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SYNTHESIS OF BLOCK COPOLYMERS BY TRANSFORMATION OF 
DIFFERENT POLYMERIZATION METHODS USING VISIBLE LIGHT 
PHOTOLYSIS 

SUMMARY 

A novel two-step procedure for the preparation of block copolymers by 
transformation ofatom transfer radical polymerization (ATRP) and visible light 
radical photopolymerization (VLRP) methods is investigated. 

In the first step of the procedure, ω-bromide functional polystyrene was synthesized 
by ATRP of styrene  in toluene at 90 oC using ethyl-2-bromopropionate and copper 
bromide/N,N,N′,N′′,N′′-pentamethyldiethylenetriamine as initiator and ligand, 
respectively. Visible light irradiation of these polymers in the presence of 
dimanganese decacarbonyl [Mn2(CO)10] produced macroradicals at ω-chain ends 
capable of initiating radical polymerization of various monomers, namely methyl 
methacrylate, butyl acrylate and vinyl acetate. In this way, depending on the 
termination mode of the monomer involved AB or ABA type block copolymers 
consisting of polystyrene and respective segments were readily formed. The final 
polymers and intermediates at various stages were characterized by 1H-NMR 
spectroscopy and gel permeation chromatography. 

The synthetic conditions of VLRP were mild compared to those of the conventional 
thermal methods. The facile synthetic method is expected to extend to the synthesis 
of other block copolymers via combination of ATRP with free radical promoted 
cationic polymerization. 
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GÖRÜNÜR BÖLGE FOTOLİZİ KULLANILARAK FARKLI 
POLMERİZASYON YÖNTEMLERİNİN DÖNÜŞÜMLERİ İLE BLOK 
KOPOLİMERLERİN SENTEZİ 

ÖZET 

Bu çalışmada atom transfer radikal polimerizasyonu (ATRP) ve görünür ışık radikal 
polimerizasyonunun (VLRP)  transformasyonu ile blok kopolimerlerin elde edilmesi 
için yeni bir prosedür önerilmiştir. 

Prosedürün ilk aşamasında ω-brom fonksiyonel uçlu polistiren 90 oC de toluen içinde 
etil-2-bromopiyonatın başlatıcı, bakır bromür/N,N,N′,N′′,N′′-
pentametildietilentriaminin ligand olarak kullanıldığı sistemde, stirenin ATRP 
reaksiyonuyla elde edildi. Brom uçlu polistiren dimanganez dekakarbonil 
[Mn2(CO)10]  varlığında görünür bölge fotolizi ile bromürü kopartmak suretiyle 
makroradikaller oluşturur. Bu makroradikallerde metilmetakrilat, bütil akrilat, vinil 
asetat gibi radikalik polimerleşen monomerlerin polimerleşmesini sağlar. Bu 
konseptte, sırasıyla polistiren ve diğer polimerlerden oluşan kopolimerler reaksiyon 
sonundaki durumuna göre AB veye ABA tipinde blok kopolimerler olarak elde 
edildi. En son elde edilen polimerlerin yapıları1H-NMR spektroskopisi ve jel 
geçirgenlik kromatografisi yardımıyla aydınlatıldı. 

Görünür ışık radikal polimerizasyonunun reaksiyon koşulları termal polimerizasyona 
göre oldukça ılımlıdır. Bundan dolayı görünür ışık radikal polimerizasyonu serbest 
radikalle yükseltgenmiş katyonik polimerizasyonla birleştirilerek katyonik 
polimerleşen monomerlerle farklı blok kopolimerlerin sentezi içinde uygun olacağı 
beklenmektedir. 
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1. INTRODUCTION 

Block copolymers have become increasingly important in recent years. This 

importance is not only due to their special chemical structures yielding unusual 

physical properties, but also due to the availability of various synthetic methods, 

including recently developed controlled/living polymerizations. Polymerization of 

two or more monomers in a sequential manner using controlled/living 

polymerization methods allows preparation of block copolymer with well-defined 

structures and chain lengths. However, depending on specific targeted applications it 

is often required to combine monomers polymerize by different mechanisms. The 

transformation polymerization appears to be an elegant method to combine diverse 

polymerization mechanisms. This way many monomers with different chemical 

structures can be polymerized to yield block copolymers with novel properties. Many 

different modes of transformation polymerization have been reported [1-11] and 

reviewed [12, 13]. The use of the transformation approach to demonstrate the 

possibility of producing block polymers by combinations of free radical 

polymerization with anionic insertion [14], activated monomer [14, 15], cationic [16-

20], free radical promoted cationic [21-25], and condensation [26] polymerizations 

has been demonstrated previously. Transformations can be achieved not only 

between different polymerization methods, but also by the same mechanism using 

different initiating systems [27]. For example, atom transfer radical polymerization 

(ATRP) can be combined with nitroxide mediated radical polymerization (NMRP), 

both being controlled radical polymerization methods [28-31]. Transformation within 

the same polymerization process is not limited to controlled radical polymerization. 

The approach was easily adapted so that conventional free radical polymerization can 

be combined with controlled radical polymerizations. For example, Matyjaszewski 

and co-workers prepared block copolymers by the combination of ATRP and 

conventional radical polymerization using azo or redox initiators [32].Boutevin and 

coworkers successfully used the same concept by employing trichloromethyl-

terminated azo initiator [33]. In our laboratory, we demonstrated that ATRP could be 

combined with conventional photoinitiated radical polymerization [34]. There are 
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also numerous reports showing that a combination of two radically polymerized 

monomers leads to a block copolymer using conventional radical–radical 

transformation polymerization [35, 36]. In these examples, mostly initiators carrying 

two different radical forming sites were used as transformation agents, i.e., initiators 

containing groups of different thermal activity [37, 38], thermal and photochemical 

activity[39, 40], and redox and thermal activity [41]. Photochemical synthesis of 

block copolymers has a number of technical and theoretical advantages over other 

conventional methods. Because of the applicability at low temperatures, side 

reactions leading to the formation of homopolymers are minimized. Further, the 

reactive sites can be produced at definite positions of macromolecule due to the 

selective absorptivity of chromophores. Various methods for the photochemical 

synthesis of block copolymers have been treated by two review articles[42, 43]. 

