanometers or less in size called as nanoparticles. The 

properties of many conventional materials change when nanoparticles formed from 

conventional materials their properties changes because nanoparticles have a greater 

surface area per weight than larger particles and become more reactive to certain 

other molecules. Various usage advantages as implants for tissue regeneration, such 

as in bone, cartilage,vascular, bladder, and neuronal regeneration icreased the interest 

on nanoparticles [80]. 

The preparation of polymeric nanoparticles with controlled size and fuctional group 

arrangements is one of the most popular topics in recent years because of 

applications in the fields of microelectronics, drug delivery, polymer processing, etc. 

The high ratio of surface to volume  of the nanophase polymer provides an important 

role in enhancing the physical, thermal, and mechanical properties [82]. To address 

the need for nanoparticles, intramolecular coupling and collapse of single copolymer 

chains involving reactive cross-linking groups give discrete nanoparticles which has 

been proposed and successfully carried out. 

Shortly before, an intramolecular cross-linking reaction was achieved, where the 

reaction was applied under ultradilute solution. Under these conditions, the covalent 

links are principally formed between functional of the same polymer chain, leading 

to a unimolecular particle with size ranging from 3 to 15 nm [16]. 

 

 

 

 

 

 

 

 

 

 

http://tureng.com/search/principally
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3. EXPERIMENTAL WORK 

3.1 Materials and Chemicals 

3.1.1 Reagents 

Styrene (S, 99%, Aldrich) and 4-vinylbenzyl chloride (choloromethyl styrene, CMS, 

90%, Acros) were distilled under reduced pressure before use. 2,2-

azobisisobutyronitrile (AIBN, 98%, Aldrich) was recrystallized from ethanol. 

Tetrahydrofuran (THF, 99.8%, J.T. Baker) was dried and distilled over 

benzophenone-Na. 2,2′-Bipyridyl (bpy, ≥99%, Aldrich), copper(I)bromide  (CuBr, 

≥97.0%, Riedel-de Haën), methanol (+99%, Acros Organics), sodium hydride (NaH, 

98%, Fluka), sodium azide (NaN3, 99%, Merck), 1,10-decanediol (99%, Aldrich),  

propargyl bromide (80% volume in toluene, Fluka) and 1,4-diethynylbenzene (DEB, 

96%, Aldrich) were used as received. 

3.2 Equipments  

3.2.1 
1
H-Nuclear magnetic resonance spectroscopy (

1
H-NMR) 

1
H-NMR spectra of 5–10 % (w/w) solutions in CDCl3 with Si(CH3)4 as an internal 

standard were recorded at room temperature at 250 MHz on a Bruker DPX 250 

spectrometer.  

3.2.2 Gel permeation chromatography (GPC) 

Gel permeation chromatography (GPC) measurements were obtained from a 

Viscotek GPCmax Autosampler system consisting of a pump, a Viscotek UV 

detector and Viscotek a differential refractive index (RI) detector. Three ViscoGEL 

GPC columns (G2000HHR, G3000HHR and G4000HHR), (7.8 mm internal 

diameter, 300 mm length) were used in series. The effective molecular weight ranges 

were 456–42,800, 1050–107,000, and 10,200–2,890,000, respectively. THF was used 

as an eluent at flow rate of 1.0 mL min
-1

 at 30C.  Both detectors were calibrated 

with PSt standards having narrow molecular weight distribution. Data were analyzed 
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using ViscotekOmniSEC Omni-01 software.  Molecular weights of polymers were 

calculated with the aid of polystyrene standards. 

3.2.3 Fourier transform infrared spectroscopy (FT-IR) 

FT-IR spectra were recorded on a Perkin-Elmer FT-IR Spectrum One-B  

spectrometer. 

3.2.4 Viscosity measurements 

Viscosity measurements were carried out using Brookfield Cap 2000+ viscometer 

(low torque, low temperature, spindle no: 1, temperature : 25C) with the solutions 

prepared 2 days before measurement by dissolving the polymers in DMF followed 

by filtering through a 0.45 m filter. 

