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PERFECTLY DESIGNED AMPHIPHILIC POLYPHENYLENES BY 
COMBINATION OF CONTROLLED POLYMERIZATION AND SUZUKI 
COUPLING PROCESSES 

SUMMARY 

Poly(phenylene) (PP) and its derivatives are a promising class of high-performance 
polymers because of their excellent thermal and mechanical properties. PP is used as 
a coating material in the packaging industry to protect integrated circuits from 
breakage, humidity, and corrosion.  

As PPs are insoluble in many organic solvents, which limit their processability, 
attachment of conformationally mobile alkyl side chains to the backbone has been 
important because it has allowed the controlled synthesis of soluble and processable 
polymers with high molecular weight. On combining a stiff, insoluble, rod-like 
polymer such as PP with a soft coil, for example polystyrene (PSt), it is possible to 
form a new polymer with novel and interesting properties. 

In this study, different types of new macromonomers were synthesized by using 
controlled polymerization methods. We have selected four different methods namely, 
Atom Transfer Radical Polymerization (ATRP), Reversible Additon-Fragmentation 
Chain Transfer (RAFT) polymerization, Controlled Ring Opening Polymerization 
(CROP) and etherification reaction, because of their versatility to prepare well-
defined macromolecular structures. Among these macromonomers, the polyethylene 
oxide macromonomer, prepared by etherification reaction, was used as the 
representative polymer to demonstrate the macromolecular architecture to form 
conjugated polymers with alternating side chains. Independently, boronic ester type 
macromonomer of polystyrene was synthesized by ATRP. The two process allowed  
to link directly bromine atoms or boronic ester functionalities to a benzene ring of 
the polymer chain end, useful for the Suzuki type polycondesation. 

In the final stage, the preparation amphiphilic polyphenylene possessing completely 
and perfectly alternating hydrophilic poly(ethylene oxide) and hydrophobic 
polystyrene side chains was performed. Experimentally, hydrophilic Ar(Br2)-PEO 
type macromonomer and hydrophobic Ar(BO2C3H6)-PSt macromonomer were 
reacted via for Suzuki-type polycondensation in the presence Pd(PPh3)4 as catalyst to 
form desired amphiphilic copolymer. The structure and molecular weight of the 
intermediates and the polymers formed at various stages were confirmed by spectral 
analysis and gel permeation chromatography.  
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KONTROLLÜ POLİMERİZASYON VE SUZUKİ KENETLENME PROSESİ 
İLE MÜKEMMEL DİZAYN EDİLMİŞ AMFİFİLİK POLİFENİLENLER 

ÖZET 

Polifenilenler ve türevleri, mükemmel termal ve mekanik özelliklerinden dolayı 
yüksek teknoloji polimerlerin önemli bir sınıfını oluştururlar. Polifenilenler elektrik 
devrelerini kırılma, nem ve korozyondan korumak için kaplama malzemesi olarak 
kullanılırlar.  

Polifenilenlerin birçok organik çözücüde çözünmemesi işlenebilirliklerini kısıtlayıcı 
rol oynar. Bu yüzden, ana zincire hareketli alkil yan zincirlerinin eklenmesi, çözünür 
ve işlenebilir yüksek molekül ağırlıklı polimerlerin kontrollü sentezine izin vermesi 
yönünden önem kazanmıştır. Sert, çözünmez, çubuk şeklindeki Polifenilenlere 
yumuşak bir Polistiren grubunun eklenmesiyle tamamen yeni özelliklere sahip bir 
polimerin sentezi mümkün olabilir. 

Bu çalışmada, kontrollü polimerizasyon metodları ile farklı, yeni makromonomerler 
sentezlenmiştir. İyi bilinen makromoleküler yapılar, çok yönlüdür. Bu sebeple dört 
farklı metod ile, sırasıyla atom transfer radikal polimerizasyonu, tersinir katılma-
ayrılma transfer polimerizasyonu, katyonik zincir açılma polimerizasyonu ve 
eterifikasyon reaksiyonu ile hazırlanmıştır. Bu makromonomerler arasında, 
polietilenoksit makromonomeri eterifikasyon reaksiyonu ile hazırlanmış olup, 
makromoleküler yapıyı kanıtlamak için polimerde kullanılarak  konjuge polimerler 
ile alterne yan zincirler oluşturuldu. Bağımsız olarak, polistirenin boronik ester tipli 
makromonomeri ATRP ile sentezlendi. İki proses, brom ve boronik ester 
fonksiyonalitelerin polimer zincirine benzen halkası ile doğrudan bağlanmasına izin 
vererek Suzuki polikondensazyon reaksiyonunda kullanıldı. 

Finalde, hazırlanan amfifilik polifenilen tamamamen ve mükemmel alterne hidrofilik 
polietilenoksit ve hidrofobik polistiren yan zincirler olarak tanımlanmıştır. Deneysel 
olarak, hidrofilik Ar(Br2)-PEO tipli  makromonomer ve hidrofobik Ar(BO2C3H6)-PSt  
makromonomer Pd(PPh3)4 kataliz varlığında reaksiyonuna girerek Suzuki 
polikondensazyon reaksiyonu ile amfifilik kopolimer oluşturuldu. Ara yapılar ve 
polimerlerin yapıları çeşitli evrelerde spektral analiz ve jel geçirgenlik kromatografisi 
ile onaylandı. 



  xx

 
 



  1

1. INTRODUCTION 

Conjugated polymers are of considerable academic and industrial interest as active 

materials in devices such as waveguides, fluorescent chemical sensors, 

photoconductors, organic light-emitting diodes (OLEDs), and the most promising 

new applications such as flexible displays. Among the conjugated polymers, 

polythiophenes, polycarbazoles, poly(phenylene vinylene)s, and PPs have attracted 

particular interest as blue electroluminescent polymers due to their high quantum 

yield and good charge transport properties.  In earlier studies, the low solubility of 

the PPs limited the processability for device fabrications. Introduction of substituents 

on the PP backbone is an alternative method to improve solubility; however, the 

repulsion of the side group forces the phenyl rings to a nonplanar conformation [1]. 

Amphiphilic polyphenylene have been synthesized via Suzuki polycondensation 

method in the presence of Pd(PPh3)4 as catalyst. In order to improve the solubility, by 

adopting this method to polymer synthesis, a series of functionalized PP has been 

reported by Wegner et al. Moreover, PPs containing hydrophilic Ar(Br2)-PEO and 

hydrophobic Ar(BO2C3H6)-PSt side chains in common organic solvents at room 

temperature were obtained, too. 

New synthetic methods for introducing functional groups at specific location at either 

chain ends or along the backbone are emerging as powerful tools for the construction 

of these architectures. Considerable effort has recently been devoted to the 

controlled/’living’ polymerization methods, which permitted to obtain nearly 

unlimited control of the polymer is composition, architecture and functionality. The 

methods of controlled/living radical polymerization (CRP) developed in the past 

decade allow the synthesis of not only copolymers with predetermined molecular 

weight and narrow molecular weight distribution but also with high functionality and 

desired microstructure. The most versatile methods of controlled radical 

polymerization are atom transfer radical polymerization (ATRP), nitroxide mediated 

polymerization (NMP), cationic ring opening polymerization (CROP) and reversible 

addition-fragmentation chain transfer polymerization (RAFT). 



  2

Our studies focused on the synthesis of amphiphilic PP by using macromonomers 

prepared by controlled polymerizations (ATRP, RAFT, CROP) and etherification 

reaction. These methods were elegantly combined with metal-catalyzed Suzuki 

polycondensation, specific to the obtainment of soluble conjugated polymers. 
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2. THEORETICAL PART 

2.1 Controlled Polymerization Methods 

Living polymerization was first defined by Szwarc [1] as a chain growth process 

without chain breaking reactions (transfer and termination). While such a 

polymerization provides end-group control and enables the synthesis of block 

copolymers by sequential monomer addition, it does not necessarily provide 

polymers with molecular weight (MW) control and narrow molecular weight 

distribution (MWD). Additional prerequisites to achieve these goals include that the 

initiator should be consumed at early stages of polymerization and that the exchange 

between species of various reactivities should be at least as fast as propagation [2-4]. 

It has been suggested to use a term “controlled polymerization” if these additional 

criteria are met. A controlled polymerization can be defined as a synthetic method 

for preparing polymers with predetermined molecular weights, low polydispersity 

and controlled functionality. Transfer and termination, which often occur in real 

systems, are allowed in a controlled polymerization if their contribution is 

sufficiently reduced by the proper choice of the reaction conditions such that 

polymer structure is not affected. 

Among the controlled polymerization methods such as radical, cationic, group 

transfer, the former will be discussed in the following part, as the present thesis 

involves the use of controlled radical polymerization method in the experimental 

section. 

2.1.1 Controlled radical polymerization (CRP) 

Radical polymerization (RP) is a very convenient commercial process for the 

preparation of high molecular weight polymers since it can be employed for the 

polymerization of numerous vinyl monomers under mild reaction conditions, 

requiring an oxygen free medium, but tolerant to water, and can be conducted over a 

large temperature range (-80 to 250 oC) [5]. Furthermore, many monomers can easily 

be copolymerized through a radical route, and this leads to an infinite number of 
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copolymers with properties dependent on the proportion of the incorporated 

comonomers. One of the main disadvantages of RP is the poor control over the 

microstructure of the synthesized macromolecules. This includes the relatively high 

polydispersity index (PDI), 1.5 or 2.0, and also the practical impossibility to 

synthesize block copolymers, and other advanced structures.  

Advanced structures can be synthesized via living polymerization techniques. 

Notable example of these techniques is anionic polymerization [6], which is known 

to allow the synthesis of low PDI materials as well as block copolymers. The main 

disadvantages of anionic polymerization are the limited choice of monomers, and the 

extremely demanding reaction conditions. 

In order to overcome the disadvantages of RP without sacrificing the above-

mentioned advantages, it was recognized that a living character had to be realized in 

conjunction with the free-radical mechanism. Thus, we have witnessed a real 

explosion of academic and industrial research on controlled/“living” radical 

polymerizations with over 4000 papers and hundreds of patents devoted to this area 

since the late 1990s. At present three main mechanisms exist that ensure this living 

character by establishing an equilibrium between active (radical) and dormant chains. 