In this thesis, a novel route for the synthesis of various AB and ABA type block 

copolymers has been reported by combination of atom transfer radical 

polymerization and visible light radical polymerization. 
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2. THEORETICAL PART 

2.1 Transformation Reactions 

Block copolymers are generally defined as macromolecules in which chemically 

different blocks (or segments) are connected together to combine their macroscopic 

properties and to design hybrid materials [12, 14]. Each segment exerts its character 

or function to the bulk of the copolymers. This way various properties that can be 

improved or combined to give possibility of using block copolymer comptabilizers, 

impact modifiers, surface modifiers, coating materials, antistatic agents and 

adhesives [15, 16]. These materials have attracted increasing attention because of 

their potential application as stabilizers, emulsifiers, dispersing agents, elastomeric 

materials and surfactants as well as in drug delivery, cosmetics and many other 

industrial applications. Traditionally, block copolymers can be synthesized by the 

sequential addition polymerization of different monomer units using the same 

chemistry. Living ionic polymerization is an elegant method for the controlled 

synthesis of block copolymers. However, besides high purity requirements this 

technique is limited to ionically polymerizable monomers and exclude monomers 

that polymerize by other mechanisms. 

In fact, there exists some limitations even for the ionically polymerizable monomers. 

Carrying out the block copolymerization of two ionically polimerizable monomers 

depends critically on the structure and relative rectivity of the ionic species and the 

monomers [17, 18, 21]. Moreover, there is not yet a general acceptable 

polymerization method which is suitable for all monomers. Therefore, the 

application of a single mode polymerization technique for the synthesis of block 

copolymer is severely limited, and suffers from the requirement for care in the order 

of monomer addition. 

In recent years, the development of polymerization processes for a high level of 

control over molar mass, polydispersity and end-group and moleculararchitecture has 

remained a major challenge. The rapid development of metallocene polymerization 
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of olefins and controlled radical polymerization strongly reflects this trend. In order 

to extend the range of monomers for the synthesis of block copolymers, a 

mechanistic transformation approach has been proposed, by which the 

polymerization mechanism could be changed from one to another which is suitable 

for the respective monomers. The pioneering work on the mechanistic transformation 

was originally reported by Burgess et al. three decades ago[19, 24, 44]. 

Transformation reactions are classified on the basis of interconversion between 

propagation mechanisms (Fig. 2.1). It can be seen that between the main living and 

controlled/livingpolymerization methods, transformations are accessiblein both 

directions[45]. 

 

Figure 2.1: Mechanistic transformation in living and living/controlled 
polymerization methods. 

All the research works performed in the area of mechanistic transformation could be 

outlined in two main categories which are divided in subcategories within themselves 

as well: 

 

Direct transformation reactions 
∙Cation to Anion Direct Transformation 

∙ Radical to Cation Direct Transformation 
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Indirect transformation reactions 
 
∙Transformations of Anionic Polymerization to Radical Polymerization 

∙Transformations of Cationic Polymerization to Radical Polymerization 

∙Transformations of Radical Polymerization to Anionic Polymerization 

∙Transformations of Radical Polymerization to Cationic Polymerization 

∙Transformations Involving Anionic and Cationic Polymerization 

∙Transformations Involving Activated Monomer Polymerization 

∙Transformations Involving Metathesis Polymerization 

∙Transformation Involving Ziegler-Natta Polymerization 

∙Transformation Involving Group Transfer Polymerization 

2.1.1 Direct transformation reactions 

The transformation of a polymerization mechanism is carried out at the end of the 

first block segment in the polymerization mixture, which means that the species 

initiated the polymerization mechanism of the first monomer by one mechanism was 

transformed to another mechanism by a redox process without termination and 

isolation as shown below: 

C C C

-2e

+2e

- e - e

+ e + e

 

   (2.1) 

The shortcoming associated with the direct transformation, is the short lifetime of 

propagating sites, particularly radicals. The active center must have a lifetime 

sufficient to permit transformation. Furthermore, a thermodynamic limitation for 

asuccessful redox process may result from unsuitable redox potentials of the 

propagating species and oxidant and reductant. The only successful example of direct 

transformation involving living polymerization methods was reported by Endo for 

the preparation of block copolymers of tetrahydrofuran (THF) with tert-butyl 

methacrylate (t-BMA), e-caprolactone (CL)[22] and d-valerolactone (VL)[23] as 

shown in below: 
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O MeOTf
O

O

TfO

2SmI2

HMPA
O

SmI2

O O

O O-tBu

PTHF-b-PCL PTHF-b-PtBMA  

   (2.2) 

2.1.2 Indirect transformation reactions 

Indirect transformation is more attractive than direct transformations because it can 

be performed much more easily and uses various polymerization modes. As 

illustrated in Fig. 2.2. This type of transformation usually requires multistep 

reactions.The stable but potentially reactive functional group for the second 

polymerization mode is introduced at the chain ends, either in the initiation or the 

termination steps of thepolymerization of the first monomer. The polymer is isolated 

and purified, and finally the functional groups are converted to another species. 

 

Figure 2.2 :  Indirect mechanistic transformation 

As a consequence; using transformation reactions, i.e., combining different 

polymerization mechanisms, novel polymeric materials may be synthesized from 

new and existing monomers. A full range of possible block and graft copolymers 

built from monomers with different chemical structure and accessible through 

transformation reactions. It is clear that the transformation reactions will continue to 

attract interest in the near future because of the possibility of the various newly 

developped living/controlled polymerization mechanisms. It would be possible to 

design and synthesize materials having precise structures with desired properties by 

combination of such mechanisms (2.3). 
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   (2.3) 

2.2 Controlled Radical Polymerization Methods 

Nowadays, radical polymerization is a very useful commercial process for the 

preparation of high molecular weight polymers since it can be employed for the 

polymerization of numerous vinyl monomers under mild reaction conditions, 

requiring an oxygen free medium, but tolerant to water, and can be conducted over a 

large temperature range (-80 to 250oC) [46]. Furthermore, a wide range of monomers 

can easily be copolymerized through a radical route, and this leads to an infinite 

number of copolymers with properties dependent on the proportion of the 

incorporated comonomers. Besides, rigorous process conditions are not needed for 

the polymerization. On the other hand, some important elements of the 

polymerization process that would lead to the well-defined polymers with controlled 

molecular weight, polydispersity, composition, structural architecture, and 

functionality are poorly controlled.  

Advanced structures can be synthesized via living polymerization techniques. 

Moreover, living polymerization techniques allow preparation of macromonomers, 

macro initiators, functional polymers, block, graft copolymers, and star polymers. 

Well known example of these techniques is anionic polymerization [47], which is 

known to allow the synthesis of low PDI materials as well as block copolymers. The 

main disadvantages of anionic polymerization are the limited choice of monomers, 

and the extremely demanding reaction conditions. 