3.3 Preparation Methods 

3.3.1 Synthesis of 1,10-dipropargyloxy decane (DPD) 

1,10-Dipropargyloxy decane (DPD) was synthesized using a previously reported 

procedure [64]. 
1
H-NMR (CDCl3 250 MHz):  4.08 (d, 4H, -OCH2CH), 3.46 (t, 4H, 

-CH2OCH2CH), 2.38 (t, 2H, -OCH2CH), 1.55 (m, 4H, -CH2-CH2OCH2CH), 1.25 

(m, 12H, CH2). FT-IR (ATR):  (cm
-1

)  3305, 2923, 2850, 2112, 1455, 1355, 1264, 

1091, 1018, 908, 809, 672, 635. 

3.3.2 Procedure for the synthesis of poly(styrene-co-chloromethylstyrene) P(S-

co-CMS) 

P(S-co-CMS) was prepared by free radical polymerization (FRP) in the presence of 

2, 2-azobisisobutyronitrile (AIBN) under nitrogen atmosphere. To a flask equipped 

with a magnetic stirring bar, styrene (S) (4 mL, 0.035 mol), CMS (0.87 mL, 6.2 

mmol), and AIBN (0.0135 g, 0.0824 mmol) were added in that order. The reaction 

flask was placed in a thermostated oil bath at 60 oC for 18 h. Subsequently, the 

polymerization mixture was diluted with THF and precipitated in excess methanol. 

The polymer was dried for 24 h in a vacuum oven at 25 
o
C. 1H NMR (CDCl3 250 

MHz):  7.5-6.2 (m, 9H), 4.5 (s, 2H), 2.1-1.2 (m, 6H). FT-IR (ATR): (cm
-1

) 3026, 

2922, 1601, 1493, 1452 , 757, 695, 676.  
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3.3.3 Typical procedure for the synthesis of polystyrene-azide (PS-N3) 

P(S-co-CMS) (1.5 g, 0.28 mmol) was dissolved in 30 mL DMF, and NaN3 (1.56 g, 

24 mmol) was added. The resulting solution was allowed to stir at 25 °C overnight 

and precipitated in excess methanol. After filtration, the polymer was dried for 24 h 

in a vacuum oven at 25C (Mn,GPC = 65800, Mw/Mn= 3.5). 1H NMR (CDCl3 250 

MHz): 7.40–6.20 (m, 9H), 4.25 (s, 2H), 2.1-1.2 (m, 6H). FT-IR (ATR): (cm
-1

)  

3025, 2922, 2095, 1680, 1601, 1493, 1452, 757, 698.  

3.3.4 General procedure for cyclic polymer formation via click chemistry 

 The azide functionalized copolymer 1 (0.1 g, 1.27 µmol and 0.19 mmol equiv of N3) 

was dissolved in 30 mL of freshly distilled THF. In a round-bottom flask DPD (121 

mg, 0.095 mmol), CuBr (35.43 mg, 0.247 mmol) and bpy (77 mg, 0.494 mmol) were 

dissolved in 30 ml of freshly distilled THF. The THF solution of copolymer 1 was 

added dropwise via dropping funnel to the flask over a 90 min period with vigorous 

stirring and the mixture was allowed to stir for 24 h. At the end of this period, 

polymer solution was precipitated into methanol then dissolved in THF and passed 

through alumina column to remove copper salt. Finally, it was dried in a vacuum 

oven at 25 °C. 
1
H-NMR (CDCl3 250 MHz): 8.0–6.20 (m, 11H), 5.3-5.6 (s, 2H), 

2.1-1.2 (m, 6H). FT-IR (ATR): (cm
-1

) 3026, 2924, 1601, 1493, 1452, 1092, 1018, 

798, 698.  
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4. RESULTS AND DISCUSSION 

