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BENZOXAZINE BASED MACROMOLECULAR ARCHITECTURE 

SUMMARY 

Polybenzoxazine is a newly developed phenolic system, having a wide range of 
interesting features and has the capability to overcome several shortcomings of 
conventional novolac and resole type phenolic resins. These materials exhibit (i) near 
zero volumetric change upon curing, (ii) low water absorption, (iii) for some 
polybenzoxazines Tg much higher than cure temperature, (iv) high char yield, (v) no 
strong acid catalysts required for curing, (vi) release of no toxic by product during 
curing. The molecular structure of polybenzoxazines offers enormous design 
flexibility which allows tailoring the properties of the cured materials for wide range 
of applications. Different synthetic strategies for the preparation of benzoxazine 
monomers and blends, their polymerization reaction mechanisms, and the structure 
property relationships of the cured materials have been studied by various research 
groups. But, pure polybenzoxazine based polymers also suffer number of 
disadvantages, in terms of (i) high curing temperature (~ 200°C or higher), (ii) 
difficulty in processing and (iii) brittleness. To properly address these issues and 
overcome the associated disadvantages, several researchers have attempted various 
strategies, such as (i) preparation of modified monomers with additional 
functionality, (ii) synthesis of novel polymeric precursors and (iii) by blending with a 
high performance polymer or filler and fibers. Polybenzoxazines prepared from the 
monomers precursor are associated with some limitations on their use in practical 
applications. The monomers are usually powder and processing into thin films is 
rather difficult. Addition of elastomeric materials to brittle resins is a well known 
approach to improve the ductility. But while improvement in ductility of 
benzoxazine may be achieved using this approach, it sacrifices the intrinsic 
advantages of thermosetting resins. To improve the process ability and mechanical 
properties novel polymeric based precursors have been synthesized by incorporating 
benzoxazine units either as side chain or as end chain or in main chain of polymer. It 
is expected that, the cross-linked network structure formed from polymer and 
polymerization of benzoxazine, will exhibit enhanced mechanical property while 
retaining the beneficial properties of polybenzoxazine. Cross linkable telechelics 
with benzoxazine moiety at the chain end. In this approach, benzoxazine ring has 
been anchored to the end of a polymer. Here a polymeric structure act as back bone 
structure, which are end capped with benzoxazine. Telechelics with relatively large 
molecular weight oligomers possess thermoplastic like properties, while allowing 
later cross linking for dimensional stability, chemical resistance, and high 
temperature stability.  

Thermally curable benzoxazine ring containing polystyrene macromonomers were 
synthesized and characterized. 1,4-Dibromo-2,5-bis (bromomethyl)benzene and 1,4-
dibromo-2-(bromomethyl)benzene were used as initiators in atom transfer radical 
polymerization (ATRP) of styrene. The resulting polymers were used in combination 
with 3-aminophenylboronic acid hemisulfate, for a Suzuki coupling. 
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The obtained polymers, with amino groups in the middle or end of the chains, were 
reacted with formaldehyde and phenol to yield benzoxazine ring-containing 
macromonomers. In addition to the glass transtion temperature of polystyrene 
segment observed at ca. 105ºC their differential scanning calorimetry (DSC) exhibit 
an exotherm at ca. 276oC corresponding to the oxazine thermal polymerization. Both 
macronomers undergo thermal cure with the formation of thermosets having 
polystyrene segments.  

Addition to telechilic strategy a novel naphthoxazine ring containing poly(ε-
caprolacton) (PCL) was synthesized and characterized. For this purpose, first 
hydroxyl functional naphthoxazine, namely 2-(1H-naphtho [1,2-e][1,3] oxazin-2-yl) 
ethanol (N-a-OH) was prepared by the reaction of 2-naphthol, ethanolamine and 
methanal either in bulk or in dioxane as solvent at 110 ºC. Subsequently, N-a-OH 
was used as the initiator for the stannous-2-ethylhexanoate catalyzed living ring 
opening polymerization of ε-caprolactone. The gel permeation chromatography 
(GPC), fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic 
resonance spectroscopy (1H-NMR) studies revealed that low poly dispersity PCL 
with naphthoxazine functionality at the end of the chain was obtained. The resulting 
PCL macro monomer undergoes thermal curing in the presence of low molar mass 
benzoxazine (P-a) at various temperatures with the formation of thermo sets having 
PCL segments. Curing behavior of the monomer and polymers has also been studied 
DSC.  

For main chain precursors we have synthesized high molecular weight 
poly(etheresters) (PEE) containing benzoxazine units in the main chain by the diol 
functional monomer first was synthesized using bisphenol A, formaldehyde and 2-(2-
amino-ethoxy) ethanol. Polycondensation of the resulting benzoxa-zine diether diol 
(B-Etherdiol) with adipoyl chloride and terephthaloyl dichloride in the presence of 
triethylamine resulted in corresponding PEE with molecular weights of 34,000 Da. 
These polymers consist of benzoxazine units, formed cross linked network. Here, 
presence of polyester introduced flexibility in the resulting polymer. These reactive 
poly (etherester) films can be further cross linked thermally which could enhance the 
application of polybenzoxazines.  Transparent flexible films were obtained by the 
solvent casting method. Structures of the precursor diol monomer and the resulting 
PEEs are confirmed by FT-IR 1H-NMR analysis. Curing behavior of both the 
monomer and polymers has also been studied by DSC. Thermal properties of the 
cured polymers are also investigated by thermo gravimetric analysis (TGA). For side 
chain benzoxsazine containing polymers. 