In order to overcome the disadvantages of radical polymerization without sacrificing 

the above-mentioned advantages, it was recognized that a living character had to be 

realized in conjunction with the free-radical mechanism. At present three main 

mechanisms exist that ensure this living character by establishing an equilibrium 

between active (radical) and dormant chains. These are atom transfer radical 

polymerization (ATRP), nitroxide-mediated radical polymerization (NMRP) or 

stable free radical polymerization (SFRP) and reversible addition-fragmentation 

chain transfer polymerization (RAFT). In either of these controlled radical 

polymerization methods (CRP), all chains are started early in the reaction, and are 

allowed to grow throughout the reaction. In general, the result of a successful CRP 
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will be a polymer with low polydispersities, and predetermined (number-average) 

molar mass. 

2.2.1 Atom transfer radical polymerization (ATRP) 

Metal-catalyzed controlled radical polymerization, mediated by Cu, Ru, Ni, and Fe 

metal complexes, is one of the most efficient methods to produce polymers in the 

field of CRP [48]. Among aforementioned systems, copper-catalyzed ATRP in 

conjunction with organic halide initiator and amine ligand received more interest. 

The name ATRP comes from the atom transfer step, which is the key elementary 

reaction responsible for the uniform growth of the polymeric chains. ATRP was 

developed by designing a proper catalyst (transition metal compound and ligands), 

using an initiator with an appropriate structure, and adjusting the polymerization 

conditions, such that the molecular weights increased linearly with conversion and 

the polydispersities were typical of a living process [49]. This allowed for an 

unprecedented control over the chain topology (stars, combs, branched), the 

composition (block, gradient, alternating, statistical), and the end functionality for a 

large range of radically polymerizable monomers [50, 51]. 

 

 
   
(2.4) 

 
 
 

A general mechanism for ATRP is represented by (2.5). The radicals, i.e., the 

propagating species Pn*, are generated through a reversible redox process catalyzed 

by a transition metal complex (activator, Mt
n –Y / ligand, where Y may be another 

ligand or a counterion) which undergoes a one-electron oxidation with concomitant 

abstraction of a (pseudo)halogen atom, X, from a dormant species, Pn–X. Radicals 

react reversibly with the oxidized metal complexes, X–Mt
n+1/ ligand, the deactivator, 

to reform the dormant species and the activator. This process occurs with a rate 

constant of activation, ka, and deactivation kda, respectively. Polymer chains grow by 

the addition of the free radicals to monomers in a manner similar to a conventional 

radical polymerization, with the rate constant of propagation, kp. Termination 

reactions (kt) also occur in ATRP, mainly through radical coupling and 

disproportionation; however, in a well-controlled ATRP, no more than a few percent 



9 
 

of the polymer chains undergo termination. Elementary reactions consisting of 

initiation, propagation, and termination are illustrated below (2.5a-e)[52]. 

Other side reactions may additionally limit the achievable molecular weights. 

Typically, no more than 5% of the total growing polymer chains terminate during the 

initial, short, nonstationary stage of the polymerization. This process generates 

oxidized metal complexes, the deactivators, which behave as persistent radicals to 

reduce the stationary concentration of growing radicals and thereby minimize the 

contribution of termination at later stages [53]. A successful ATRP will have not 

only small contribution of terminated chains but also uniform growth of all the 

chains; this is accomplished through fast initiation and rapid reversible deactivation. 

   

 
 
   (2.5a) 

 

   (2.5b) 
 
 
   (2.5c) 
 
 
   (2.5d) 
 
 
 
   (2.5e) 

As a multicomponent system, ATRP includes the monomer, an initiator with a 

transferable (pseudo)halogen, and a catalyst (composed of a transition metal species 

with any suitable ligand). Both activating and deactivating components of the 

catalytic system must be simultaneously present. Sometimes an additive is used. 

Basic components of ATRP, namely, monomers, initiators, catalysts, ligands, and 

solvents are discussed as follows: 

Monomers 

A variety of monomers have been successfully polymerized using ATRP: styrenes, 

(meth)acrylates, (meth)acrylamides, dienes, and acrylonitrile, which contain 

substituents that can stabilize the propagating radicals [50]. In fact, all vinyl 

monomers are susceptible to ATRP except for a few exceptions. Notable exceptions 
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are unprotected acids (eg (meth)acrylic acid). Some other monomers may be difficult 

to polymerize since they exhibit side reactions, which may be affected by the choice 

of reaction conditions, nature of the catalyst, etc. An example of such a monomer is 

4-vinyl pyridine (4-VP), which can undergo quaternization by the (alkyl halide) 

initiator [54]. Nevertheless, successful polymerization of 4-VP has been reported. 

The most common monomers in the order of their decreasing ATRP reactivity are 

methacrylates, acrylonitrile, styrenes, acrylates, (meth)acrylamides. 

Initiators 

The main role of the initiator is to determine the number of growing polymer chains. 

The initiation in ATRP may occur in one of two different ways. The common way to 

initiate is via the reaction of an activated (alkyl) halide with the transition-metal 

complex in its lower oxidation state. To obtain well-defined polymers with narrow 

molecular weight distributions, the halide group, X, should rapidly and selectively 

migrate between the growing chain and the transition metal complex. Thus far, when 

X is either bromine or chlorine, the molecular weight control is best. Iodine works 

well for acrylate polymerizations in copper-mediated ATRP and has been found to 

lead to controlled polymerization of styrene in ruthenium and ruthenium-based 

ATRP. 

The alternative way to initiate ATRP is via a conventional free-radical initiator, 

which is used in conjunction with a transition-metal complex in its higher oxidation 

state. Typically one would use AIBN in conjunction with a Cu(II) complex. Upon 

formation of the primary radicals and/or their adducts with a monomer unit, the 

Cu(II) complex very efficiently transfers a halogen to this newly formed chain. In 

doing so the copper complex is reduced, and the active chain is deactivated. This 

alternative way of initiation was termed “reverse ATRP” [55]. 

Catalysts  

Perhaps the most important component of ATRP is the catalyst. It is the key to 

ATRP since it determines the position of the atom transfer equilibrium and the 

dynamics of exchange between the dormant and active species. There are several 

prerequisites for an efficient transition metal catalyst. 

1. The metal center must have at least two readily accessible oxidation states   

separated by one electron. 
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2. The metal center should have reasonable affinity toward a halogen. 

3. The coordination sphere around the metal should be expandable on oxidation to 

selectively accommodate a (pseudo) halogen.  