These are atom transfer radical polymerization (ATRP), nitroxide mediated 

polymerization (NMP) and reversible addition-fragmentation chain transfer 

polymerization (RAFT). In either of these controlled radical polymerization methods 

(CRP), all chains are started early in the reaction, and are allowed to grow 

throughout the reaction. In general, the result of a successful CRP will be a polymer 

with low PDI, and predetermined (number-average) molar mass. 

2.1.1.1 Atom transfer radical polymerization (ATRP) 

The name atom transfer radical polymerization comes from the atom transfer step, 

which is the key elementary reaction responsible for the uniform growth of the 

polymeric chains. ATRP was developed by designing a proper catalyst (transition 

metal compound and ligands), using an initiator with an appropriate structure, and 

adjusting the polymerization conditions, such that the molecular weights increased 

linearly with conversion and the polydispersities were typical of a living process [7]. 

This allowed for an unprecedented control over the chain topology (stars, combs, 
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branched), the composition (block, gradient, alternating, statistical), and the end 

functionality for a large range of radically polymerizable monomers [8, 9]. 

      (2.1)

A general mechanism for ATRP is represented by (2.1). The radicals, i.e., the 

propagating species Pn*, are generated through a reversible redox process catalyzed 

by a transition metal complex (activator, Mt
n –Y / ligand, where Y may be another 

ligand or a counterion) which undergoes a one-electron oxidation with concomitant 

abstraction of a (pseudo)halogen atom, X, from a dormant species, Pn–X. Radicals 

react reversibly with the oxidized metal complexes, X–Mt
n+1 / ligand, the deactivator, 

to reform the dormant species and the activator. This process occurs with a rate 

constant of activation, ka, and deactivation kda, respectively. Polymer chains grow by 

the addition of the free radicals to monomers in a manner similar to a conventional 

radical polymerization, with the rate constant of propagation, kp. Termination 

reactions (kt) also occur in ATRP, mainly through radical coupling and 

disproportionation; however, in a well-controlled ATRP, no more than a few percent 

of the polymer chains undergo termination. Elementary reactions consisting of 

initiation, propagation, and termination are illustrated below (2.2a-e) [10]. 

Other side reactions may additionally limit the achievable molecular weights. 

Typically, no more than 5% of the total growing polymer chains terminate during the 

initial, short, nonstationary stage of the polymerization. This process generates 

oxidized metal complexes, the deactivators, which behave as persistent radicals to 

reduce the stationary concentration of growing radicals and thereby minimize the 

contribution of termination at later stages [11]. A successful ATRP will have not 

only small contribution of terminated chains but also uniform growth of all the 

chains; this is accomplished through fast initiation and rapid reversible deactivation. 
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(2.2a) 

 
(2.2b) 

 
 
 
 

(2.2c) 
 

(2.2d) 
 
 
 
 

(2.2e) 

As a multicomponent system, ATRP includes the monomer, an initiator with a 

transferable (pseudo)halogen, and a catalyst (composed of a transition metal species 

with any suitable ligand). Both activating and deactivating components of the 

catalytic system must be simultaneously present. Sometimes an additive is used. 

Basic components of ATRP, namely, monomers, initiators, catalysts, ligands, and 

solvents are discussed as follows: 

Monomers 

A variety of monomers have been successfully polymerized using ATRP: styrenes, 

(meth)acrylates, (meth)acrylamides, dienes, and acrylonitrile, which contain 

substituents that can stabilize the propagating radicals [8]. In fact, all vinyl 

monomers are susceptible to ATRP except for a few exceptions. Notable exceptions 

are unprotected acids (eg (meth)acrylic acid). Some other monomers may be difficult 

to polymerize since they exhibit side reactions, which may be affected by the choice 

of reaction conditions, nature of the catalyst, etc. An example of such a monomer is 

4-vinyl pyridine (4-VP), which can undergo quaternization by the (alkyl halide) 

initiator [12]. Nevertheless, successful polymerization of 4-VP has been reported. 

The most common monomers in the order of their decreasing ATRP reactivity are 

methacrylates, acrylonitrile, styrenes, acrylates, (meth)acrylamides. 
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Initiators 

The main role of the initiator is to determine the number of growing polymer chains. 

The initiation in ATRP may occur in one of two different ways. The common way to 

initiate is via the reaction of an activated (alkyl) halide with the transition-metal 

complex in its lower oxidation state. To obtain well-defined polymers with narrow 

molecular weight distributions, the halide group, X, should rapidly and selectively 

migrate between the growing chain and the transition metal complex. Thus far, when 

X is either bromine or chlorine, the molecular weight control is best. Iodine works 

well for acrylate polymerizations in copper-mediated ATRP and has been found to 

lead to controlled polymerization of styrene in ruthenium and ruthenium-based 

ATRP [13, 14]. Many different types of halogenated compounds have the potential 

to initiate ATRP. Typical examples would be the use of ethyl 2-bromoisobutyrate 

and a Cu(I) complex for the initiation of a methacrylate polymerization [15], or 1-

phenylethyl chloride for the initiation of a styrene polymerization [7]. In addition, 

there are initiators like 2,2,2-trichloro-ethanol [16] that appear to be very efficient, 

and that result in hydroxy-functional polymer chains. Percec and co-workers reported 

the use of sulfonyl chlorides as universal initiators in ATRP [17]. Also the use of di-, 

tri-, or multifunctional initiators is possible, which will result in polymers growing in 

two, three, or more directions. Besides, some pseudohalogens, specifically 

thiocyanates and thiocarbamates, have been used successfully in the polymerization 

of acrylates [18]. 

The alternative way to initiate ATRP is via a conventional free-radical initiator, 

which is used in conjunction with a transition-metal complex in its higher oxidation 

state. Typically one would use AIBN in conjunction with a Cu(II) complex. Upon 

formation of the primary radicals and/or their adducts with a monomer unit, the 

Cu(II) complex very efficiently transfers a halogen to this newly formed chain. In 

doing so the copper complex is reduced, and the active chain is deactivated. This 

alternative way of initiation was termed “reverse ATRP” [19]. 

Catalysts  

Perhaps the most important component of ATRP is the catalyst. It is the key to 

ATRP since it determines the position of the atom transfer equilibrium and the 
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dynamics of exchange between the dormant and active species. There are several 

prerequisites for an efficient transition metal catalyst. 

1. The metal center must have at least two readily accessible oxidation states   

separated by one electron. 

2. The metal center should have reasonable affinity toward a halogen. 

3. The coordination sphere around the metal should be expandable on oxidation to 

selectively accommodate a (pseudo) halogen.  

4. The ligand should complex the metal relatively strongly. 

5. Eventually, the position and dynamics of the ATRP equilibrium should be 

appropriate for the particular system. To differentiate ATRP from the 

conventional redox-initiated polymerization and induce a controlled process, 

the oxidized transition metal should rapidly deactivate the propagating polymer 

chains to form the dormant species [20].  

A variety of transition metal complexes with various ligands have been studied as 

ATRP catalysts. The majority of work on ATRP has been conducted using copper as 

the transition metal. Apart from copper-based complexes, Fe [21], Ni [22], Ru [23], 

etc have been used to some extent. Recent work from Sawamoto and co-workers 

shows that the Ru-based complexes can compete with the Cu-based systems on many 

fronts. A specific Fe-based catalyst has also been reported to polymerize vinyl 

acetate via an ATRP mechanism [24]. 

Ligands 

The main roles of the ligand in ATRP is to solubilize the transition metal salt in the 

organic media and to adjust the redox potential and halogenophilicity of the metal 

center forming a complex with an appropriate reactivity and dynamics for the atom 

transfer. The ligand should complex strongly with the transition metal. It should also 

allow expansion of the coordination sphere and should allow selective atom transfer 

without promoting other reactions. 

The most common ligands for ATRP systems are substituted bipyridines, alkyl 

pyridylmethanimines and multidentate aliphatic tertiary amines such as N,N,N′,N″,N″ 

-pentamethyldiethylenetriamine (PMDETA), and tris[2-(dimethylamino) ethyl]amine 
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(Me6-TREN). Examples of ligands used in copper-mediated ATRP are illustrated 

below [7, 25]. 

 

(2.3)

 

(2.4)

In addition to those commercial products, it has been demonstrated that 

hexamethyltriethylene tetramine (HMTETA) provides better solubility of the copper 

complexes in organic media and entirely homogeneous reaction conditions [26]. 

Since copper complexes of this new ligand are almost insoluble in water, ATRP 

technique can be employed in preparing poly(acrylate esters) in aqueous suspensions 

[27]. 

Solvents 

ATRP can be carried out either in bulk, in solution, or in a heterogeneous system 

(e.g., emulsion, suspension). Various solvents, such as benzene, toluene, anisole, 

diphenyl ether, ethyl acetate, acetone, dimethyl formamide (DMF), ethylene 

carbonate, alcohol, water, carbon dioxide, and many others, have been used in the 

polymerization of different monomers. A solvent is sometimes necessary, especially 

when the polymer is insoluble in its monomer (e.g., polyacrylonitrile). ATRP has 

been also successfully carried under heterogeneous conditions in (mini)emulsion, 

suspension, or dispersion. Several factors affect the solvent choice. Chain transfer to 

solvent should be minimal. In addition, potential interactions between solvent and the 

catalytic system should be considered. Catalyst poisoning by the solvent (e.g., 

carboxylic acids or phosphine in copper-based ATRP) [28] and solvent-assisted side 

reactions, such as elimination of HX from polystyryl halides, which is more 

pronounced in a polar solvent [29], should be minimized. 
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2.1.1.2 The reversible addition–fragmentation chain transfer polymerization 

(RAFT) 

In terms of polymerizable monomers, RAFT is at present the most versatile 

technique for conducting CRP, that is, it can be applied to a larger range of 

monomers than SFRP and ATRP. In contrast to the previously described NMP and 

ATRP, this system relies on chain transfer for the exchange between active and 

dormant chains. The chain end of a dormant chain carries a thiocarbonylthio moiety, 

which is chain-transfer–active. Upon chain transfer, the thiocarbonylthio moiety is 

transferred to the previously active chain, which now becomes dormant, and the 

previously dormant chain carries the radical activity and is able to propagate. 