Precursor copolymers of styrene (S) and chloromethyl styrene (CMS) were 

synthesized by free radical polymerization initiated with 2, 2-azobisisobutyronitrile 

(AIBN) (Scheme 4.1). The compositions of copolymers were determined using 
1
H 

NMR spectroscopy. The mole fractions of S and CMS were calculated from the ratio 

of the peak areas around 4.5 ppm, corresponding to two methylene protons adjacent 

to chlorine atom of CMS, to the total area between 6.6 and 7.4 ppm, which was 

attributed to the total aromatic protons. The molar compositions and number-average 

molecular weights of the resulting poly(styrene-co-chloromethyl styrene) copolymers 

P(S-co-CMS) were determined by GPC (Table 4.1). Subsequently, P(S-co-CMS)s 

were modified by azidation procedure using NaN3 as described in the Experimental 

Section to obtain copolymers with azide side groups. The experimental conditions 

and results are presented in Table 4.1. In the 
1
H NMR spectrum of PS-N3, a new 

signal appeared at 4.2 ppm was attributed to methylene protons linked to azide 

groups while the signal at 4.5 ppm disappeared completely.  As alkyne containing 

compounds are the other antagonist components of the click reaction we chose two 

different diacetylene functional compounds namely, 1,4-diethynylbenzene (DEB) 

and 1,10-dipropargyloxy decane (DPD). DPD was synthesized by a simple 

etherification reaction using propargyl bromide while DEB was commercially 

available. 

 

Scheme 4.1 : Synthesis of P(S-co-CMS) and PS-N3. 
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Table 4.1 : Conditions
a
 and results for the synthesis of poly(styrene-co-chloromethyl 

         styrene) (P(S-co-CMS) and  PS-N3. 
 

Code (molL1) Time 

(h) 

Conversionb 

(%) 

Mn,GPC
 c 

(gmol1) 

Mw/Mn
c Copolymer 

compositiond 

(mol %) 

      CMS S 

P(S-co-CMS)-1 8.5  103 22.5 94 88600 2.45 22 78 

P(S-co-CMS)-2 16.8  103 18 87 58200 2.82 18 82 

P(S-co-CMS)-3 28.8  103 8 26 63400 1.83 21 79 

a
 Feed ratio of CMS/S: 0.87 mL/ 4 mL (15/85 mol %), temperature: 60C. 

b
 Determined gravimetrically. 

c
 Determined from GPC measurements based on polystyrene standards. 

d
 Calculated by using 

1
H-NMR spectra. 

 

In the final step, intramolecular cross-linking reaction was performed via Cu(I)-

catalyzed click reaction at room temperature. Solutions of azide functionalized 

copolymers (PS-N3) were added dropwise to the diacetylene containing solutions and 

CuBr/bpy catalyzed triazole formation was accomplished between the azides of PS-

N3 and diacetylene functions of DPD or DEB (Scheme 4.2). The resulting polymers 

were recovered quantitatively by precipitation in methanol and characterized by gel 

permeation chromatography (GPC), FT-IR and 
1
H NMR spectroscopy. The results 

are summarized in Table 4.2. As can be seen, the molecular weights of azide 

functionalized polymers significantly decreased after click reaction which could be 

attributed to the intramolecular cross-linking. Intramolecular click cycloaddition 

leads to an intramolecular collapse of the linear chains.   

The cyclic polymers formed this way exhibit significant reduction in their apparent 

molecular weight (40–50%) with no significant change in polydispersity and 

hydrodynamic volume (Table 4.2). In order to investigate the structural effect on 

hydrodynamic volumes of the polymers, a second set of polymers was prepared by 

using two different click agents with different chain structures, DEB and DPD, 

(Table 4.2, Run 2 and 3). The results showed that decrease in hydrodynamic volume 

of the polymer clicked with DPD was around 50% whereas with DEB this value was 

around 30%. The relatively lower decrease in the hydrodynamic volume obtained in 

the case of DEB may be attributed to its rigid structure arising from the central 

aromatic ring. Moreover, cyclic polymers obtained by using DEB was found to be 

slightly soluble in THF and DMF.  
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Scheme 4.2 : Schematic representation of the preparation of single-chain cross-   

             linked polymer by intramolecular click cycloaddition. 