A novel acetylene monomer containing benzoxazine group was synthesized and 
polymerized with [(norbornadiene)rhodium(I) chloride]2 ([(nbd)RhCl]2) to give the 
corresponding polymer. The effect of triethylamine as co-catalyst in the 
polymerization was investigated. The spectral and thermal analysis confirmed the 
presence of benzoxazine functionality in the resulting polymer. It is shown that 
polyacetylene containing benzoxazine side groups undergoes irreversible cis-trans 
isomerization and thermally activated curing in the absence of any catalyst forming 
polyacetylene thermoset with high thermal stability. 
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BENZOKSAZİN ESASLI MAKROMOLEKÜLER MİMARİ 

ÖZET 

Polibenzoksazinler, ilginç bir çok özellikleri ile novalak ve resol tipi fenolik 
reçinelerine daha üstün gelen yeni geliştirilmiş fenolik sistemlerdir. Bu malzemeler 
(i) kürleme sırasında hemen hemen hacimsel değişime uğramayışı (ii) düşük su 
absorpsiyonu (iii) bazı polibenzoksazinler için Tg (camsı geçiş sıcaklığı) kürlenme 
sıcaklığından yüksek oluşu (iv) yüksek yanma ürünü yüzdesi (v) kürleme için asit 
gerektirmemesi (vi) kürleme sırasında yan ürün oluşturmaması gibi özellikler 
gösterirler. Polibenzoksazinlerin moleküler yapıları kürlenmiş malzemelerin 
özelliklerini farklı uygulamalar için geniş bir aralıkta değiştirme imkanı tanır. 
Benzoksazin monomerleri ve karışımları, polimerizasyon mekanizmaları, kürlenmiş 
malzemelerin yapı özellik ilişkileri çeşitli araştırma grupları tarafından araştırılmıştır. 
Fakat  saf polibenzoksazin kimyasının (i) yüksek kürleme sıcaklığı (~ 200°C veya 
üstü), (ii) işleme zorluğu ve (iii) kırılganlık gibi dezavantajları vardır. Bu 
dezavantajların üstesinden gelmek için birçok araştırmacı değişik stratejiler 
denemiştir. (i) Çeşitli fonksiyolu gruplarla modifiye edilmiş benzoksazin sentezi, (ii) 
polimerik benzoksazin sentezi, (iii) dolgu maddeleri, fiberler veya başka yüksek 
perfrmanslı polimerlerle karıştımak denenmiştir.  

Fonksiyonlandırılmış monomerlerden hazırlanan polimerler bazı sınırlamalarla 
karşılaşmıştır, örneğin, monomerler genellikle toz halindedir, film haline getirmek 
oldukça zordur. Kırılgan reçinelere elastomerik malzemeler katmak iyi bilinen bir 
yöntemdir. Fakat bu yöntemde kırılganlık azaltılırken, fenolik reçinelerin geleneksel 
özellikleri kaybolmaktadır. Polibenzoksazinlerin işlenebilirliğini ve mekanik 
özelliklerini geliştirmek için yapısında benzoksazin üniteleri içeren yan zincir, ana 
zincir veya telekilik polimerler sentezlenmiştir. Kürleme ile oluşacak çapraz bağlı 
yapılarda benzoksazinin bağlı olduğu polimerik yapıların işlenebilirliğe ve mekanik 
özelliklere katkısı beklenmiştir. Zincir sonunda benzoksazin içeren çapraz 
bağlanabilen telekilik sentezi yaklaşımı ile benzoksazinler bu polimerlere 
bağlanmıştır. Polimerik yapı ana iskelet görevi yapmaktadır. Böylece, telekilik 
polimerler termoplastik rol oynamakta ama, boyutsal karalılık, kimyasallara direnç 
ve ısıl dayanım gösterebilmektedirler.  

Bu amaca yönelik benzoksazin içeren polistirenler sentezlenmiştir. Bunun için 1,4-
dibromo-2,5-bis(bromometil)benzen ve 2-bromo-1,4-bis(bromometil)benzen ATRP 
(Atom Transfer Radical Polymerization) başlatıcısı olarak kullanılmıştır. Ele geçen 
polimer 3-aminofenil boronik asit hemisülfat ile Suzuki eşleşme reaksiyonuna 
sokulmuştur. Böylece, zincir sonunda veya ortasında amino grubu içeren polimerler 
elde edilmiştir. Bu polimerler paraformaldehit, fenol ile reaksiyona sokularak 
benzoksazin içeren makromonomerler sentezlenmiştir. DSC (Differential Scanning 
Calorimeter) çalışmaları 105°C’ daki polistirene ait Tg dışında 276°C’ de oksazinin 
halka açılma ekzotermini de göstermiştir. Her iki makromonomer kürlenebilmiş ve 
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polistiren segmentleri içeren termosetler elde edilmiştir. Telekilik stratejisine ek 
olarak, naftoksazin uç gruplu poli(ε-kaprolakton) (PCL) sentezlenmiştir. Bunun için  
2-(1H-nafto[1,2-e][1,3]oksazin-2-il)etanol (N-a-OH) 2-naftolün, etanolamin ve 
paraformaldehit reaksiyonundan elde edilmiştir. Bu bileşik kalay-2-hekzanoat 
katalizörü eşliğinde ε-kaprolaktonun yaşayan polimerizasyonunda başlatıcı olarak 
kullanılmıştır. GPC (Gel Permeation Chromatography), FT-IR (Fourier Transform 
Infra Red), NMR (Nuclear Magnetic Resonance) çalışmaları düşük polidispersite 
indeksli naftoksazin sonlu PCL elde edildiğini göstermiştir. PCL monofonksiyonlu 
benzoksazin (P-a) varlığında çeşitli sıcaklıklarda termosetler oluşturmuştur. 
Başlatıcının ve PCL nin kürlenme davranışları DSC ile izlenmiştir.  