4. The ligand should complex the metal relatively strongly. 

5. Eventually, the position and dynamics of the ATRP equilibrium should be 

appropriate for the particular system. To differentiate ATRP from the conventional 

redox-initiated polymerization and induce a controlled process, the oxidized 

transition metal should rapidly deactivate the propagating polymer chains to form the 

dormant species [56].  

A variety of transition metal complexes with various ligands have been studied as 

ATRP catalysts. The majority of work on ATRP has been conducted using copper as 

the transition metal. Apart from copper-based complexes, Fe [57], Ni [58], Ru [59], 

etc have been used to some extent.  

Ligands 

The main roles of the ligand in ATRP is to solubilize the transition metal salt in the 

organic media and to adjust the redox potential and halogenophilicity of the metal 

center forming a complex with an appropriate reactivity and dynamics for the atom 

transfer. The ligand should complex strongly with the transition metal. It should also 

allow expansion of the coordination sphere and should allow selective atom transfer 

without promoting other reactions. 

The most common ligands for ATRP systems are substituted bipyridines, alkyl 

pyridylmethanimines and multidentate aliphatic tertiary amines such as N,N,N′,N″,N″ 

-pentamethyldiethylenetriamine (PMDETA), and tris[2-(dimethylamino) ethyl]amine 

(Me6-TREN) (Fig. 2.3). Examples of ligands used in copper-mediated ATRP are 

illustrated below [49, 60].  

In addition to those commercial products, it has been demonstrated that 

hexamethyltriethylene tetramine (HMTETA) provides better solubility of the copper 

complexes in organic media and entirely homogeneous reaction conditions [61]. 

Since copper complexes of this new ligand are almost insoluble in water, ATRP 

technique can be employed in preparing poly(acrylate esters) in aqueous suspensions 

[62]. 
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Figure 2.3 :Examples of ligands used in copper-mediated ATRP 

Solvents 

ATRP can be carried out either in bulk, in solution, or in a heterogeneous system 

(e.g., emulsion, suspension). Various solvents, such as benzene, toluene, anisole, 

diphenyl ether, ethyl acetate, acetone, dimethyl formamide (DMF), ethylene 

carbonate, alcohol, water, carbon dioxide, and many others, have been used in the 

polymerization of different monomers. A solvent is sometimes necessary, especially 

when the polymer is insoluble in its monomer (e.g., polyacrylonitrile). ATRP has 

been also successfully carried under heterogeneous conditions in (mini)emulsion, 

suspension, or dispersion.  

2.2.2 Nitroxide-mediated radical polymerization (NMRP) 

Nitroxide-mediated radical polymerization (NMRP) belongs to a much larger family 

of processes called stable free radical polymerizations. In this type of process, the 

propagating species (Pn
·) reacts with a stable radical (X·) as seen in reaction 2.5 [63]. 

The most commonly used stable radicals have been nitroxides, especially 2,2,6,6- 

tetramethylpiperidine-N-oxyl (TEMPO). The resulting dormant species (Pn-X) can 

then reversibly cleave to regenerate the free radicals once again. Once Pn· forms it 

can then react with a monomer, M, and propagate further.  
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     (2.6) 

Two initiation systems have been generally employed in the NMRP. First is a 

bimolecular system consisting of conventional radical initiator such as BPO or 

azoisobutyronitrile (AIBN), and a nitroxide (i.e., TEMPO). The conventional radical 

initiator is decomposed at an appropriate temperature to initiate free-radical 

polymerization. The initiator-monomer adduct is trapped by the nitroxide leading to 

formation of the alkoxyamine in situ. Second is the unimolecular system using the 

alkoxyamine that is decomposed into a nitroxide and an initiating radical. This 

radical subsequently initiates the free-radical polymerization (2.5). By using the 

unimolecular initiator, the molecular weight can be properly controlled, because the 

number of initiating sites per polymeric chain is defined. In addition, functionalized 

unimolecular initiators can afford the fully functional groups at the ends of the 

polymer chain. 

Unfortunately, TEMPO can only be used for the polymerization of styrene-based 

monomers at relatively high temperatures (>120ºC). With most other monomers, the 

bond formed is too stable and TEMPO acts as an inhibitor in the polymerization, 

preventing chain growth.  Numerous advances have been made in both the synthesis 

of unimolecular initiators (alkoxyamines) that can be used not only for the 

polymerization of St-based monomers, but other monomers as well [64-68]. Most 

recently, the use of more reactive alkoxyamines and less reactive nitroxides has 

expanded the range of polymerizable monomers to acrylates, dienes, and acrylamides 

[69-71]. Several nitroxides that have been employed as mediators in stable free-

radical polymerizations [72]. 

2.2.3 Reversible addition–fragmentation chain transfer process (RAFT) 

Reversible addition-fragmentation chain transfer polymerization is one of the most 

efficient methods in controlled/living radical polymerization. An important 

advantage of this method over ATRP and NMRP is its tolerance to a wide range of 

functionalities, namely -OH, -COOH, CONR2, NR2, SO3Na, etc., in monomer and 
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solvent. This provides the possibility of performing the polymerization under a wide 

range of reaction conditions and polymerizing or copolymerizing a wide range of 

monomers in a controlled manner. In contrast to the previously described NMRP and 

ATRP, this system relies on chain transfer for the exchange between active and 

dormant chains. The chain end of a dormant chain carries a thiocarbonylthio moiety, 

which is chain-transfer-active. Upon chain transfer, the thiocarbonylthio moiety is 

transferred to the previously active chain, which now becomes dormant, and the 

previously dormant chain carries the radical activity and is able to propagate. 

There are four classes of thiocarbonylthio RAFT agents, depending on the nature of 

the Z group: (1) dithioesters (Z = aryl or alkyl), (2) trithiocarbonates (Z = substituted 

sulfur), (3) dithiocarbonates (xanthates) (Z = substituted oxygen), and (4) 

dithiocarbamates (Z = substituted nitrogen (Fig. 2.4).  

The RAFT system basically consists of a small amount of RAFT agent and monomer 

and a free-radical initiator. Radicals stemming from the initiator are used at the very 

beginning of the polymerization to trigger the degenerative chain transfer reactions 

that dominate the polymerization. Free radicals affect both the molecular weight 

distribution of the polymer as the dead polymer chains of uncontrolled molecular 

weight are formed and the rate of polymerization. Therefore, the concentration of 

free radicals introduced in the system needs to be carefully balanced. In RAFT 

polymerization radicals may be generated in three different ways: (1) by 

decomposition of organic initiators, (2) by the use of an external source (UV–vis or 

γ-ray), and (3) by thermal initiation. Polymerization temperature is usually in the 

range of 60–80 oC, which corresponds to the optimum decomposition temperature 

interval of the well-known initiator AIBN. However, even room temperature and 

high-temperature conditionscan also be applied [73, 74]. Generally, a RAFT 

agent/free-radical ratio of 1:1 to 10:1 yields polymers with narrow molecular weight 

distributions.  
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Figure 2.4 :Examples of the different classes of thiocarbonylthio RAFT agents. 