 

Table 4.2 : Characteristics of polymers obtained after azidation and click reactions. 
 

   After Azidation Reaction After Click Reaction 

Run Precursor 

polymer 

Click 

agent 

%N3 Mn,GPC 

(gmol
1

) 

Mw/Mn Mn,GPC 

(gmol
1

) 

Mw/Mn 

1 P(S-co-CMS)-1 DEB 22 93600 2.3 44300 2.7 

2 P(S-co-CMS)-2 DPD 18 65800 3.5 32200 3.1 

3 P(S-co-CMS)-2 DEB 18 65800 3.5 45700 1.5 

4 P(S-co-CMS)-3 DEB 21 74500 1.5 29800 2.3 

 

One of the cyclic polymers (Table 4.2, Run 1) was chosen in order to confirm the 

occurrence of intramolecular click reaction spectroscopically. As can be seen from 

Figure 4.1 where 
1
H-NMR spectra of the polymers before and after click reaction are 

presented, the methylene protons adjacent to the azido group at 4.2 ppm disappeared 

and the new methylene protons next to the triazole ring appeared at 5.3 ppm. FT-IR 

spectral investigation also confirms the successful click reaction. The band 

corresponding to the N3 group at 2095 cm
1

 completely disappeared after click 

reaction (Figure 4.2). 
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Figure 4.1: 
1
H NMR spectra of a) azide functionalized polymer and           

               b) cyclic polymer in CDCl3. 

 

Figure 4.2: FT-IR spectra of a) P(S-co-CMS)-1, b) PS-N3 and c) cyclic polymer. 
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The GPC traces of P(S-co-CMS)-1 and corresponding cyclic polymer obtained after 

click reaction are shown in Figure 4.3. Expectedly, the molecular weight of cyclic 

polymer is lower than that of the corresponding azide functional precursor.  

 

Figure 4.3: GPC traces of azide functionalized polymer and cyclic polymer. 
 

The glass transition temperatures of PS-N3 and cyclic polymer were measured by 

differential scanning calorimetry (DSC) (Figure 4.4). The Tg value of PS-N3 shifted 

from 95C to 132C after intramolecular click reaction due to the decreased 

segmental chain mobility. Previously, similar shifts were observed in the glass 

transition temperatures of copolyesters after self-crosslinking reactions [12]. 

 

Figure 4.4: DSC thermograms of a) azide functionalized polymer and b) cyclic                        

polymer. 
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Figure 4.5, shows the shear rate dependent viscosities of P(S-co-CMS)-1, PS-N3 

analogue and corresponding cyclic polymer. The data were obtained by using the 

same concentrations (4.2  10
7

 molL
1

) of the samples. As expected, a clear change 

was observed in the viscosities of P(S-co-CMS)-1, PS-N3 and cyclic polymer. The 

decrease of viscosity after cyclic polymer formation can be ascribed to the particle-

like behavior of the polymer rather than a linear macromolecule. 

 

Figure 4.5: Shear rate dependence of viscosity for a) P(S-co-CMS), b) azide     

    functionalized polymer and c) cyclic polymer at 25C. 
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5. CONCLUSIONS AND RECOMMENDATIONS  

In this thesis, demonstrated the use of click reaction as a versatile synthetic route to 

prepare cyclic polymers. Azide functionalized copolymers were intramolecularly 

cross-linked with appropriate diacetylene functional compounds in ultra-dilute 

conditions via click chemistry approach. The structures of obtained particle-like 

structures have been fully characterized 
1
H NMR, FT-IR, GPC and DSC. 
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