Ana zincirde benzoksazin içeren polimerler için yüksek molekül ağırlıklı 
poli(estereter)ler (PEE) sentezlenmiştir. Bunun için önce diol fonksiyonlu 
benzoksazin monomeri bisfenol A, paraformaldehit ve 2(2-aminoetoksi) etanol 
kullanılarak sentezlenmiştir. Trietilamin varlığında bu monomerin (B-eterdiol) 
tereftaloil klorür ve adipoil klorürle kondenzasyon reaksiyonları yaklaşık 34,000 Da 
ağırlığında PEE vermiştir. Böylece, bu polimerler kürlenebilen benzoksazin 
ünitelerinden oluşmuştur. Ester eter üniteleri sonuç polimere esneklik vermek için 
seçilmiştir. Kürlenebilir poli(estereter) filmleri polibenzoksazinlerin uygulamalarını 
geliştirmektedir. Diol monomerinin ve PEElerin yapıları FT-IR, NMR analizleri ile 
termal özellikleri DSC ve TGA (Thermogravimetric analysis) ile analizlenmiştir. 

 Yan zincirde benzoksazin içeren polimerler için asetilen içeren benzoksazin 
sentezlenmiştir. Bu monomer [norbornadienrodyum(I) klorür]2 katalizörü ile 
polimerleştirilmiştir. Trietilamin ko-katalizör olarak kullanılmıştır. Spektral ve 
termal analizler ile polimer incelenmiş yapının benzoksazin içeren poliasetilen 
olduğu gösterilmiştir. Termal analizler polimerde tersinmez cis-trans izomerisayon 
göstermiştir. Sonuçta katalizör gerektirmeden kürlenebilen poliasetilen termosetleri 
ele geçirilmiştir. Bu termosetler klasik poliasetilenlerden termal olarak daha gelişmiş 
özellik göstermiştir.  
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1.  INTRODUCTION 

Phenolic resins are widely used in industry for various applications, from 

construction materials to high technology aerospace industry. Though several 

desirable properties, such as good mechanical strength, dimensional stability, 

resistance against various solvents and flame, are characteristics of the phenolic 

resins, a number of short-comings are also associated with these materials. For 

example, they are brittle,  have poor shelf life,  acid or base catalysts are often used 

for the preparation of resin, which corrode the processing equipments, and they 

release by-products (such as water, ammonia compounds during curing) which 

sometimes affect the properties of cured resins by forming micro voids. To overcome 

these problems recently a new type of addition-cure phenolic system, 

polybenzoxazines, has been recently developed. They have gained immense interest 

in the field of polymer research because they have the capability to exhibit such 

properties which are the combination of thermal and flame retardance properties of 

phenolics along with mechanical performance and molecular design flexibility. 

Although the benzoxazines were first synthesized in 1940s [1], the potential of 

polybenzoxazines has been recognized only recently [2]. The molecular structure of 

polybenzoxazines offers enormous design flexibility which allows the properties of 

the cured materials to be tailored for wide range of applications. These newly 

developed resins possess unique features, namely (i) near zero volumetric change 

upon curing, (ii) low water absorption, (iii) for some polybenzoxazine based 

materials Tg much higher than cure temperature, (iv) high char yield, (v) no strong 

acid catalysts required for curing, (vi) release of no by-products (even non-toxic) 

during curing [3]. Though several researchers have reported different synthetic 

methodologies of many benzoxazine containing monomers, blends, composites, and 

their cure reactions and properties, no extensive and critical review is available solely 

devoted to these materials. A special section has been dedicated to describe the 

recent trend to incorporate benzoxazine groups into macromolecular chains. 
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2.  THEORETICAL PART 

2.1 Chemical Methodologies for Synthesis of Benzoxazine Monomers 

Benzoxazine monomers are typically synthesized using phenol, formaldehyde and 

amine (aliphatic or aromatic) as starting materials either by employing solution 

method or solventless method. Using various types of phenols and amines, having 

different substitution groups attached, various types of benzoxazine monomer can be 

synthesized. These substituting groups can provide additional polymerizable sites 

and also affect the curing process. In order to obtain polymeric materials, with 

desired properties, by tailoring the benzoxazine monomer with different functionality 

and a wide variety of monomers can be synthesized by using appropriate chosen 

phenol and amine. In this section synthesis of different benzoxazine monomers have 

been discussed. 