There are four classes of thiocarbonylthio RAFT agents, depending on the nature of 

the Z group: (1) dithioesters (Z = aryl or alkyl), (2) trithiocarbonates (Z = substituted 

sulfur), (3) dithiocarbonates (xanthates) (Z = substituted oxygen), and (4) 

dithiocarbamates (Z = substituted nitrogen). Representative examples of 

thiocarbonylthio RAFT agents are shown in Figure 2.1.  

To some extent the choice of RAFT agent determines the degree of control obtained. 

The general structure of a RAFT agent is depicted in Figure 2.5, where the Z group is 

the activating group, and R is the homolytically leaving group. To a large extent, the 

Z group determines the rate of addition, and the R group determines the rate of 

fragmentation. The choice of Z and R groups is dependent on the nature of the 

monomer to be polymerized.  

RAFT polymerization is performed by adding a chosen quantity of an appropriate 

RAFT agent Figure 2.1 to a conventional free radical polymerization mixture and 

yields polymers of predetermined chain length and narrow polydispersity. 

Polydispersity indices of less than 1.1 can be usually achieved under optimal 

conditions. The RAFT process offers the same versatility and convenience as 

conventional free-radical polymerization being applicable to the same range of 

monomers (e.g., (meth)acrylates, styrenes, acrylamides, vinyls), solvents, functional 

groups (e.g., OH, CO2H, NR2, NCO) and reaction conditions (e.g., bulk, solution, 

suspension and emulsion). The RAFT process yields thiocarbonylthio-terminated 

polymers (or 1,1-disubstituted alkene-terminated oligomers if macromonomers are 
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used as RAFT agents) that can be chain extended to yield a variety of copolymers 

(e.g., AB, ABA blocks, gradient). 

 
Figure 2.1 : Examples of the different classes of thiocarbonylthio RAFT agents. 

The mechanism of RAFT polymerization with the thiocarbonylthio-based RAFT 

agents involves a series of addition–fragmentation steps as depicted below (2.5a-e). 

As for conventional free-radical polymerization, initiation by decomposition of an 

initiator leads to formation of propagating chains. In the early stages, addition of a 

propagating radical (Pn·) to the RAFT agent [S=C(Z)SR] followed by fragmentation 

of the intermediate radical gives rise to a polymeric RAFT agent and a new radical 

(R·). The radical R· reinitiates polymerization by reaction with monomer to form a 

new propagating radical (Pm·). In the presence of monomer, the equilibrium between 

the active propagating species (Pn· and Pm·) with the dormant polymeric RAFT 

compound provides an equal probability for all the chains to grow. This feature of 

the RAFT process leads to the production of narrow polydispersity polymers. When 

the polymerization is complete, the great majority of the chains contain the 

thiocarbonylthio moiety as the end group (2.5e) which has been identified by 1H-

NMR and UV–vis spectroscopy [30]. Additional evidence for the proposed 
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mechanism was provided by the identification of the intermediate thioketal radical 

((A) and/or (B), (2.5b,d) by ESR spectroscopy [31, 32]. 

 

 

(2.5a) 

 

 

(2.5b) 

 

 

(2.5c) 

 

 

(2.5d) 

 

  

 

(2.5e) 

2.1.2 Cationic ring-opening polymerization (CROP) 

Among the cyclic esters, 4-, 6-, and 7- membered rings form polyesters when reacted 

with cationic catalysts [33]. The cationic ROP involves the formation of a positively 

charged species which is subsequently attacked by a monomer (2.6). The attack 

results in a ring-opening of the positively charged species through an SN2-type 

process. 

 

(2.6) 

The cationic polymerization is difficult to control and often only low-molecular 

weight polymers are formed. When the bulk and solution polymerization of 1,5-

dioxepan-2-one (DXO) with cationic initiators were studied, the highest molecular 

weight achieved was about 10,000. More detailed reviews on cationic ROP have 

been published by Penczek and coworkers [34, 35]. 
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2.2 Etherification Reaction (Williamson Ether Reaction) 

The Williamson reaction, discovered in 1850, is still the best general method for the 

preparation of unsymmetrical or symmetrical ethers. The normal method involves 

treatment of the halide with alkoxide or aroxide ion prepared from an alcohol or 

phenol, although methylation using dimethyl carbonate has been reported. It is also 

possible to mix the halide and alcohol or phenol directly with Cs2CO3 in acetonitrile, 

or with solid KOH in Me2SO. The reaction can also be carried out in a dry medium, 

on zeolite-HY or neat or in solvents using microwave irradiation [36]. 

 (2.7)

2.3 Macromonomers 

Macromolecular monomers, called macromonomers or macromers, can be defined as 

oligomers or polymers with polymerizable end groups. Such groups may be vinyl, 

acrylic, or heterocyclic (ring-opening polymerization) or dicarboxylic or 

dihydroxylic (step-growth polymerization). The increasing interest in these materials 

stems from the growing need for well-defined graft copolymers for which 

macromonomers often are an ideal starting material [37, 38]. The length and number 

of branches of the graft copolymers can be controlled by the molar mass and feed 

ratio of macromonomers to comonomers.  

There are basically three methods for preparing such reactive polymers: 

1. On choosing an initiator containing a polymerizable group, macromonomers can 

be derived provided this reactive group is totally inert toward the active species 

generated by its carrier. 

2. Macromonomers can also be obtained by functionalization of growing chains. 

Again, it is essential that the end-capping reaction does not involve the 

polymerizable group. 

3. The last route consists in modifying o-functional polymers into macromonomers 

using post-functionalization methodologies. When chains are grown by free-radical 

polymerization, it is the easiest way to prepare macromonomers. 

For example, telechelics were prepared through the first route from 

polytetrahydrofuran (PTHF) as illustrated in (2.8) and (2.9). 
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(2.8) 
 

(2.9) 

Oxiranes also polymerize under similar conditions (2.10). 

 

 
(2.10) 

Termination of the cationic ring-opening polymerization of N-t-butylaziridine with 

methacrylic acid yields macromonomers [39], which is the case of functionalization 

of growing chains through end-capping (2.11). 

 

 
(2.11) 

Another example to this type employs radical polymerization in the preparation of 

macromonomers as shown in (2.12) [40]. 

 

 

(2.12) 
 
 
 

As for macromonomers derived by post-functionalization, an example was described 

by Haddleton and colleagues [41]. Starting from separately prepared o-bromo 

PMMA, they obtained o-unsaturated macromonomers on addition of methyl(2-

bromomethyl)acrylate (MBrMA), a monomer known to undergo addition–

fragmentation.  

 



15 
 

2.4 Polyphenylenes (PPs) 

Polyphenylene (PP), one of the most structurally simple of all the linear, rigid-rod 

polymers, is arguably one of the potentially most useful engineering materials. Its 

primary properties include high mechanical strength, excellent thermal and thermal 

oxidative stability, insolubility in all solvents, intractability, and the ability to 

conduct electricity upon oxidative or reductive doping. Despite its deceptively simple 

structure and its unique combination of attractive materials properties, PP has 

traditionally been a very difficult polymer to synthesize and fabricate. The struggle to 

find efficient methods for producing PP with both a regioregular linear structure and 

high molecular weight, together with the inherent lack of processability of the 

material, have retarded the development of PP as a viable, useful material. Only 

within the past five to ten years has the problematic synthesis of high molecular 

weight, structurally regular PP been solved through a number of ingenious strategies. 

In addition, a number of methods have been recently found to overcome the 

processing difficulties commonly associated with this polymer. Furthermore, non-

traditional roles have also been found for PPs of all qualities in applications far 

removed from the traditional roles of the polymer as a high-performance structural 

material and organic conductor [42]. 

Mechanical properties of fabricated PP were compared to those of commercial 

polyimide and carbon graphite, and were found to fall between the properties of the 

two [43]. PP retains toughness over a wide range, but is inherently less tough than 

polyimide. In high-temperature air-aging studies, property retention was similar to 

that of polyimide, but the values were lower at the start. It seems that metal-

containing impurities, probably mostly copper, accelerate the oxidative degradation 

of PP. High-temperature hydrolytic stability of the aromatic polymer was excellent, 

as would be expected. 

A curious, unusual phenomenon was observed in the ablation-compaction of PP. 

When a compacted bar drilled with holes was heated at 590 oC under hydrogen 

pressure, the recovered sample resembled the original very closely except that it was 

substantially smaller in all dimensions, including the holes. The overall reduction 

could be as much as 80 %. This can be regarded as the chemical counterpart of the 

aboriginal "shrunken heads". Apparently, as pore volume increases during ablation, 
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surface area increases, in conflict with thermodynamics which requires minimization 

of surface area. Contraction occurs in order to minimize the energy. No other 

polymer tested gave a similar result, suggesting that PP may be unique in this 

property. 

PP is a thermally and thermooxidatively stable material. No significant 

decomposition occurs below 400 oC in air and only 7 % of the mass is lost when the 

polymer is heated in N2 to 900 oC at a rate of 150 oC/h. Thermal loss of H and CH4 

from PP begins about 400 oC, whereas analogous decomposition of benzene occurs 

at approximately 600 oC. The decreased thermal stability of PP relative to benzene 

was attributed to structural irregularity and presence, in the polymer, of residual 

impurities such as Cl and O. PP has been reported to have a greater resistance to 

thermooxidative degradation than benzene and lower PP oligomers. The temperature 

at which thermal oxidation commenced was determined by defect structures in the 

polymer. The enhanced stability was attributed to coplanarity of rings, strong 

intermolecular interactions and high conjugation energy. Thermal and oxidative 

degradation of PP is a complex process which consists of bond cleavage and 

formation of a crosslinked carbon char. Upon further heating to 2800 oC, the char 

readily graphitizes. PP is also resistant to radiation. The strength of a compressed 

pellet of the material was essentially un-changed following exposure to 8.95 x l08 

rads from a Co60 source. 

Although PPs were first introduced as conducting materials, in recent years the other 

new applications have gained more importance. However, in order to give 

information of their initial usage, we would like to present a brief survey on their 

conductivity. 

2.5 Organometallic Coupling 

The cross-coupling reaction now accessible via a variety of organometallic reagents 

may provide a fundamentally common synthetic methodology (2.13). 