The mechanism of RAFT polymerization with the thiocarbonylthio-based RAFT 

agents involves a series of addition–fragmentation steps as depicted below (reaction 

2.6 a-e). As for conventional free-radical polymerization, initiation by decomposition 

of an initiator leads to formation of propagating chains. In the early stages, addition 

of a propagating radical (Pn·) to the RAFT agent [S=C(Z)SR] followed by 

fragmentation of the intermediate radical gives rise to a polymeric RAFT agent and a 

new radical (R·). The radical R· reinitiates polymerization by reaction with monomer 

to form a new propagating radical (Pm·). In the presence of monomer, the 

equilibrium between the active propagating species (Pn· and Pm·) with the dormant 

polymeric RAFT compound provides an equal probability for all the chains to grow. 

This feature of the RAFT process leads to the production of narrow polydispersity 

polymers. When the polymerization is complete, the great majority of the chains 

contain the thiocarbonylthio moiety as the end group (reaction 2.6e) which has been 

identified by 1H-NMR and UV–vis spectroscopy [75]. Additional evidence for the 

proposed mechanism was provided by the identification of the intermediate thioketal 

radical ((A) and/or (B), reaction 2.6b,d) by ESR spectroscopy [76, 77]. 
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(2.6a) 
 
 
 
(2.6b) 
 
 
 
(2.6c) 
 
 
 
 
(2.6d) 
 
 
 
 
(2.6e) 

2.3 Photoinitiating Systems 

Photochemistry is concerned with chemical reactions induced by optical radiation 

[78-80]. The radiation is most often ultraviolet (200–400 nm) or visible (400–800 

nm) light but is sometimes infrared (800–2500 nm) light.  

The chemical moiety, like phenyl rings or carbonyl groups, responsible for the 

absorption of light and defined to as chromophoric groups. Typical chromophores 

contain unsaturated functional groups such as C=C, C=O, NO2, or N=N [81-84]. 

Absorption of a photon of light by any compound causes electronic excitation. The 

energy causing excitation, E, is described by E=hc/ where h is Planck’s constant, c 

is the speed of light, and ‚ is the wavelength of the exciting light. Light absorption is 

described by A= Cl, where  is the molar absorptivity (extinction coefficient), C is 

the concentration of the species, and l is the light path length. 

A photoinitiator is a compound that, under absorption of light, undergoes a 

photoreaction, producing free radicals. These species are capable of initiating the 

polymerization of suitable monomers. Photoinitiators are generally divided into two 

classes according to the process by which initiating radicals are formed.  
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Compounds which undergo unimolecular bond cleavage upon irradiation as shown in 

reaction 2.7 are termed as Type I photoinitiators [85]. 

 

(2.7) 

If the excited state photoinitiator interacts with a second molecule (a coinitiator) to 

generate radicals in a bimolecular reaction as shown in reaction 2.8, the initiating 

system is termed as “Type II Photoinitiator” [85].  

 

(2.8) 

Efficient photoinitiators of both classes are known and find everyday usage. Type I 

photoinitiators are highly reactive UV photoinitiators, but are less frequently used in 

visible light curing systems. Type II photoinitiators are versatile initiators for UV 

curing systems and visible light photoinitiators belong almost exclusively to this 

class of photoinitiators. 

2.3.1 Type I photoinitiators (Unimolecularphotoinitiator systems) 

Photoinitiators termed unimolecular are so designated because the initiation system 

involves only one molecular species interacting with the light and producing free-

radical active centers.These substances undergo a homolytic bond cleavage upon 

absorption of light.Type I photoinitiators which undergo a direct photofragmentation 

process (α or less common β cleavage) upon absorption of light and formation of 

initiating radicals capable of inducing polymerization. 

 

 
 
(2.9) 

 
 
 
 

(2.10) 
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Photoinitiators Structure λmax (nm) 

 
Benzoinethers 

 

323 

Benzilketals 

 

365 

Acetophenones 
 

 

340 

Benzyloximes 

 

335 

Acylphosphineoxides 

 

380 

Aminoalkylphenones 
 

C

O

C

R2

R2

R3

R1 = SCH3, morpholine
R2 = CH3, CH2Ph or C2H5
R3 = N(CH3)3, morpholine

R1

 

320 

 

As illustrated in reactions 2.9 and 2.10, the photoinitiator is excited by absorption of 

ultraviolet light and rapid intersystem crossing to the triplet state. In the triplet state, 

the bond to the carbonyl group is cleaved, producing an active benzoyl radical 

fragment and another fragment. The benzoyl radical is the major initiating species, 

while, in some cases, the other fragment may also contribute to the initiation. The  

Table 2.1 : Structures of typical Type I radical photoinitiators
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most  efficient  Type  I initiators are benzoin  ether derivatives,  benzil  ketals,  

hydroxylalkylphenones, α-aminoketones and acylphosphine oxides (Table 2.1) [86-

89]. 

2.3.2 Type II photoinitiators (Bimolecular photoinitiator systems) 

Bimolecular photoinitiators are so-called because two molecular species are needed 

to form the propagating radical: a photoinitiator that absorbs the light and a co-

initiator that serves as a hydrogen or electron donor. These photoinitiators do not 

undergo Type I reactions because their excitation energy is not high enough for 

fragmentation, i.e., their excitation energy is lower than the bond dissociation energy. 

The excited molecule can, however, react with co-initiator to produce initiating 

radicals. In this case, radical generation follows 2nd order kinetics.In these systems, 

photons are absorbed in the near UV and visible wavelengths. Free radical active 

centers are generated by hydrogen abstraction or photo-induced electron transfer 

process aforementioned.  

Hydrogen abstraction 

Photoinitiators that proceed via a hydrogen abstraction mechanism are exemplified 

by combination of benzophenone and a hydrogen donor (reaction 2.11). When R-H 

is an amine with transferable hydrogen, benzophenone undergoes an electron transfer 

followed by a hydrogen abstraction to produce an initiating species and semipinacol 

radical. The semipinacol radical does not efficiently initiate polymerization and 

typically react with other radicals in the system as a terminating species causing a 

reduction in the polymerization rate. 