2.1.1 Mono-functional benzoxazine monomers 
Condensation reaction of primary amines with formaldehyde and substituted phenols 

for the synthesis of well-defined benzoxazine monomers was reported. According to 

the reported procedure, this reaction was performed in a solvent in two-steps. It was 

found that the benzoxazine ring reacts preferentially with the free ortho positions of a 

phenolic compound and forms a Mannich bridge [4]. The synthetic procedure of the 

Mannich condensation for benzoxazine synthesis in a solvent proceeds by first 

addition of amine to formaldehyde at lower temperatures to form an N,N-

dihydroxymethylamine derivative, which then reacts with the labile hydrogen of the 

hydroxyl group and ortho position of the phenol at the elevated temperature to form 

the oxazine ring [5] (Reactions 2.1). 

CH3OH2 RNH2
HO N

R
OH

OH
O

N
R

R: Ph (P-a)

(2.1)
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As an example, to prepare 3,4-dihydro-3-cyclohexyl-6-t-butyl-1,3,2H-benzoxazine, 

Two procedures were employed [4]:  

Cyclohexylamine was mixed formaldehyde in dioxane. After addition of p-t-butyl 

phenol the mixture was refluxed for 2 h. Upon cooling to room temperature, a 

crystalline product was obtained, which was then recrystallized from 95% ethanol 

and the yield was 78%.  

Paraformaldehyde was dissolved in warm methanolic KOH solution. The solution 

was cooled during the portion-wise addition of cyclohexylamine. After the addition 

of 4-t-butylphenol, the resulting solution was cooled to room temperature and the 

product was recrystallized from 95% ethanol and the yield was 92%. Synthesis of a 

p-cresol based benzoxazine by using aniline, formaldehyde and p-cresol as starting 

materials in dioxane has been reported [6-8]. 

It has been observed that for some benzoxazines, the ring opening occurs in the 

presence of compounds with active hydrogen (HY), such as naphthol, indoles, 

carbazole, imides, and aliphatic nitro compounds even phenol (which is also one of 

the starting compound for synthesis) [9] and small oligomers form as by-products. 

Formation of the Mannich bridge structure due to the ring opening of benzoxazine in 

acidic medium (HY) [2] is shown below in reaction 2.2.  

 

 

(2.2) 

The benzoxazines derived from a strongly basic amine and a less acidic phenol found 

to be more stable in the hot alcohols [10]. Substituent on the benzoxazine ring affects 

the stability of the ring. The presence of more than one reactive ortho position in the 

initial product may lead to another aminoalkylation reaction [11]. A significantly 

higher yield obtained when the benzoxazine derived from phenol having an ortho 

substituent. 

The slow reaction rate, large amount of solvent required for the synthesis and, in 

some cases, the poor solubility of the precursors are the major disadvantages 

associated with this procedure. The use of an organic solvent also increases the cost 

of the products and causes environmental problems. Furthermore, the solvent residue 
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in the precursors also leads to problems during processing of the benzoxazine resins. 

To overcome these shortcomings, solventless synthesis in the melt state was 

developed [12]. 

The reaction mechanism and kinetics of this solventless synthesis were proposed 

[13]. In a typical synthesis, the reactants, i.e., aldehyde, amine and phenolic 

precursors are physically mixed together, heated to their melting temperature, and 

thereafter maintained at a temperature sufficient to complete the interaction of the 

reactants to produce the desired benzoxazine. In this connection, it should be pointed 

out that formaldehyde is not typically used as it evaporates easily and lose 

stoichiometry quickly. Instead, paraformaldehyde is used. The choice for phenols 

and amines provides the flexibility in designing monomer structure for tailoring the 

properties of the resulting polybenzoxazine polymer. The main advantages of the 

solventless synthetic method are improvement of reaction times compared with the 

traditional synthetic route and formation of fewer unwanted intermediates and by-

products. 

Although most of the benzoxazines were synthesized by using phenol, formaldehyde 

and primary amines as starting compounds several other synthetic strategies were 

also reported. To synthesize 3,4-dihydro-2H-1,3-benzoxazine, Firstly [14] N-(2-

hydroxy-3,5-dimethylbenzyl)-aminopropanoic acid was synthesized via the Mannich 

reaction between 2,4-dimethylphenol, aqueous formaldehyde, and 3-aminopropanoic 

acid in ethanol. This amino acid was allowed to react in 96% sulfuric acid at room 

temperature. After neutralization, 3-(2-hydroxy-3,5-dimethyl)benzyl-3,4-dihydro-

6,8-dimethyl-2H-1,3-benzoxazine was obtained. The reaction steps are shown in 

Scheme 3. In this method, the alkylating agent arises from acid-induced deamination 

of the phenolic Mannich base. Thus, the variety of substituent on the N-3 position of 

the benzoxazine ring is limited. Benzoxazine can also be obtained by heating the 

mixture of 2,4-xylenol and hexamethylenetetramine (3:4:1 mole) at 135°C for 2 h in 

air. The reaction of 1 mole of 2-hydroxybenzylamine with 2 moles of formaldehyde 

produces bis-(3,4-dihydro-2H-1,3-benzoxazine-3-yl)-methylene.  