(2.13) 

Kumada and Tamao [44] and Corriu [45] reported independently, in 1972, that the 

reaction of organomagnesium reagents with alkenyl or aryl halides could be 

markedly catalyzed by Ni(II) complex. Kochi [46].  found the efficiency of Fe(III) 
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catalyst for the cross-coupling of Grignard reagents with 1-halo-1-alkenes and Li2-

CuCl2 catalyst for haloalkanes. The palladium-catalyzed reaction of Grignard 

reagents was first reported by Murahashi [47] , the synthetic utility of which was then 

amply demonstrated by Negishi [48] on the reactions of organoaluminum, zinc, and 

zirconium reagents. Afterwards, many other organometallic reagents such as 

organolithiums, organostannans, 1-alkenylcopper(I), have proven to be highly useful 

as nucleophiles for the cross-coupling reaction [49]. 

2.5.1 Ni-catalyzed Grignard coupling (Yamamoto Coupling) 

Diorganonickel(II) complexes NiR2Ln (neutral ligand,e.g.,L=PPh3) undergo a 

reductive coupling reaction to give R-R [50-53] (2.14) and this coupling reaction has 

been utilized to carry out nickel-catalyzed C-C coupling between Grignard reagent 

and organic halide (2.15) [54] and dehalogenation coupling of organic halides with 

zinc (2.16) [55, 56]. 

 (2.14)

 (2.15)

 (2.16)

 (2.17)
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Figure 2.2 : Ni-catalyzed Grignard coupling. 

In addition to the coupling reactions expressed by (2.15) and (2.16), Ulmann type 

coupling of organic halides using zerovalent nickel complex (2.14) itself as a 

dehalogenation reagent has been developed.   

Among these organonickel-based coupling reactions, (2.15) and (2.16) have been 

developed for molecular design of electrically conducting π-conjugated 

poly(arylene)s (2.18) –(Ar)-, e.g., linear PP [57]. 
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(2.18)

However, much less attention has been paid [58, 59] to application of coupling 

reaction (2.17) to the synthesis of the conjugated polymer. Since coupling reaction 

(2.17) proceeds under mild conditions, can be applied to a wide range of aromatic 

compounds (e.g., those with carbonyl and cyano groups) under various reaction 

conditions (e.g., in various solvents) and is the most direct and simple reaction 

among the Ni-based coupling reactions, (2.17) is expected to provide versitale means 

for molecular design and synthesis of electrically conducting π-conjugated polymers 

from haloaromatic compounds X-Ar-X (2.19). 

 
(2.19)

Unlike the established aromatic polyesters or polyamides, where the aromatic units 

are connected via carboxylic esters or amides and require CO-bond and CN-bond 

formations to synthesize, the synthesis of poly(arylene)s involves the formation of 

CC bonds, which is more difficult to achieve [60].  On the basis of a retrosynthetic 

analysis of PP, it was decided to connect the aromatic units directly to one another. 

Other possibilities for generating aromatic units sometime during the sequence [61] 

were considered disadvantageous. Consequently, instead of chain growth, a step-

growth procedure had to be developed for which it was known that extremely high 

conversions per individual bond-formation step were a strict necessity if high molar 

mass polymer was to be obtained. The CC-bond-formation reaction, therefore, had to 

be chosen with the greatest care. The second aspect was solubility. From short, 

linearly (1,4-) connected oligophenylenes, it is known that the solubility already 

drops to negligibly small values after a few connected benzene rings. The solubility 

of all-para-linked nonaphenylene, for example, which is just a very short model for 

PP, is less than 10-8 g/L in toluene at room temperature [62]. Yamamoto’s route was 

considered most interesting because it was the only one that guaranteed the straight, 

1,4-connection of benzene rings. It is known that the solubility of rigid molecules 

increases drastically upon substitution with flexible side chains [63-65].  They render 

the dissolution of the molecules more attractive, mostly for entropic reasons. These 

considerations led us to believe that a simple decoration of 1,4-dibromobenzene, the 

Yamamoto monomer, with flexible alkyl chains may open a generally applicable 

route into PPs. Matthias synthesized 1,4-dibromo-2,5-dihexyl benzene (I) [66], 
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which turned out to be an extremely valuable compound for other purposes as well 

[67, 68], and applied the Yamamoto conditions (2.20) and (2.21). The result, 

however, was quite disappointing [69]. Regardless of how he did the reaction and 

which catalyst precursors he used, exclusively oligomeric products were obtained. 

The only improvement was the excellent solubility of the oligomers, which enabled 

him to accurately determine their molar masses and chemical structures. It is  

determined that the steric hindrance imposed by the alkyl groups might have been 

responsible for termination at this early stage of growth, a view that was supported 

some time later by the successful Yamamoto-type synthesis of a sterically 

nonhindered polyarylene [70]. 

 

(2.20) 

 

 
 

(2.21) 

2.5.2 Palladium-catalyzed cross-coupling reactions of organoboron compounds  

(Suzuki coupling) 

The palladium-catalyzed cross-coupling reaction between organoboron compounds 

and organic halides or triflates provides a powerful and general methodology for the 

formation of carbon–carbon bonds. Recently, this reaction has been called the Suzuki 

coupling, Suzuki reaction, or Suzuki–Miyaura coupling. The availability of the 

reagents and the mild reaction conditions all contribute to the versatility of this 

reaction. The coupling reaction offers several additional advantages, such as being 

largely unaffected by the presence of water, tolerating a broad range of functional 

groups, and proceeding generally regio- and stereoselectively. Moreover, the 

inorganic by-product of the reaction is non-toxic and easily removed from the 

reaction mixture thereby making the Suzuki coupling suitable not only for 

laboratories but also for industrial processes [71]. 

Organoboron compounds are highly electrophilic, but the organic groups on boron 

are weakly nucleophilic, thus limiting the use of organoboron reagents for the ionic 
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reactions. The coordination of a negatively charged base to the boron atom has been 

recognized to be an efficient method of increasing its nucleophilicity to transfer the 

organic group on boron to the adjacent positive center (1,2-migration reaction). 

However, intermolecular transfer reactions such as the Grignard-like reaction are 

relatively rare. Fortunately, organoboron compounds, even organoboronic acids and 

esters, have sufficiently enough reactivity for the transmetalation to other metals. In 

1978, Negishi reported that iodobenzene selectively couples with the 1-alkynyl group 

on lithium l-hexynyl(tributy1)borate through a palladium-catalyzed addition-

elimination sequence (Heck-type process); however, the cross-coupling reaction of 

organoboron compounds, which involves the transmetalation to palladium(II) halides 

as a key step, was found to proceed smoothly when these were activated with 

suitable bases and have proven to be a quite general technique for a wide range of 

selective carbon-carbon bond formation [72]. Many organometallic reagents undergo 

similar cross-coupling reactions, but much attention has recently been focused on the 

use of organoboronic acids in laboratories and industries since they are convenient 

reagents, which are generally thermally stable and inert to water and oxygen, thus 

allow their handling without special precautions.  

2.5.2.1 Mechanism of Suzuki coupling reactions 

A general catalytic cycle for the cross-coupling reaction of organometallics, which 

involves oxidative addition-transmetalation-reductive elimination sequences, is 

depicted in (Figure 2.3). Although each step involves further knotty processes 

including ligand exchanges, there is no doubt about the presence of those 

intermediates (1 and 2 in Figure 2.3) which have been characterized by isolation or 

spectroscopic analyses. It is significant that the great majority of cross-coupling 

reactions catalyzed by Ni(0), Pd(0), and Fe(I) are rationalized in terms of this 

common catalytic cycle.  
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Figure 2.3 : A general catalytic cycle for cross-coupling. 

Oxidative addition of 1-alkenyl, 1-alkynyl, allyl, benzyl, and aryl halides to a 

palladium(0) complex affords a stable trans-σ-palladium(II) complex (1). The 

reaction proceeds with complete retention of configuration for alkenyl halides and 

with inversion for allylic and benzylic halides. Alkyl halides having β-hydrogen are 

rarely useful because the oxidative addition step is very slow and may compete with 

β-hydride elimination from the σ-organopalladium-(II) species. However, it has been 

recently shown that iodoalkanes undergo the cross-coupling reaction with 

organoboron compounds [73]. 

Oxidative addition is often the rate-determining step in a catalytic cycle. The relative 

reactivity decreases in the order of I > OTf > Br >> Cl. Aryl and 1-alkenyl halides 

activated by the proximity of electron-withdrawing groups are more reactive to the 

oxidative addition than those with donating groups, thus allowing the use of 

chlorides such as 3-chloroenone for the cross-coupling reaction. A very wide range 

of palladium(0) catalysts or precursors can be used for cross-coupling reaction. 

Pd(PPh3)4 is the most commonly used, but PdCl2(PPh3)2 and Pd(OAc)2 plus PPh3 or 

other phosphine ligands are also efficient since they are stable to air and readily 

reduced to the active Pd(0) complexes with organometallics or phosphines used for 

the cross-coupling.  
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Reductive elimination of organic partners from 2 reproduces the palladium(0) 

complex. The reaction takes place directly from cis-2, and the trans-2 reacts after its 

isomerization to the corresponding cis-complex (2.22), (2.23) and (2.24). The order 

of reactivity is diaryl- > (alkyl)aryl- > dipropyl- > diethyl- > dimethylpalladium(II), 

suggesting participation by the π-orbital of aryl group during the bond formation 

(2.22).  

 

(2.22)

The thermolysis of cis-(dialkyl)palladium(II)·L2, which is an intermediate on the 

alkyl-alkyl coupling, is inhibited by excess phosphine (L), hence it is considered to 

be initiated by the rate-determining dissociation of phosphine ligand (L) producing a 

three-coordinated cis-(dialkyl)palladium(II)·L complex (dissociative mechanism, 

2.23 and 2.24). Thus, the effect of phosphine ligands is comparable to the order of 

ease of their dissociation: dppe << PEt3 < PEt2Ph < PMePh2 <. PEtPh2 < PPh3. 

 

(2.23)

(2.24)

On the other hand, cis-alkenyl- and cis-arylpalladium(II) complexes, which are 

intermediates in most of cross-coupling reactions discussed here, directly eliminate 

organic partners from the four-coordinated complex (nondissociative-nonassociative 

mechanism, 2.22). 

Although the mechanism of oxidative addition and reductive elimination sequences 

are reasonably well understood and are presumably fundamentally common 

processes for all cross-coupling reactions of organometallics, less is known about the 
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transmetalation step because the mechanism is highly dependent on organometallics 

or reaction conditions used for the couplings. 