 

 

(2.11) 

Photosensitizers of Type II system including benzophenones, thioxanthones, 

camphorquinones, benzyls, and ketocoumarins are listed in Table 2.2.  

 

 



20 
 

Photosensitizers Structure 
λmax 
(nm) 

Benzophenones 

 

335 

Thioxanthones 

 

390 

Coumarins 

 

370 

Benzils 

 

340 

Camphorquinones 

 

470 

 

The co-initiators such as an amine, ether, thiol or alcohol with an abstractable α-

hydrogen are also classified in Table 2.3. 

 

 

 

 

 

 

Table 2.2 : Structures of typical Type II photosensitizers 
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Hydrogen 
Donors 

Structure 

Aliphatic 
Amines 

 

Aromatic 
Amines 

 

Polymeric 
Amines 

 
Dendrimeric 

Amines 

 
Acrylated 
Amines 

 
Alcohols 

 
Ethers 

 
Thiols 

 

 

Photoinduced electron transfer reactions and subsequent fragmentation 

Photoinduced electron transfer is a more general process which is not limited to a 

certain class of compounds and is more important as an initiation reaction 

comprising the majority of bimolecular photoinitiating systems. The photoexcited 

compounds (sensitizer) can act as either an electron donor with the coinitiator as an 

electron acceptor or vice-versa. The radical ions obtained after the photoinduced 

Table 2.3 :Structures of typical Type II hydrogen donors 
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electron transfer can generally undergo fragmentation to yield initiating radicals 

(reaction 2.12). 

PS
hv

PS*

PS* + A

PS* + D

PS + A

PS + D

R1 + R2

R1 + R2  

(2.12a) 

(2.12b) 

(2.12c) 

2.4 Photochemistry of Dimanganese Decacarbonyl 

Metal carbonyl complexes are one of the mostphotoreactive transition metal 

complexes among known, and studies of the photochemistry of metal carbonyls and 

their derivatives acquaint to researcher. Reviewsof metal carbonyls are 

numerous[90], but only a few deal specifically with excited-state processes[91-93]. 

All metal carbonyl photoprocesses include electronic absorption phenomena, 

luminescence, non-radiative decay, energy transfer, and chemical reaction. The use 

of light as a synthetic tool in this field became important in the late 1950's and early 

1960's, and the last substantial review of the photochemistry appeared in 1969[91]. 

The commercially available metal carbonyl complexes of manganese have the 

formula [Mn2(CO)10] with the structure shown in Figure 2.5. 

 

Figure 2.5 :Chemical structure of dimanganese decacarbonyl. 

In recent years, for the use of photopolymerization systems in expanded and 

environmental-friendly applications, some disadvantages needs to be overcome. The 

most important drawback is related to the limited availability of photoinitiators that 

can act in the low energy light emitted by the light sources. Photoinitiators that can 

produce active centers upon irradiation by the visible light can provide 

polimerizations to occur under sunlight without the need of an additional light 

source. In this respect, dimanganese decacarbonyl [Mn2(CO)10] metal complex 

provides many advantages since it photolysis easily upon sunlight irradiation to give 

intermediates that abstracts halogenides to produce radical centers. The highly active, 
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versatile, and photoresponsive controlled/living radical polymerizations[94] were 

developed using [Mn2(CO)10] coupled with an alkyl halide initiator (R-X) under 

weak visible light according to Bamford pioneered to about dimanganese 

decacarbonyl studies (Figure 2.6).[95, 96] 

 

Figure 2.6 :Visible light-induced decomposition of dimanganese decacarbonyl with 
alkyl halide. 

Dimanganese decacarbonyl is also used various photopolymerization applications. 

For example, Yagci reported the cationic polymerization of cyclohexene oxide on 

photolysis of Mn2(CO)10 in halogenated solvents, in combination with an onium salt, 

which resulted in a new method for initiating cationic polymerization (reaction 

2.13)[27].In this concept, photoinitiated cationic polymerization yielded low 

molecular weight polymer and relatively narrow polydispersity but this was coupled 

with low conversion. The resulting cations can directly react with the monomer. 

 

 

 
(2.13a) 
(2.13b) 

 
 

(2.13c) 
 
 

(2.13d) 
 

 
 

 

Hudson and co-workers have also investigated a heterogeneous graft 

copolymerization using Mn2(CO)10 as the initiator [97]. 

The controlled/living radical polymerization of vinyl acetate (VAc) and its 

copolymerization with methyl acrylate (MA) were investigated by Kamigaito and 

coworkers in bulk or fluoroalcohols using dimanganese complex [Mn2(CO)10] in 
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conjunction with an alkyl iodide (R-I) as an initiator under weak visible light. The 

dimanganese complex induced the controlled/ living radical polymerization of vinyl 

acetate even in the fluoroalcohols without any loss of activity[94]. The R-

I/Mn2(CO)10 system was also effective for the copolymerization of methyl acrylate 

and vinyl acetate, in which methyl acrylate was consumed faster than vinyl acetate, 

and then the remaining vinyl acetate was continuously and quantitatively consumed 

after the complete consumption of methyl acrylate. 

 
Dimanganese decacarbonyl has been also used in thermolysis process (2.14). In this 

concept, for example [Mn2(CO)10] initiates the radical polymerization of methyl 

methacrylate in the presence of a variety of organic halides including C6H5CH2Br, 

Me2C(Br)-CO2Et, BrCH2C(Br)=CH2, and ClCH2C(Cl)=CH2 in toluene at 60-90 

°C[34]. 

 
(2.14) 

As a result of these applications, various macromolecular architectures can 

successfully be synthesized in the presence of the highly active, photoresponsive and 

thermoresponsive dimanganese decacarbonyl with alkyl halide complexes. 
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3. EXPERIMENTAL WORK 

3.1 Materials and Chemicals 

3.1.1 Reagents for synthesis of block copolymers 

Dimanganese decacarbonyl (Aldrich): It was purified by sublimation and stored in a 

refrigerator in the dark.  

Styrene (St; 99%, Aldrich): Styrene was passed through a basic alumina column to 

remove the inhibitor prior to use. 

Butyl acrylate (BA; ≥99%, Aldrich): Butyl acrylate was passed through a basic 

alumina column to remove the inhibitor prior to use. 

Vinyl acetate (VAc; ≥99%, Acros): Vinyl acetatewas distilled under reduced pressure 

and stored under nitrogen. 

Methyl methacrylate (MMA, 99%, Aldrich): Methyl methacrylatewas passed through 

a basic alumina column to remove the inhibitor. 