Some 3,4-dihydro-2H-1,3-benzoxazines with substituents on C-2 or C-4 such as, 2,2-

dibenz-1,3-oxazine, were also synthesized, by the reactions of salicylamines(o-

hydroxybenzylamine) with glyoxal or -diketones in methanol at a temperature lower 

than 20 °C [15]. 
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(2.3) 

 

 

 

(2.4) 

Another method to synthesize benzoxazines is directed ortho-metalation 

methodology. This offers a predictable and widely applicable synthetic strategy for 

the regiospecific construction of heterocyclic compounds [16]. 3,4-Dihydro-2H-1,3-

benzoxazines were synthesized by directed ortho-lithiation of phenols and by side-

chain lithiation of substituted phenols, respectively, in one-pot by reacting with N,N-

bis[(benzotriazol-1-yl)methyl]amines  as 1,3-biselectrophile synthons (reaction 2.5) 

[17].  
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(2.5)

2.1.2 Di-functional and multi-functional benzoxazine monomers 
Curing of mono-functional benzoxazines with phenol resulted in the formation of 

only oligomeric structures with average molecular weight around 1000 Da. Thus, no 

materials could be made from this approach since the thermal dissociation of the 

monomer competed with chain propagation reaction so that high molecular weight 

linear structures were unobtainable [18]. Actually, there is no convincing evidence 

reported for the thermal dissociation theory, though it was mentioned in the 

literature. Moreover, it was reported that the reduction of reactivity is due to the 

hydrogen bonding formation. Such phenomenon was observed in the temperature 

range below where reverse Mannich reaction occurs in benzoxazine chemistry [19]. 

To overcome this limitation, a new class of difunctional or multifunctional 

benzoxazine monomers [20] have been developed, and their curing into phenolic 

materials with the ring opening reactions being initiated by dimers and higher 

oligomers in the resin composition. The precursor was synthesized using bisphenol-

A, formaldehyde and methyl amine in different solvents and referred as B-m, (see 

Table 2.1) as a reference to two of its original ingredients: bisphenol-A and 

methylamine. The main constituent of the resulting products was a monomer with 

difunctional benzoxazine ring structures at both ends of the bisphenol A. The rest of 

the composition consisted of a mixture of dimers and oligomers, with both 

benzoxazine rings and free phenol structures, as detected by NMR, FT-IR and SEC. 

It was observed that, the composition of the products is, to a large extent, dependent 

on the polarity of the solvent. This synthetic method consists of a few simple steps 

and can easily provide different phenolic structures with wide design flexibility.  

Similar type of difunctional benzoxazine was prepared using aniline instead of 

methyl amine [21, 22] and the pure monomer was referred as B-a and oligomers 

were as oligo-B-a. The structures of oligo-B-a and B-a analyzed by 1H-NMR 

measurements. The overall synthetic procedure is shown in reaction 2.6. To achieve 
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successful processing, cure kinetics of this material was investigated by using DSC, 

which indicated that the curing of benzoxazine precursors is an auto-catalyzed 

reaction until vitrification is occurred, and diffusion begins to control the curing 

process afterwards.  

 

 

 

 

(2.6) 

The synthesis of 6,6'-(propane-2,2-diyl)bis(3-phenyl-3,4-dihydro-2H-benzo[e] 

[1,3]oxazine) (B-a) in high yield by the solventless reaction process using 1,3,5 

triphenyl(alkyl) hexahydro-1,3,5 triazine, paraformaldehyde and bisphenol A has 

been reported [23]. 

Solventless method was successfully employed for synthesis of a series of 

difunctional monomers listed in Figure 2.1 [22-26].  

2.1.3 Step-wise controlled synthesis of dimers and oligomers 
To properly understand the structures of benzoxazines and the polymers formed due 

to the ring opening polymerization, several model oligomers (dimers, trimers, 

tetramers etc.) were synthesized using a controlled step-wise route [27-30]  and the 

synthetic strategy is shown in reaction  2.7. From in-depth characterizations of these 

model benzoxazine oligomers by 1H-NMR, 13C-NMR and FT-IR spectroscopy a 

pseudo cyclic structure based on stable –OH---N intramolecular hydrogen bonding 

and OH---O intramolecular hydrogen bonding has been proposed and the possibility 

of helical structure formation in the longer chain benzoxazine oligomers has been 

predicted.  
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Figure 2.1 : Synthesis of bisphenol-A and aniline based benzoxazine (B-a) monomer 

It was demonstrated how the stereo-structure of the reactant molecule plays an 

important role to control the reaction and synthesized an asymmetric product, which 

was not expected when considering the chemical formula of the reactants [31]. The 

major disadvantages of the typical polybenzoxazines are their brittleness and the high 

cure temperature needed to the ring opening polymerization. To address the issues 

related to the enhancement of the performance of polybenzoxazines are highly 

challenging. Two major approaches are generally considered: (1) by preparing 

specially designed novel monomers, or (2) by blending with a high-performance 

polymer or filler and fiber. 

Despite their usual thermal stability, the side functional groups R of the Mannich 

bridge, -CH2-NR-CH2-, were found to be the weakest points of the cross-linked 

network structures. Thermal decomposition study of the polybenzoxazines revealed 

that they decompose by loss of amine fragments [32]. Therefore “end-capping” to 

these functionalities by another polymerizable group was promising strategy to 

stabilize the Mannich bridge, with the expectation of further improvement of the 

thermal stability of the polybenzoxazines. 
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(2.7) 

As per approach one, introduction of ethynyl or phenyl ethynyl [33, 34], nitrile [35], 

propargyl [36] etc. groups, which can offer additional cross-linking site during 

polymerization, was found to acceptable choice for this purpose.  According to the 

second approach, mechanical and thermal properties of polybenzoxazines can be 

improved by the preparation of copolymers, polymer alloys, composites, and 

polymer-clay nanocomposites. 