The cross-coupling reaction of organoboron compounds with organic halides or 

triflates selectively reacts in the presence of a negatively charged base, such as 

sodium or potassium carbonate, phosphate, hydroxide, and alkoxides. The bases can 

be used as aqueous solution, or as suspension in dioxane or DMF. In contrast, the 

cross-coupling reaction with certain electrophiles, such as allylic acetates, 1,3-

butadiene monoxide, and propargyl carbonates, occurs under neutral conditions 

without any assistance of base. The transmetalation of organoboron compounds with 

palladium halides under basic or neutral conditions can be considered to involve the 

following three processes illustrated by the  (2.25-2.27). 

 
(2.25) 

It is apparent that the transmetalation between organopalladium(II) halides and 

organoboron compounds does not occur readily due to the low nucleophilicity of 

organic group on boron atom. However, the nucleophilicity of organic group on 

boron atom can be enhanced by quaternization of the boron with negatively charged 

bases giving the corresponding “ate” complexes. The quaternization of 

trialkylboranes accelerates the transmetalation to the palladium(II) halides. Although 

there is no direct evidence that the boronate anions, such as RB(OH)3
-, are capable of 

effecting the transmetalation, it is quite reasonable to assume the similar effect of 

base for the transmetalation of organoboronic acids. The cross-coupling reaction of 

arylboronic acids with aryl halides at pH = 7-8.5 is retarded relative to the reaction at 

pH = 9.5-11. The pKA of phenylboronic acid is 8.8, thus suggesting the formation of 

the hydroxyboronate anion [RB(OH)3
-] at pH > pKA and its transmetalation to the 

palladium(II) halides.  

An alternative transmetalation process is that organoboron compounds readily 

transfer their organic groups to (alkoxo)-palladium(II) complexes under neutral 

conditions (2.26). 
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(2.26)

Finally, it is of interest to note the possibility of involvement of the (alkoxo) 

palladium intermediate 3 in the palladium/base-induced cross-coupling reaction 

(2.27). It is known that the halogen ligand on organopalladium(II) halide is readily 

displaced by alkoxy, hydroxy, or acetoxy anion to provide the reactive Pd-OR 

complexes (3), which have been postulated as reaction intermediates or isolated from 

the reaction of organopalladium(II) halides with sodium hydroxide or methoxide.  

 

 
(2.27)

It is not yet obvious in many reactions which process shown in reaction (2.25) or 

(2.27) is predominant; however, the formation of alkoxo-, hydroxo-, or 

acetatopalladium(II) intermediate should be considered to be one of the crucial 

transmetalation processes in the base/palladium-induced cross-coupling reactions. 

2.5.2.2  Suzuki polycondensation 

                 (2.28) 
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(2.29) 

Suzuki cross-coupling successfully transferred to Suzuki Polycondensation (SPC) 

reaction to polymer synthesis and give soluble and processable polyarylenes. SPC is 

a step-growth polymerization of bifunctional aromatic monomers to poly(arylene)s 

and related polymers (2.28) and (2.29) [74-76]. 

The required functional groups, boronic acid or esters on the one side and bromide, 

iodide, and so forth on the other, may be present in different monomers (AA/BB 

approach) or combined in the same monomer (AB approach). Both approaches have 

been successfully applied. AB-type monomers intrinsically have the stoichiometric 

balance between the two different functional groups that, according to Carother’s 

equation [77], is a strict necessity in step-growth polymerizations when high molar 

mass polymer is concerned. There is a simple synthetic reason the AA/BB approach 

is nevertheless favored. Normally, it is easier to synthesize aromatic monomers with 

two identical substituents in opposite positions (for benzene, 1,4) than those with 

different ones. An additional factor is that once an aromatic dibromide is obtained, its 

conversion into the corresponding diboronic acid or ester can often be achieved in 

one simple step and on a large scale. The price to be paid for this, however, is the 

necessity of applying the AA and BB monomers in strictly equal molar amounts. 

Purities, methods of how to completely transfer mono-mers into the polymerization 

vessel, and losses of some of the functional groups during polymerization become 

important and, all of a sudden, even critical aspects when the molar mass difference 

between two monomers is very large [78]. The matter of purity is of real importance 

for SPC and should, therefore, be briefly addressed. Free boronic acid or one of the 

many cyclic boronic esters are used as boron-based functional groups. During 

polymerization, these esters may hydrolyze to the acids that then enter the normal 

cross-coupling or follow an independent mechanism [79]. Boronic acids always 

contain some water. Otherwise, they are partially or completely condensed to cyclic 

boroxines. This water content has to be precisely determined for the reasons 

mentioned previously [80]. Boronic esters, which do not have the problem with 

additional water, tend to partially hydrolyze on the column upon attempted 
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purification. This renders weighing and, thus, stoichiometry control also somewhat 

problematical. The boronic monomer counterparts in SPC are aromatic bromides, 

iodides, or triflates. The bromo group is by far the most often encountered coupling 

partner in SPC. Iodides [81]  and triflates [82] were only seldom used, although iodo 

compounds may gain increasing attraction because they were recently found to 

furnish higher molar mass products than their bromo analogues (discussed later). 

Chloro aromatics, although successfully used in organic chemistry Suzuki Cross-

Coupling (SCC) [83] have not been transferred to polymer chemistry yet.  

The circles in (2.28) and (2.29) represent aromatic units, which are substituted 

benzenes in practically all cases but also include naphthalines, thiophenes, pyridines, 

and pyrroles (with an acceptor on nitrogen). When substituted with boronic acids, 

electron-rich aromatics tend to undergo deboronification reactions [84], which lead 

to stoichiometric misbalance with its detrimental impact on the achievable molar 

mass. This is why, for example, thiophenes in SPC are always used as dibromides 

and not as diboronic acids. These aromatic units are connected to one another to 

linear poly(arylene)s (for benzenes, PPs) in more than 95% of all publicized cases. In 

a few examples, regularly kinked poly(arylene)s or related conjugated polymers 

containing additional olefinic or acetylenic units or other functional groups as part of 

the main chain are generated. Linear poly(arylene)s, whose chemical constitution in 

principle allows the attainment of a totally straight conformation, are considered 

rigid-rod type polymers. Although they certainly have bent backbones and attain 

coiled conformations in solution, they have less conformational degrees of freedom, 

which are available at low energetic cost than, for example, saturated polymers such 

as polystyrene (PSt). As a result, these poly(arylene)s show poor solubility because 

they have little driving force to dissolve molecularly dispers. 

This is why in most cases when SPC comes into play, it is applied to monomers that 

carry flexible chains of some sort. These chains help keep the growing (and final) 

polymer in solution and accessible to further growth until growth reaches its 

system’s intrinsic limits. 

These limits comprise termination through reduction of the bromo group or 

phosphorous incorporation through ligand scrambling channels (discussed later) or 

the removal of catalytically active Pd complexes through the precipitation of Pd(0) 

intermediates such as Pd black. 
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The substituents on the poly(arylene)s are not only important for solubility (and 

processability) reasons. 

They can also be used to incorporate function, a feature that has been increasingly 

and astoundingly successfully used in recent years. As far as the electronic properties 

of the backbones are concerned, substituents may, however, be disadvantageous, too. 

They normally lead to an increase of the dihedral angle of consecutive aromatic 

units, which reduces electronic conjugation and thus further increases the polymers’ 

already quite large highest occupied molecular orbital (HOMO)/lowest unoccupied 

molecular orbital (LUMO) gap.  

As for SCC, SPC involves only the carbon atoms that carry the functional groups. 

Polymerizations proceed regiospecifically. This is important because some of the 

properties of poly(arylene)s depend on their backbone’s ability to attain straight 

conformations without kinks. Also, the functional group compatibility of SPC is the 

same as for SCC. Aldehydes, nitro and cyano groups, sulfonic esters, ethers, various 

protected alcohols and amines, amides, and so forth can be present. Even free 

hydroxy and free amines have been reported, although they do not seem to work too 

well. The reaction conditions are like the ones Suzuki reported in his famous, 

original article of 1981  [49, 72, 85]. Other solvent systems were also applied 

whenever required by the solubility of the polymer. For example, SPC has even been 

done in water with both water-soluble monomers and catalyst precursors [86]. The 

mechanism of SPC is supposed to involve the same steps of oxidative addition, 

transmetallation, and reductive elimination as for SCC. The standard catalyst 

precursor is Pd(PPh3)4. Although SPC has not yet been developed into a reaction that 

is catalytic in an industrial sense, 0.5 mol % Pd complex is sufficient in many cases. 

Pd complexes with other phospine ligands have also been employed. For example, 

ortho- and para-tolyl ligands proved successful [87, 88]. Although the choice of the 

best catalyst precursor is still a matter of intuition, it is accepted knowledge that the 

complex used should be as pure as possible. Thus, the commercially available 

Pd(PPh3)4 should not be used as obtained but rather should be recrystallized and used 

directly thereafter (under nitrogen). Best results are normally obtained when the Pd 

complexes are self-prepared and used freshly. 
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3. EXPERIMENTAL WORK 

3.1 Materials and Chemicals 

3.1.1 Monomers 

Styrene (%99, Aldrich ) : Styrene was purified by usual methods and distilled in 

vacuum from CaH2 just before use. 

Vinyl acetate (Aldrich) : Vinyl acetate was dried over calcium hydride and distilled 

under nitrogen. 

3.1.2 Solvents 

Methanol (Technical) : Methanol was used for the precipitation of polymers without 

further purification. 

Tetrahydrofuran (THF) (99.8%, J.T.Baker) : Predried over magnesium sulfate 

followed by sodium wire and then distilled from sodium wire and benzophenone 

immediately before use.  

Diethylether (Sigma-Aldrich) : Diethylether was used as recieved. 

Dichloromethane (99.8%, J.T.Baker ): Dichloromethane was dried with P2O5. 

Chloroform (Sigma ) : Chloroform was used without further purification. 

Hexane (Sigma) : Hexane was used without further purification. 

Benzene (Sigma) : Benzene was used without further purification. 

Carbontetrachloride (J. T. Baker) : Carbontetrachloride was used without further 

purification. 

Petroleum Ether (Sigma) : Petroleum Ether was used without further purificaition. 

3.1.3 Other chemicals and reagents 

Copper(I) Bromide (CuBr) (98%, Acros) : Copper(I) bromide was used as received. 