Methyl acrylate (MA, 99%, Aldrich): Methyl acrylatewas passed through a basic 

alumina column to remove the inhibitor. 

3.1.2 Solvents 

Toluene (Aldrich 99%): Toluene was dried with calcium chloride and distilled over 

sodium wire.  

Methanol (Technical): Methanol was used for the precipitation of polymers without 

further purification. 

Tetrahydrofuran (THF) (99.8%, J.T.Baker): Tetrahydrofuran was used as received. 

Dichloromethane (99.8%, J.T.Baker ): It was first washed with conc. sulfuric acid 

until the acid layer remained colorless, and then with water, followed by another 

washing with 5% sodium hydroxide (aq.) and finally with water again. It was dried 

with calcium chloride and distilled over calcium hydride. It was stored over 

molecular sieves for use as a solvent in the photopolymerization experiments. 
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3.1.3 Other chemicals and reagents 

Ethyl-2-bromopropionate (>99%, Aldrich): Itwas used as a initiator, was used 

received. 

N, N, N′, N′′, N′′ -Pentamethyldiethylene triamine (PMDETA, Aldrich):  PMDETA 

was used as a ligand, was distilled before used. 

Copper bromide (CuBr, 98%, Acros): It was used as received. 

3.2 Equipments  

3.2.1 Light Source 

Dental LED lamp (Bluephase) supplied by IvoclarVivadent Company. The 

wavelength range is 430–490 nm and maximum light performance is 1110 mW cm-2 

±10%. 

3.2.2 
1H-Nuclear magnetic resonance spectroscopy (

1H-NMR) 

1H-NMR spectra of 5–10 % (w/w) solutions in CDCl3 with Si(CH3)4 as an internal 

standard were recorded at room temperature at 250 MHz on a Bruker DPX 250 

spectrometer.  

3.2.3 Gel permeation chromatography (GPC) 

Gel permeation chromatography (GPC) measurements were obtained from a 

Viscotek GPCmax Autosampler system consisting of a pump, a Viscotek UV 

detector and Viscotek a differential refractive index (RI) detector. Three ViscoGEL 

GPC columns (G2000HHR, G3000HHR and G4000HHR), (7.8 mm internal diameter, 

300 mm length) were used in series. The effective molecular weight ranges were 

456–42,800, 1050–107,000, and 10,200–2,890,000, respectively. THF was used as 

an eluent at flow rate of 1.0 mL min-1 at 30C.  Both detectors were calibrated with 

PSt standards having narrow molecular weight distribution. Data were analyzed 

using ViscotekOmniSEC Omni-01 software.  Molecular weights of polymers were 

calculated with the aid of polystyrene standards. 

 

 



27 
 

3.3 Preparation Methods 

3.3.1 General procedure for atom transfer radical polymerization 

Monomer (St, 87.3 mmol), ligand (PMDETA, 0.87 mmol), catalyst (CuBr, 0.87 

mmol), initiator (ethyl-2-bromopropionate, 0.87 mmol) and deoxygenated solvent 

(toluene) were added, consecutively, to a Schlenk tube equipped with a magnetic 

stirring bar. The tube was degassed by three freeze-pump-thaw cycles, left under 

vacuum, and placed in a thermostated oil bath (110 oC) for 25 minutes. After the 

polymerization, the reaction mixture was diluted with tetrahydrofuran (THF) and 

then passed through a column of neutral alumina to remove metal salt. The excess of 

THF and unreacted monomer were evaporated under reduced pressure. The resulted 

polymer, bromo -end-functionalized polystyrene (PSt-Br), was dissolved in a small 

amount of THF, and precipitated in ten-fold excess methanol. The polymer was dried 

under vacuum at room temperature (Yield %= 17.0; Mn,GPC = 2090 g·mol-1; Mw/Mn = 

1.12).  

3.3.2 General procedures for visible light radical polymerization 

A typical photopolymerization procedure is as follows.Mn2(CO)10 (9.2 mg, 2.310-5 

mol) and 0.5 mL of MMA (4.710-5 mol) were added to a solution of PSt-Br (16 mg, 

7.710-6 mol) in 0.25 mL of deoxygenated toluene in a Pyrex tube. The solution was 

flushed with nitrogen for 4-5 min. The reaction tube was sealed off and irradiated 

with a dental LED lamp (Bluephase) supplied by Ivoclar Vivadent Company. The 

wavelength range is 430–490 nm and maximum light performance is 1110 mW cm-2 

±10%.  At the end of one-hour irradiation, the polymerization solution was poured 

into cold methanol. The precipitated polymer was filtered off and dried in vacuo  

(Yield % = 5.8; Mn,GPC = 5530 g·mol-1; Mw/Mn = 1.64). Similarly, VLRP of BA, VAc 

and St were also carried out using Mn2(CO)10 and PSt-Br under same conditions (See 

Table 4.1 for details). 
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4. RESULTS AND DISCUSSION 

About four decades ago, Bamford demonstrated that carbon-centered radicals were 

formed upon irradiation (λ = ca. 436 nm) of organic halides in the presence of 

dimanganese decacarbonyl, Mn2(CO)10.[98-101] Upon absorption of light, 

Mn2(CO)10 decomposes to Mn(CO)5 (4.1). The latter reacts with the terminal halide 

group yielding initiating alkyl radicals. Both bromine and chlorine compounds are 

found to be effective, and there is no initiation when no halide is present.  

 

(4.1a) 
 

(4.1b) 
 

(4.1c) 

Such visible light initiation was successfully employed in the synthesis of various 

graft and block[102, 103] copolymers even in heterogeneous conditions[97] by using 

prepolymers possessing suitable side- and end-chain halide functionality. Recently, 

this system in conjunction with certain additives has been used as an initiating 

system for controlled/living radical polymerizations.[94, 104-106] Due to the 

possibility of generation of electron donor radicals, this system was also used for 

visible light free radical promoted cationic polymerization of structurally different 

monomers such as vinyl ethers and epoxides [27]. 