2.1.4 Allyl containing monomers 
The main advantage of the allyl group [37,38] is that not only it provides additional 

crosslinkable sites, it can be easily be cured at temperature lower than acetylene 

groups. Allyl-containing monomers have attracted much attention because they are 

used as reactive diluents of bismaleimides to improve the toughness of the cured 

resin. Ishida also reported [12] the preparation of an allyl-containing benzoxazine 

monomer, 3-phenyl-3,4-dihydro-8-allyl-2H-1,3-benzoxazine, from allylphenol, 

aniline, and paraformaldehyde. A similar benzoxazine monomer based on 

allylphenol was reported for sillylation of allyl group to enhance the interface 

between the matrix and glass or carbon fiber in fiber-reinforced polybenzoxazine 

[39]. Also, similar bifunctional allylphenol-derived polybenzoxazine was reported 

[40].  Because of the absence of activated ortho position to the phenolic hydroxyl 

group, these allylphenol-based benzoxazine monomers, however, are considered to 

be difficult to polymerize through ring-opening and are not a good candidate for 

preparing high performance polybenzoxazines. The synthetic approaches adopted for 

the preparation of two novel benzoxazine monomers modified with allyl groups: (i) 

3-allyl-3,4-dihydro-2H-1,3-benzoxazine and (ii) bis(3-allyl-3,4-dihydro-2H-1,3-

benzoxazinyl) isopropane are shown below in reaction 2.8 [41]. 
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(2.8)

It was reported that benzoxazines containing allyl group can polymerize at 

temperatures below 150°C. However, this polymerization occurring at low 

temperature was not from the benzoxazine ring-opening reaction, but from the allyl 

group and high temperature above 250°C was still needed to complete the 

polymerization of benzoxazine rings. Synthesis of a series of allyl group containing 

mono-functional benzoxazine monomers, where the allyl group is attached with 

nitrogen and derived from cresol and allyl amine by solventless method has been 

reported and the effect of these allyl groups on polymerization reaction and the 

performance enhancement of the cured polymers at high temperature have been 

reported [42]. 

2.1.5 Acetylene containing monomers 
The synthesis of easily processable benzoxazine monomers with acetylene 

functionality has been reported [43]. It has been observed that the high thermal 

stability of the polybenzoxazines derived from this class of monomers is a combined 

result of polymerization of acetylene terminal functional group and oxazine ring-

opening polymerization. Most of the mono-functional monomers were synthesized 

by the general solvent method whereas the multifunctional monomers were by 

solventless method. The synthesis of various difunctional monomers is depicted in 

reaction 2.9.  
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(2.9) 

2.1.6 Propargyl ether containing monomers 
Propargyl ether group, as a thermally reactive end capping agent, has attracted much 

attention because these monomers can be synthesized in high yield with low cost, in 

contrast to ethynyl-containing monomers which the preparation procedure is in low 

yield and high price [44]. Novel benzoxazine monomers containing a propargyl ether 

group have been prepared as the cross-linkable functional group according to 

reaction 2.10 and obtained novel polybenzoxazines with attractive thermal properties 

[36]. The ring-opening polymerization of oxazine ring and cross-linking of propargyl 

ether group occurred at almost the same temperature range, at 230°C for mono-

functional and 249°C for bifunctional monomer. Polybenzoxazines derived from 

these monomers exhibited significantly improved thermal properties than the typical 

polybenzoxazines. 

 

 

 

 

 

(2.10) 
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2.1.7 Nitrile containing monomers 
Development of high performance phthalonitrile functional polybenzoxazines was 

another attempt taken to achieve highly thermal stable resin [35]. It was expected 

that side functionality, phthalonitrile, would contribute to the cross-linked network 

formation by its own polymerization. This attempt was taken because nitrile group 

reacts during pyrolysis of polyacrylonitrile. It has been reported that this thermal 

polymerization can be initiated by nucleophilic species that attack nitrile groups and 

form active species –C+=N−. The active species continue the reaction with the 

neighboring nitrile group and a ladder like polymer is formed with 

tetrahydronaphthiridine ring structure [45]. Benzoxazines with one or more nitrile 

functionalities of the following structures were synthesized. Figure 2.2 represents 

several phenyl nitrile containing benzoxazine monomers. 

 
 

 
 

Figure 2.2 : Phenylnitrile containing benzoxazine monomers. 

Notably, the polymers obtained from monomers with two –CN groups exhibited 

better thermal properties [46]. 

2.1.8 Meleimide & norbornane containing monomers 

Benzoxazine compound with a maleimide pendant (HPM-Ba) was prepared to 

achieve attractive processing and thermal properties. It was prepared from N-(4-

hydroxyphenyl) malemide (HPM), formaldehyde and aniline in dioxane medium and 

the yield was 30%. Another reported method is using 1,3,5-triphenylhexahydro-

1,3,5-triazine (TPHT). The reaction was performed through solventless synthesis 

route where TPHT, aniline and paraformaldehyde was mixed together and heated at 

150°C for 1.5 h. The yield of the final product, HPM-Ba, after washing and 
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precipitation was 70% [47, 48]. Similarly, mono-functional benzoxazine with 

norborane functionatility, NOB, was synthesized [49] using p-

hydroxyphenylnadimide, p-formaldehyde and aniline in DMF (dimethyl formamide) 

at 90°C. Also, nitrile group containing maleimide benzoxazine was synthesized to 

further improve thermal properties of polybenzoxazine resin [50]. The structures of 

benzoxazine monomers having malemide and norbornane functionality are shown at 

Figure 2.3. 