N, N, N’, N”, N”–Pentametyldiethylenetriamine (PMDETA) (99%, Aldrich) : 
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PMDETA was used as a ligand, was distilled before used. 

2,5-Dibromotoluene (Aldrich) : It was used as received. 

N-Bromomsuccinimide (NBS) (Fluka) : It was used as received. 

Benzoyl Peroxide (Aldrich) : It was used as received. 

Magnesium Sulfate (Aldrich) : It was used as received. 

O-Ethylxanthic Acid Potassium Salt (Aldrich) : It was used as received. 

AIBN (Aldrich) : It was used as received. 

AgSbF6  (Aldrich) : It was used as received. 

PEO (Aldrich) : It was used as received. 

Sodium Hydride (Aldrich) :  It was used as received. 

n-Butyl Lithium (Aldrich) :  It was used as received. 

Trimethylborate (Aldrich) :  It was used as received. 

Hydrochloric Acid (HCl) (Sigma-Aldrich) : It was used as received. 

1,3-Propanediol (Aldrich) : It was used as received. 

2.2’-Bipyridine (bpy) (Aldrich) :  It was used as received. 

Sodium bicarbonate (NaHCO3) (Aldrich) : It was used as received. 

Pd(PPh3)4 (Aldrich) : It was used as received. 

3.2 Equipments  

3.2.1 1H Nuclear magnetic resonance spectroscopy (1H-NMR) 

1H-NMR spectra of 5–10 % (w/w) solutions in CDCl3 with Si(CH3)4 as an internal 

standard were recorded at room temperature at 250 MHz on a Bruker DPX 250 

spectrometer.  

3.2.2 Infrared spectrophotometer (IR) 

IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR Spectrometer. 
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3.2.3 Gel permeation chromatography (GPC)  

Gel permeation chromatography (GPC) measurements were obtained from a 

Viscotek GPCmax Autosampler system consisting of a pump, a Viscotek UV 

detector and Viscotek a differential refractive index (RI) detector. Three ViscoGEL 

GPC columns (G2000HHR, G3000HHR and G4000HHR), (7.8 mm internal diameter, 

300 mm length) were used in series. The effective molecular weight ranges were 

456–42,800, 1050–107,000, and 10,200–2,890,000, respectively. THF was used as 

an eluent at flow rate of 1.0 mL min-1 at 30°C.  Both detectors were calibrated with 

PS standards having narrow molecular weight distribution. Data were analyzed 

using Viscotek OmniSEC Omni-01 software.  Molecular weights were calculated 

with the aid of polystyrene standards. 

3.3 Preparation Methods 

3.3.1 Preparation of 1,4-diboromo-2-(bromomethyl)benzene  

2,5-dibromotoluene, (4.99 g, 20 mmol), NBS (3.92 g, 22 mmol), and  benzoyl 

peroxide (0.1g, 0.4 mmol) was heated under reflux in 20 mL CCl4 under nitrogen for 

4 hours. The reaction mixture was filtered to remove succinimide, the succinimide 

was washed with a supplementary amount of CCl4 and finally with a little quantity 

of CH2Cl2. The combined organic solutions were washed several times with water 

and than dried over MgSO4. The solvent was removed by rotary evaporator. The 

product was purified by passing through a silica gel column using diethylether as 

eluent. Finally, the product was obtained as white crystals after recrystallizing twice 

from petroleum ether. (Yield: 38%) 

3.3.2 General procedure for the ATRP of styrene 

A Schlenk tube was charged with CuBr (0.062 g, 43.3 mmol), (PMDETA) (0.075 g,  

43.3 mmol), initiator (1,4-diboromo-2-(bromomethyl)Benzene) (0.14 g, 0.433 

mmol), and styrene (4.51 g, 43.3 mmol). Three freeze-pump-thaw cycles were 

performed and the tube was stirred in oil bath at 110 °C for 50 min. After the given 

time, the mixture was diluted with THF. Then the copper complex was removed out 

by passing through a neutral alumina column, and THF was removed by rotary 

evaporation. The mixture was precipitated in methanol and the solid was collected 

after filtration and dried at room temperature in a vacuum overnight. 
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3.3.3 General procedure for RAFT agent 

1,4-dibromo-2-(bromomethyl)benzene (1,33 g, 4 mmol) was dissolved in 

chloroform (100 mL) and stirred with 10-fold excess of O-ethylxanthic acid 

potassium salt (6.41 g, 40 mmol) for 3 days. The suspended remaninig sodium (O-

ethyl) xanthate was filtered off and washed several times with chloroform. After 

evaporation of the solvent the product was purified using column chromatography 

on silica gel (hexane:dichloromethane 80/0.5).  

3.3.4 General procedure for the RAFT polymerization of VAc 

RAFT agent (0.24 g, 0.66 mmol), vinyl acetate (4 g, 46.5 mmol), AIBN (0.02 g, 

0.13 mmol) was degassed by three freeze-pump-thaw cycles, sealed under nitrogen, 

and heated at 60 °C for 4h. The polymerization was stopped by cooling and the 

polymer was isolated by evaporating off the residual monomer and solvent. 

3.3.5 General procedure for the cationic polymerization of THF 

The polymerization was carried out under nitrogen atmosphere. 0.4 g of 1,4-

dibromo-2-(bromomethyl)benzene (1.22 mmol) and 0.47 g (1.35 mmol) of AgSbF6 

were dissolved in 1 mL  THF under efficient stirring at 0 oC. After 15 min, 9 mL 

THF was added as a monomer. The reaction was continued for 15 min.  The product 

was pericipitated in cold methanol/water (3/1) for removing AgBr. Additional 

purification is passing through a silica gel column using CH2Cl2 as eluent. CH2Cl2 

was removed by rotary evaporation. The mixture was precipitated in methanol and 

cooled to -30 oC. The prepicipitated polymer was filtered off and dried a vacuo. 

3.3.6 General procedure for the etherification reaction (Ar(Br2)-PEO) 

Sodiumhydride (97 %) was added to PEG (2 g, 1 mmol) in dry 25 mL of THF 

(0.0264 g, 1,1 mmol) and the reaction mixture was stirred at 0  °C under nitrogen for 

30 min. 1,4-diboromo-2-(bromomethyl)benzene (0.657 g, 2 mmol) in dry 10 mL 

THF was added portion wise to the solution. The mixture was kept stirring at room 

temperature for 24h. The solution was extracted with water, and the organic layer 

was dried over anhydrous MgSO4 and CH2Cl2 was removed by rotary evaporation. 
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The mixture was precipitated in diethyl ether and the solid was collected after 

filtration and dried at room temperature in a vacuum overnight. 

3.3.7 Synthesis of 2-methyl-1,4-phenylenediboronic acid  

2,5-Dibromotoluene, (21.8 g, 87 mmol)  heated under reflux in 140 mL n-hexane  
under nitrogen for 2 hours. The solution was allowed to warm to room temperature 

for 30 min. The reaction mixture was then cooled to –78 oC, and n-BuLi (96 mL, 

238 mmol) was added at that temperature. The solution was stirred 1 hour at 80, and 

then was allowed to warm to room temperature for 3 hours. After stirring at room 

temperature for 12 hours, the solution heated to reflux temperature under nitrogen 

for 2 hours. The solution was allowed to warm to room temperature for 30 min. The 

reaction mixture was then cooled to –78 oC, and B(OCH3)3 (100 mL, 870 mmol) was 

added. The solution was allowed to warm to room temperature for 3 hours before the 

reaction was quenched with the addition of 2M HCl. The two phases were separated, 

and the water phase was extracted with four portions of diethyl ether and then dried 

over MgSO4 and evaporated to yield the boronic acid as a white solid, which was 

used without further purification. (Yield: 50%) 

3.3.8 Synthesis of bis(1,3-propanediol) ester of 2-methyl-1,4-phenylenediboronic 

acid  

1,3-propanediol (10.5 mL, 144 mmol) and 10.85 g boronic acid  in were refluxed in 

dry benzene (200 mL) for 6 h under nitrogen using a Dean-Stark trap. The reaction 

mixture were washed several times with water and then dried over MgSO4. The 

solvent was removed in vacuo to afford a light yellow solid. Recrystallization from 

hexane (Yield: 18%). 

3.3.9 Preparation of 2,2’-(2-bromomethyl)-1,4-phenylene) bis(1,3,2-

dioxaborinane) 

Bis(1,3-propanediol) ester of 2-methyl-1,4-phenylenediboronic acid (1.8 g, 6.93 

mmol) NBS (1.48 g, 8.31 mmol), and  benzoyl peroxide (0.03 g, 0.14 mmol) was 

heated under reflux in 15 mL CCl4 under nitrogen for 4 hours. The reaction mixture 

was filtered to remove succinimide, the succinimide was washed with a 

supplementary amount of CCl4 and finally with a little quantity of CH2Cl2. The 

combined organic solutions were washed several times with water and then dried 
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over MgSO4. The solvent was removed by rotary evaporator. The product was 

purified by passing through a silica gel column using diethylether as eluent. Finally, 

the product was obtained as white crystals after recrystallizing twice from diethyl 

ether . (Yield: 30%) 

3.3.10 ATRP of styrene using 2,2’-(2-bromomethyl)-1,4-phenylene) bis(1,3,2-

dioxaborinane) as an initiator 

A Schlenk tube was charged with CuBr (0.0397g, 0.277 mmol), bpy (0.129 g,  0.831 

mmol), initiator (2) (0.09 g, 0.277 mmol), and styrene (4.51 g, 23.8 mmol). Three 

freeze-pump-thaw cycles were performed and the tube was stirred in oil bath at 110 

°C for 50 min. After the given time, the mixture was diluted with THF. Then the 

copper complex was removed out by passing through a neutral alumina column, and 

THF was removed by rotary evaporation. The mixture was precipitated in methanol 

and the solid was collected after filtration and dried at room temperature in a 

vacuum overnight. 