Among various controlled radical polymerization methods, ATRP seems to be the 

most versatile method because of its simplicity and applicability to a wide range of 

monomers.[50, 107]Moreover, it provides many possibilities in structural and 

architectural design and allows the development of new products with monomers 

currently available. ATRP involves reversible homolytic cleavage of a carbon-

halogen bond by a redox reaction between an organichalide (Pn-X) and a transition 

metal, such as copper(I) salts (4.2) [108]. 
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(4.2) 
 
 

Polymers obtained by ATRP contain terminal halide groups, which can be activated 

by the Mn2(CO)10. Thus, ATRP of styrene initiated by ethyl-2-bromopropionate, 

using CuBr/PMDETA catalytic system was performed. As the bromide functional 

polystyrene (PSt-Br) was intended to be used in the subsequent photoinitiation 

process, the conditions of ATRP (high concentration of initiator – 0.09 mol·L-1 and 

short reaction time - 25 minutes) were deliberately selected so as to obtain a low 

molecular weight polymer, combined with a satisfactory conversion and 

polydispersity. The low molecular weight polymer would also provide better spectral 

characterization, particularly for the halide end group that is crucial for the 

photoinitiating system described.  Accordingly, in this reaction stage the 

macroinitiator (PSt-Br, Mn=2090 g·mol-1, Mw/Mn = 1.12) possessing one reactive 

bromide group at the chain end was obtained. Subsequently, this macroinitiatorwas 

used to initiate the free radical polymerization of vinyl monomers through visible 

light irradiation at room temperature. Since PSt-Br does not absorb at the irradiation 

wavelength, λ = 436 nm, all the light is absorbed by Mn2(CO)10. Mn(CO)5 formed 

from the photodecomposition of the excited state of Mn2(CO)10 abstracts bromine 

atom from the macroinitiator, PSt-Br, to generate polymeric radicals capable of 

initiating the polymerization of the second monomer. The overall process is 

represented in 4.3 on the example of the preparation of styrene-methyl methacrylate 

block copolymer.  

 

 
(4.3a) 

 
 
 

(4.3b) 
 

 

All of the monomers were polymerized effectively yielding the corresponding block 

copolymers (Table 4.1).  As seen in Figure 4.1, unimodal GPC traces with a small 
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shoulder are observed. Shifts to higher molar mass for all polymers are also found. 

The conversions, molecular weights and distributions are strongly related to the 

structure and reactivity of polystyryl radical to the monomers employed in the 

photoinitiated polymerization step. Similar dependency was also observed by 

Kamigaito and coworkers [105]. Generally, molecular weight distributions were 

higher than those obtained by controlled radical polymerization methods. However, 

due to the room temperature conditions, except butyl acrylate (BA) polymerization, 

these values are still low compare to that obtained by conventional thermally induced 

free radical polymerization. Under certain conditions[34], Mn2(CO)10 based initiating 

systems yield polymers with relatively low molecular weight distributions. Much 

higher molecular weight and its distribution observed in the case of BA may be 

attributed the high propagation rate constant of this particular monomer [109]. In 

order to confirm the efficiency of the photoinitiating system we also used St 

monomer in the second stage. After the photolysis, the molecular weight of 

polystyrene doubled as a result of successful chain extension via VLRP.  

Polymera 
Monomer  

(mol·L-1) 

kp 
b 

(L·mol-1·s-1) 

Conv. 

 (%) 

Mn 
c
 

(g·mol-1) 
PDIc 

Comp. 
(mol % PSt) 

PSt 
Std 

(5.83) 
187 6.0 4850 1.15 100 

PSt-b-

PMMA 

MMA  

(6.03) 
450 5.8 5530 1.64 61 

PSt-b-

PVAc 

VAc 

 (7.24) 
117 6.7 2990 1.13 57 

PSt-b-PBA 
BA  

(4.68) 
679 7.7 22500 3.36 14 

a Polymer acronyms: PSt; polystyrene, PMMA; poly(methyl methacrylate), PVAc; poly(vinyl acetate), 
PBA; poly(butyl acrylate). 
b From Polymer Handbook.[109] 
c Number-average molecular weights (Mn,) and polydispersities (PDIs) were determined using gel 
permeation chromatography. 
d Chain extension. 

 

Table 4.1 : Visible light induced block copolymerization of various monomers (0.5 
mL) using PSt-Br (Mn=2090 g·mol-1, Mw/Mn = 1.12, 16 mg, 7.710-
6mol) and Mn2(CO)10 (9.2 mg, 2.310-5mol) in toluene (0.25 mL) at 
λ = ca. 430 nm. 
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Conventional free-radical polymerization of methacrylate monomers terminates 

mainly by a disproportionation process[42], which in the present polymerization 

system results in the formation of AB block copolymers, PSt-b-PMMA.[110] 

However, any preference for a combination termination mechanism would 

[12]eventually yield ABAblock structure. The structure of the block copolymers was 

confirmed by 1H-NMR analysis. As shown in Figure 4.2, the 1H-NMR spectra of the 

block copolymers exhibit characteristic resonances of both PSt and the block 

segments. 

 

 

Figure 4.1 : Gel permeation chromatography traces of block copolymers 
synthesized by visible light induced block copolymerization of 
various monomers (0.5 mL) using -bromo-functionalized 
polystyrene (PSt-Br, Mn=2090 g·mol-1, Mw/Mn = 1.12, 16 mg, 
7.710-6 mol) and Mn2(CO)10 (9.2 mg, 2.310-5 mol) in toluene 
(0.25 mL) at λ = ca. 430 nm: PSt-Br (a); polystyrene by chain 
extension (PSt) (b); polystyrene-b-poly(methyl methacrylate) (PSt-b-
PMMA) (c); polystyrene-b-poly(vinyl acetate) (PSt-b-PVAc) (d); 
polystyrene-b-poly(butyl acrylate) (PSt-b-PBA) (e). 
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Figure 4.2 : 1H-NMR spectra of block copolymers of methyl methacrylate (b), vinyl 
acetate (c) and butyl acrylate (d) and their precursor polystyrene (a) 
in CDCl3 (See Figure 4.1 for the block copolymerization conditions). 
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5. CONCLUSION AND SUGGESTIONS 

In conclusion, although these results are preliminary in nature, they clearly indicate 

that block copolymers can successfully be synthesized by combination of ATRP and 

VLRP processes. The synthetic approach described here was quite facile, since at 

least in principle, any polymer obtained by ATRP could be used as macroinitiator for 

the VLRP of a second monomer to yield corresponding block copolymers. The 

synthetic conditions of VLRP were mild compared to those of the conventional 

thermal methods. The facile synthetic method is expected to extend to the synthesis 

of other block copolymers via combination of ATRP with free radical promoted 

cationic polymerization. It is well established that the radicals stemming from the 

photolysis of organic halides in the presence of Mn2(CO)10 can readily be oxidized to 

the corresponding cations by suitable oxidants. The described method can also be 

used for the VLRP of bifunctional monomers using polymers obtained by ATRP 

leading to the formation of networks with dangling chains. Further studies in these 

lines are now in progress. 
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