 
Figure 2.3 : Maleimidyl and norbornyl functional benzoxazines. 

2.1.9 Adamantane containing monomers 
The synthesis of adamantyl modified benzoxazine monomers (Figure 2.4) of the 

following structure from 4-(1-adamantyl)-phenol, formaldehyde and aniline (or 

methylamine) in dioxane were reported [51,52].  

. 

Figure 2.4 : Adamantyl functional benzoxazine. 

It was expected that the rigid structure of the adamantane will hinder the chain 

mobility (boat anchor effect) and substantially the thermal properties of the resulting 

polymer, including the glass-transition temperature and decomposition temperature 

would be enhanced, especially for poly(6-adamantyl-3-methyl-3,4-dihydro-2H-1,3-

benzoxazine) (poly(3-benzoxazine). In the poly(6-adamantyl-3-phenyl-3,4-dihydro-

2H-1,3-benzoxazine) (poly(2-benzoxazine) system, however, the opposite result for 

the glass-transition temperature was observed and explained by lowering of cross-

linking density. As the phenyl group was bulkier than the methyl group, the 

movement of the molecular chain was hindered between bridging points during the 

curing process; this resulted in a lower cross-linking density [51,52]. 
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2.1.10 Epoxy containing monomers 
Synthesis and polymerization of glycidylic derivatives of benzoxazines obtained 

from aniline and 4-hydroxybenzoic acid and from phenol and 4-aminobenzoic acid 

(reaction 2.11) was reported [53]. By introducing epoxy groups into the molecular 

structure of benzoxazine, another attractive way of improving the thermal stability 

and glass-transition temperatures of the resulting polybenzoxazines was achieved.  

 

(2.11)

2.1.11 Naphthoxazine monomer 
When benzene ring is replaced by the naphthalene, the corresponding oxazine 

becomes naphthoxazine. Naphthoxazines were synthesized employing the similar 

strategy, i.e., reaction of napthol, formaldehyde and primary amines. But along with 

it alkylaminomethyl-2-napthol also formed as by-product as shown in the reaction 

2.12 [9]. 

 

(2.12)

Solvent, temperature and basicity of amine play important roles upon the yield of the 

corresponding naphthoxazine monomer formation. Difunctional amines like p-

phenylenediamine when reacted with formaldehyde and napthol (1:4:2 molar ratio) it 

produced 2,2'-p-phenylene-bis-(2,3-dihydro-1H-napth[1,2-e]-m-oxazine) (2Na-a). 

Several other difunctional naphthoxazines were also synthesized from 

dihydroxynapthalene, formaldehyde and primary amines (Figure 2.5) [54-57].  
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Figure 2.5 : Difunctional naphthoxazine. 

Apart from naphthoxazine some fluorinated benzoxazine [58-60] and furan 

containing benzoxazine [61] have also been reported in the literature. 

2.2 Combination of Polybenzoxazines with Other Polymeric Materials 

As stated previously, several approaches to overcome some of the shortcomings of   

polybenzoxazines, such as mechanical properties, high curing temperature and low 

process ability, have been proposed. These include modification of the monomer, 

preparation of polymer blends and composites, hybridization with inorganic 

materials and chemical incorporation of benzoxazine structure into polymers. The 

first approach which concerns the modification of monomer in the synthesis step has 

been discussed in detail in the previous section. The described methods allow the 

possibility of preparation of a wide range of monomers with additional 

functionalities if not to meet completely targeted properties but at least to improve. 

In the following section, we will discuss the combination of polybenzoxazines with 

the other polymeric and inorganic materials. 

2.2.1 Preparations of blends and composites 

2.2.1.1 Rubber modified polybenzoxazine 
One of the successful approaches to overcome the inherent brittleness of the 

thermosets is modifying by rubber [62]. The toughening mechanism may be involved 

cavitations of rubber particles, followed by plastic deformation of the matrix. 

Through cavitations is not alone the considerable source of toughening, yet its 

importance on the plastic deformation of the matrix has been widely recognized [63, 
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64]. Two mechanisms for the plastic deformation induced by rubber particles have 

been proposed: (i) shear yielding of matrix between the neighboring rubber particles 

and (ii) plastic void growth of the matrix surrounding the particle. It has also been 

identified that, the role of the rubber particles in the matrix phase is to relieve the 

constraint in front of crack tips by rubber cavitations, which triggers the formation of 

shear bands [65]. Various morphological parameters, such as particle size, particle 

size distribution, and matrix to particle adhesion, play important roles in toughening 

[66-69]. Therefore, the liquid rubber, which is commonly used for epoxy 

modifications, is thought to be appropriate due to its low viscosity and its polarity 

can easily be monitored by changing the ratio of polybutadiene and acrylonitrile. The 

polarity control of additives is important because polarity effects the distribution of 

rubber in the matrix. It has been reported that the phase separation of rubber and 

matrix is necessary and the size of distributed rubber particle has to be 102 ∼ 103 nm 

to obtain substantial improvement in toughness. 