3.3.11 Suzuki coupling of Ar(BO2C3H6)-PSt based macromonomer with 

Ar(Br2)-PEO based macromonomer  

A 100 mL three necks round bottom flask equipped with a condenser, a septum, 

nitrogen inlet-outlet, and magnetic stirrer, was charged with 20 mL 1M NaHCO3 

solution and 30 mL THF. The solvents were previously degassed by bubbling 

nitrogen over a period of 30 minutes. The mixture was refluxed under nitrogen, 3 

hours. A 20 mL three necks round bottom flask equipped in the same way as the 

previous one was charged under inert atmosphere with 0.25 g (0.028 mmol ) PSt, 

0.069 g ( 0.028 mmol ) Ar(Br2)- PEO and (0.66 mg 5.74 x 10-4 mmol) Pd(PPh3)4, 3 

mL of the mixture of solvents were introduced with a syringe through the septum. 

The reaction was maintained ender vigorously stirring and with the exclusion of 

oxygen and light at reflux. After 48h a supplementary amount of 5 mL of mixture of 

solvents was added through the septum and stirred 1 day more. After that the 

polymer was obtained by prepicipitation in methanol. 
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4. RESULTS AND DISCUSSION 

In this study, amphiphilic PP was synthesized via the Suzuki type polycondesation. 

The synthetic strategy followed involves several steps. Firstly, different types of new 

macromonomers were synthesized by using controlled polymerization methods. 

Among these macromonomers, the Ar(Br2)-PEO macromonomer and boronic ester 

type macromonomer of polystyrene were reacted via Suzuki polycondensation 

reaction in the presence of Pd(PPh3)4 as catalyst to form the desired amphiphilic 

copolymer. The various steps of the procedure will be described below. 

4.1 Synthesis of Designing Macromonomer 

Different types of new macromonomers were synthesized by using the below-

mentioned initiator (1,4-dibromo-2-(bromomethyl)benzene), (2) (4.1) in controlled 

polymerization of common monomers such as styrene, vinylacetate, tetrahydrofuran 

and the commercially available monohydroxy poly(ethylene oxide) was directly 

used in the etherification reaction. Well-defined macromonomers with low 

molecular weights and narrow polydispersities, preserving the functionalities needed 

for PP formation, were obtained. The details of each macromonomer synthesis were 

described below. 

4.1.1 Preparation of dual-functional initiator for ATRP  

It is well established that benzylbromides are efficient initiators for ATRP. On the 

other hand, arylhalides does not initiate ATRP. In fact, this behavior is an advantage 

to obtain the polymers with bromine functional groups directly attached to the 

benzene ring. Obivously, these groups are the crucial reactive sites for the 

subsequent Suzuki coupling. (2) was synthesized by bromination of methyl groups 

of commercially available 2,5-dibromotoluene (1) with NBS in CCl4 (4.1). 
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(4.1) 

 

 
Figure 4.1 : 1H-NMR (CDCl3)  spectrum of initiator (2). 

The structure of the initiator was confirmed by 1H-NMR analysis. As can be seen 

from Figure 4.1, the 1H NMR (CDCl3) spectrum of (2) contains characteristic bands 

of CH2 and aromatic protons at 4.51 ppm and 7.25-7.58 ppm, respectively.   

4.1.2 Preparation of PSt macromonomer by ATRP 

The ATRP of Styrene using (2)  as initiator and the CuBr/PMDETA catalytic system 

provided precursor polymers (3), containing dibromo-substituted benzene group at 

one end (4.2). 



37 
 

 

(4.2)

As these polymer was intended to be used in further polymerization reactions, the 

efforts were directed toward obtaining a low molecular weight and low 

polydispersity along with a convenient yield. Some conditions and results of the 

ATRP experiments for styrene are given in Table 4.1. 

Table 4.1 : Results of ATRP of styrene by using 1,4-dibromo-2-(bromomethyl) (2)  
benzene  as an initiator. 

Macromonomers Conversion
(%) 

Time
(min)

Mntheo 
(g/mol)

MnNMR
b

(g/mol) 
MnGPC

c 

(g/mol) Mw/Mn
c 

PSt-1a 6.5 50 1000 1700 2100 1.26 
          PSt-2 24 60 2816 3100 2690 1.12 
Polymerization conditions; [M]0 /[CuBr]o / [L]o  = 100/1/1 in toluene at 110 oC. PMDETA used as a    
ligand. 
a Bulk. 
 b Determined by 1H-NMR spectra. 
c Determined by GPC based on polystyrene standards. 

As can be seen from Table 4.1, (2) is effective initiator for ATRP of styrene and the 

theoretical molecular weights (Mn,th), calculated with equation (2), fit with the 

measured ones very well: 

 

 
(2)

Where [M0] and [I0] are the initial molar concentrations of the monomer and 

initiator, and Mw and MI are the molecular weights of the monomer and initiator, 

respectively. 

Due to the low molecular weights of the polymer, the results could be verified by 
1H-NMR analyses (Figure 4.2). The peak from the final CH-Br protons appears very 

clear at about 4.4 ppm. The molecular weights of the polymers were also calculated 

by 1H-NMR spectra and the results were consisted with theoretical and GPC 

measured molecular weight. 
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Figure 4.2 : 1H-NMR (CDCl3)  spectrum of macromonomer (3). 

4.1.3 Preparation of dibromo-xanthate agent 

Xanthates are good transfer agents to mediate the radical polymerization of VAc.  

Therefore, xanthate derivative (4) was prepared in two steps by conventional 

substitution reactions, from the commercially available 2,5-dibromotoluene (4.3). 

These xanthate agent was intended to be used in further polymerization reaction. 

 

(4.3) 
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Figure 4.3 : 1H-NMR (CDCl3)  spectrum of RAFT agent (4). 

The structure of RAFT agent (4) was confirmed by spectral analysis. 1H-NMR 

(CDCl3)  spectrum of (4) exhibits the signals at 7.23-7.63 ppm, 1.42 ppm, 4.41 ppm 

and 4.7 ppm corresponding to the aromatic protons, methyl protons, methylene 

protons and  methylene sulfur, respectively. 

4.1.4 Preparation of PVAc macromonomer by RAFT 

(4) was used to polymerization of VAc. RAFT polymerization of vinyl acetate was 

subsequently carried out in bulk at 60 oC in the presence of mediating (4) (4.4). 

 

 

(4.4)

Typical results were summarized in Table 4.2. Low polydispersity and molecular 

weights PVAc were obtained. 
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Table 4.2 : Results of RAFT polymerization of VAc. 

Macromonomers Conversion 
(%) 

Time
(h) 

Mntheo 
(g/mol)

MnNMR
b

(g/mol) 
MnGPC

c

(g/mol) Mw/Mn
c 

PVAc-1 82 45 5250 3300 5400 1.14 
PVAc-2 95 40 5725 3440 5750 1.11 

b Determined by 1H-NMR spectra. 
c Determined by GPC based on polystyrene standards. 
 
 

 

Figure 4.4 : 1H-NMR (CDCl3)  spectra of macromonomer by RAFT  
polymerization (5). 

The structure of PVAc was confirmed by 1H-NMR (CDCl3)  analysis. The 

characteristic backbone proton (c) of PVAc as observed at 4.8 ppm. Other PVAc 

protons, (COCH3) (d)  and (CHCH2) (b) were located at 1.9 and 1.7 ppm, 

respectively. (CH2CH)(a) ,  (CH2CH3) (e), and (CH2CH3) (f) protons which come 

from RAFT agent were appeared 2.6, 4.6 and 1.41 ppm, respectively. Moreover, the 

aromatic protons of central benzene ring from 7.13 at 7.35 ppm can be seen very 

clearly. 
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4.1.5 Preparation of PTHF macromonomer by CROP 

THF is a cyclic monomer which undergoes CRP with various initiators. For our 

convenience, we used (2), as an initiator in combination with AgPF6 (4.5). The silver 

salt reacts only with the benzylic bromide and thus forms corresponding 

carbocations capable of initiating cationic polymerization of THF. It is expected that 

the aromatic bromides preserved in the polymerization and can successfully be used 

in the following Suzuki step. The results of polymerization and 1H-NMR spectral 

characterization are shown in Table 4.3 and Figure 4.5, respectively. The relatively, 

higher molecular weight values obtained with GPC may be due to the high solubility 

of the low molecular weight polymers under precipitation conditions. However, 

relatively low polydispersity was attained.  

 

(4.5)

Table 4.3 : Result of ROP of THF by using 1,4-dibromo-2-(bromomethyl) benzene 
(2) as an initiator. 

Macromonomer Conversion 
(%) 

Time 
(min) 

Mntheo 
(g/mol) 

MnNMR
b

(g/mol) 
MnGPC

c 

(g/mol) Mw/Mn
c 

PTHF (6) 11 15 1100 2300 3600 1.32 
b Determined by 1H-NMR spectra. 
c Determined by GPC based on polystyrene standards. 
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Figure 4.5 : 1H-NMR (CDCl3)  spectrum of macromonomer by CROP (6). 

The structure of the macromonomer was confirmed by 1H-NMR (CDCl3) .  As can 

be seen from Figure 4.5, 1H-NMR (CDCl3) spectrum of (2) contains characteristic 

bands contains at 1.58 ppm (CH2), 3.37 ppm (O-CH2) and the aromatic protons of 

central benzene ring at 7.35 ppm. Due to the implied mechanism, the aromatic CH2 

groups are in the vicinity of O atoms of the first THF repeating unit and the 

corresponding protons give a clear signal at 4.46 ppm. As the reaction was stopped 

by adding CH3OH, the final OCH3 protons appear as a signal at 3.1 ppm. 

4.1.6 Preparation of Ar(Br2)-PEO macromonomer by etherification reaction 
(2) was used as the reactive component in etherification reaction of PEO, in 

combination with NaH (4.6). At the end of the reaction, the aromatic bromide groups 

are expected to remain for the Suzuki coupling step. As can be seen from Table 4.4, 

the molecular weight of the polymer was slightly increased by the etherification 

reaction. The observed increase is due the incorporation of the aromatic group at the 

chain end. The polydispersity remained unchanged indicating that there was no 

degradation or coupling during the etherification reaction. 
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(4.6)

 

Table 4.4 : Preperation of Ar(Br2)-PEO (7) macromonomer. 

Macromonomer Mw
a 

(g/mol) 
Mn

a 

(g/mol) Mw/Mn
a 

PEO-OH 2280 2200 1.03 
Ar(Br2)- PEO 2470 2400 1.03 

a Determined by GPC based on polystyrene standards 

 

 

 
 

Figure 4.6 : 1H-NMR (CDCl3) spectrum of macromonomer by etherification 
reaction (7). 

The structure of the macromonomer was confirmed by 1H-NMR (CDCl3). As can be 

seen from Figure 4.6, 1H-NMR (CDCl3) spectrum of (7) contains characteristic 

bands contains at 3.34 ppm (CH3), 3.70 ppm (O-CH2CH2-O), and the aromatic 

protons of central benzene ring at 7.24-7.64 ppm. Due to the implied mechanism, the 
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aromatic-CH2 groups are in the vicinity of O atoms of the first PEO repeating unit 

and the corresponding protons give a clear signal at 4.55 ppm. 

4.1.7 Preparation of 2-methyl-1,4-phenylenediboronic acid 

2-methyl-1,4-phenylenediboronic acid (8) was synthesized from 2,5-dibromotoluene 

by using n-BuLi followed by reaction with trimethylborate at -78 oC and acidic 

working (4.7). 

 

 

(4.7) 

 

4.1.8 Preparation of bis(boronic ester) for esterification reaction 

Refluxing of (8) with 1,3-propanediol using a Dean-Stark trap afforded bis(boronic 

ester) (9) (4.8). The esterification reaction of the diboronic acid was made for 

solubility reasons, as compound (8) is not soluble in CCl4, the apporiate solvent for 

bromination of methyl groups with NBS.  

 

 
 

(4.8) 
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The IR spectra of boronic acid and boronic ester are given in Figure 4.7. The peak 

from 3200 cm-1 attributed to –OH stretch from spectra of boronic acid is not present 

in that of boronic ester (Figure 4.7b). As can be seen from Figure 4.7a, in addition to 

the band corresponding to the B-O stretching band at 1390 cm-1 from boronic acid 

was noted. 

4000 3500 3000 2500 2000 1500 1000

Wavenumber (cm -1)

(a)

(b)
B-OOH

 
 

Figure 4.7 : IR spectra of boronic acid (a) and boronic ester (b). 
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Figure 4.8 : 1H-NMR (CDCl3) spectrum of  boronic ester (9). 

The structure of Boronic ester agent was confirmed by spectral analysis. 1H-NMR  

(CDCl3) spectrum of (9) exhibits the signals at 4.2 and 2.0 ppm corresponds to 

methylene protons of ester group. The aromatic protons of compound 9 was 

observed at 7.25-7.68 ppm. 2.4 ppm corresponding to the methyl protons were also 

noted. 

4.1.9 Preparation of monofunctional initiator for ATRP 

Benzene-2-bromomethyl-1,4-bis(boronic acid propanediol diester) (10) was 

synthesized by bromination of methyl groups of bis(boronic ester) (9)  with NBS in 

CCl4 (4.9). These initiaor was intended to be used in further polymerization reaction. 

Intermediate (10) has a pair CH2Br groups and is expected to be effective as a 

monofunctional initiator in ATRP. 

 

 
(4.9) 
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Figure 4.9 : 1H-NMR (CDCl3) spectrum of  monofunctional initiator (10). 

The structure of boronic ester agent was confirmed by 1H-NMR (CDCl3) spectral 

analysis. The shifting of the peak from 2.4 ppm (a protons in Figure 4.8) to 4.8 ppm 

(a proton in Figure 4.9) is a clear indication of bromination. The aromatic protons of 

10 appeared at 7.25-7.73 ppm. Notably, methylene protons (c) adjacent to ester 

linkage were disapered at 2.0 ppm. 

4.1.10 Preparation of PSt macromonomer by ATRP 

(10) has a pair of CH2Br groups and is expected to be effective as a monofunctional 

initiator in ATRP. Moreover, boronic ester functionalities, useful for Suzuki 

coupling in combination with Ar(Br2)-PEO macromonomer are present in this 

structure. The ATRP using the CuBr/bpy catalytic system provide a precursor 

polymer with a central benzene group substituted with macromolecular chain of 

styrene and preserving also the two ester boronic functionalities (4.10). As the 

functionalized Ar(BO2C3H6)-PSt was intended to be used in a further polymerization 

reaction. The result of polymerization is shown in Table 4.5. The relatively, higher 

molecular weight values obtained with GPC may be due to expected boronic ester 

functionality cannot observe from 1H-NMR (CDCl3). However, relatively low 

polydispersity was attained.  
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(4.10) 

 

Table 4.5 : Result of ATRP of styrene by using benzene-2-bromomethyl-1,4-
bis(boronic acid propanediol diester) (10) as an initiator. 

 

Macromonomer Conversion 
(%) 

Time 
(min) 

Mntheo 
(g/mol) 

MnNMR
b

(g/mol) 
MnGPC

c 

(g/mol) 
Mw/
Mn

c 

Ar(BO2C3H6)-PSt 
(11) 32 50 3200 8250 9150 1.4 

Polymerization conditions; [M]0 /[CuBr]o / [L]o  = 86/1/3  at 110 oC. bipyridine used as a ligand. 
a Bulk 
 b Determined by 1H -NMR spectra. 
c Determined by GPC based on polystyrene standards. 

4.1.11 Preparation of PP by Suzuki polycondensation 

Hydrophilic Ar(Br2)-PEO type macromonomer (7) and hydrophobic Ar(BO2C3H6)-

PSt (11) type macromonomer were reacted via for Suzuki-type polycondensation in 

the presence Pd(PPh3 )4 as catalyst to form desired amphiphilic copolymer (4.11). 

 

 

 
 
 
 

(4.11) 

 
 

Table 4.6 : Result of polyphenylene by Suzuki polycondensation using (7) and  (11) 
as  macromonomers. 

 

Macromonomer Macromonomer Method of 
Polymerization 

MnGPC 
(g/mol) Mw/Mn

 

Ar(BO2C3H6)-PSt 
(11) 

Ar(Br2)-PEO (7) Suzuki 32400 2.28 
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The structure of PP (12), carrying Ar(BO2C3H6)-PSt and Ar(Br2)-PEO, was 

investigated by 1H-NMR, GPC analysis, FT-IR, UV and fluorescenece. 

 

 
Figure 4.10 : 1H-NMR (CDCl3) spectra of functionalized Ar(BO2C3H6)-PSt (11) 

and  Ar(Br2)-PEO (7) and finalcopolymer (12). 

Figure 4.10 shows 1H-NMR spectra of PP and its precursors Ar(BO2C3H6)-PSt (11) 

and Ar(Br2)-PEO (7). Even if the protons of the backbone of PP (12) appear together 

with aromatic PSt ones in the 1H-NMR (CDCl3) spectrum in Figure 4.10a, by 

comparing with that of precursor polymer (7) (Figure 4.10b), one can observe the 

disappearance of the boronic ester functionality (protons i), due to its consuming in 

Suzuki reaction. 
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Figure 4.11 : GPC traces of macromonomers Ar(Br2)- PEO (7), Ar(BO2C3H6)-PSt 
(11) and the resulted PP(12). 

Figure 4.11 shows that the GPC trace of the new polymer (curve 12) is shifted to 

higher molecular weights, as comparing with that of starting  Ar(Br2)-PEO (curve 7) 

and Ar(BO2C3H6)-PSt (curve 11). It is also interesting to notice that the GPC trace 

of PP, even broader, is also symmetrical. GPC measurement of PP was performed 

after the reprecipitation from diethylether for removing the unreacted PEO 

macromonomer (7). But, unreacted PSt macromonomer could not removed by 

precipitation due to the high polystyrene character of PP. 



51 
 

 

Figure 4.12 : IR spectra of macromonomers (7) and (11) and copolymer (12). 

The IR spectra of macromonomers (7) and (11) and copolymer (12) are given in 

Figure 4.12. The PP IR spectra also show the presence of both components 

Ar(BO2C3H6)-PSt and  Ar(Br2)-PEO) in the structure of (12). The peak from 1262 

cm-1 attributed to B-O stretch from the spectra of macromonomer is not present in 

that of PP, in aggrement with 1H-NMR result. Other absorptions are found in both 

spectra due to the high content of styrene units, that usually covers the peaks of PP 

rings from the main chain: 3059 cm-1, 3025 cm-1 (aromatic CH stretching), 2923 cm-

1, 2849 cm-1 (aliphatic CH stretching), 1937 cm-1, 1867 cm-1, 1798 cm-1, 1665 cm-1  , 

760 cm-1  (out of plane hydrogen deformation), 1583 cm-1, 1492 cm-1, 1452 cm-1  (in 

plane bend stretching vibrations of phenyl ring). 
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Figure 4.13 : UV spectra of macromonomers (7) and (11) and copolymer (12). 

Moreover, UV absorption spectra of macromonomers (7) and (11) and copolymer 

(12) registered in CH2Cl2 solutions with same concentrations are shown in Figure 

4.13. The PSt macromonomer had an absorption at 240 nm and a smaller one at 262 

nm, whereas PEO macromonomer had an absorption at 227 nm. PP UV spectra also 

present two maxia of absorption at wavelengths close to that of macromonomer (11). 

Both peaks have a higher intensity than that of (11), but a more accentuated 

difference can be noticed in second one. The second strong absorption band of each 

PP was due to the presence of suplamentary phenylene rings in the main chain. 
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Figure 4.14 : Fluoresence spectra of macromonomers (7) and (11), and the PP 
obtained by the Suzuki method (12). 

Furthermore, fluorescence properties of PP and macromonomers were investigated 

in Figure 4.14. The measurements were performed in CH2Cl2 solutions at the same 

concentration. Whereas PEO and PSt macromonomer does not show any 

fluorescenece properties, PP shows the strong fluorescence properties. The 

excitation  spectrum of (12) had the maximum at 299 nm, and emission spectrum 

obtainedfor the excitation wavelength at this value had a maximum at 366 nm. 
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Figure 4.15 : DSC traces of macromonomers (7) and (11), and the PP obtained 

by the Suzuki method (12). 

Also, the thermal behaviour of the polymers was followed by differential scanning 

calorimetry under nitrogen, with a heating rate of 10 oC/min (Figure 4.15). A first 

run was performed until 150 oC (lower than the well known intial degradation 

temperature of polystyrene), cooled down at 30 oC and than reheated until 300 oC 

(second run), for macromonomers and PP. The Pst and PP has close glass transition 

temperatures   (around 89.9 oC and 99.57 oC) characteristic for PSt. The PEO and PP 

has close melting temperatures (around 52.57 oC and 51.98 oC) characteristic for 

PEO.  
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