Polybenzoxazine was modified with amine-terminated butadiene acrylonitrile rubber 

(ATBN) and with carboxyl-terminated butadiene acrylonitrile rubber (CTBN) in 

order to improve its mechanical properties. Rubber modification of polybenzoxazine 

was carried out by adding liquid rubber to a molten benzoxazine monomer 

(bisphenol-A based difunctional benzoxazine) at 120°C with mechanical stirring. 

The molten mixture was then cast in a silicon rubber open mold and cured at a well 

defined curing cycle. In this particular investigation, the formulation of ATBN and 

CTBN series were varied from 0-3 wt %.  

In another investigation, hydroxyl terminated polybutadiene (HTBD) rubber, having 

various epoxy content, was used as the toughening modifier [69]. As the epoxidized 

polybutadiene rubber can undergo copolymerization with the hydroxyl groups, 

produced upon ring opening of benzoxazine, and thus can be chemically grafted into 

the matrix network [70], a toughened composite with a higher compatibility was 

obtained. Melt mixing method was used to obtain rubber-modified polybenzoxazine. 

Preparation of hydroxyphenylmaleimide (HPM) and ATBN-modified 

polybenzoxazine by mixing benzoxazine monomer (B-a), HPM and ATBN in 

melting state, followed by film casting and curing have been reported [71]. 
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2.2.1.2 Polycarbonate blends with polybenzoxazine 
Due to the relatively high toughness and the capability of intermolecular hydrogen 

bond formation with polybenzoxazine main chain, polycarbonate (PC) was chosen as 

blending material to improve the toughness of polybenzoxazines [72]. The driving 

force that results in the miscibility of the PC/benzoxazine blend in the entire 

composition range is the interaction between the hydroxyl groups of 

polybenzoxazine and the carbonyl groups of the PC. A solution blending method was 

employed for the preparation of all the blend samples. The solutions of the purified 

benzoxazine monomer which is based on p-cresol and aniline, 3-benzyl-3,4-dihydro-

6-methyl-2H-1,3-benzoxazine (abbreviated as p-Ca), and PC were blended at room 

temperature to form a homogeneous mixture with the aid of chloroform and a 

transparent yellow solution was obtained. The solvent in the blended mixture was 

first evaporated in an ambient environment until most of the solvent was driven off, 

followed by removal of the residual solvent and moisture in a vacuum oven at room 

temperature for at least 48 h. The sample obtained above was isothermally 

polymerized in an air-circulated oven at 180°C for various periods of time. It should 

be noted that phase separation occurs with the increase of PC content [73]. 

2.2.1.3 Poly(ε-caprolactone) blends with polybenzoxazine 

Though poly(ε-caprolactone) (PCL) possesses very low Tg (-55°C), its thermal 

stability is much higher compared to the other low Tg modifiers. This unique 

property makes PCL a potential candidate for blending with polybenzoxazine to 

achieve easy possibility and improved thermal properties. Apart from that, as 

intermolecular hydrogen bonding between hydroxyl groups of polybenzoxazine main 

chain and the carbonyl groups of PCL may form, it can enhance the miscibility of 

PCL with polybenzoxazine [74-76]. 

Preparation and characterizations of PCL- polybenzoxazine (PB-a) blends by melt 

blending process was reported by Ishida and Lee. Different concentrations of PCL 

were added to B-a at 120°C. After through mixing, a clear homogeneous mixture 

obtained. This mixture was then step cured in a compression molder after degassing. 

Blends of B-a with PCL by casting from chloroform solution at room temperature 

followed by removal of solvents by drying in a vacuum oven at 60°C for 2 d was 
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prepared [76]. A melt blending method was applied to prepare PB-a/PCL blends 

from B-a and PCL. 

 Solution blending method was used a to obtain B-m / PCL blends having different 

compositions where THF used as solvent [77]. 

2.2.1.4 Polyurethane (PU) blends with polybenzoxazine 
Good abrasion resistance, outstanding oil resistance, excellent low-temperature 

flexibility, and extraordinary processibility make polyurethane (PU) elastomers 

(which are the family members of segmented polymers where soft segments derived 

from polyols and hard segments from isocyanates and chain extenders) as one of the 

most attractive class of elastomers. They also exhibit the widest variety of hardness 

and elastic moduli that just fill in the gap between plastics and rubbers. In another 

words, they have the potential to tailor the materials with characteristics of either 

high modulus or good elasticity. However, low resistance to moisture and hydrolysis, 

low resistance to polar solvents, and poor thermal stability are some limitations 

associated with these elastomers. Generally, the acceptable thermal durability for 

PUs ranges from 80 to 90°C, and the thermal degradation of PUs occurs at ca. 200°C 

[78]. The phenolic hydroxyl groups present in the polybenzoxazine have a strong 

capability for reacting with PUs or their prepolymers with terminal reactive -NCO 

groups, which draws the motivation to prepare PU/ polybenzoxazine blends [79, 80]. 

Poly(urethane-benzoxazine) films were prepared by solution blending method where 

the PU prepolymer was mixed with various amount of a benzoxazine monomer, B-a, 

in THF and  followed by casting on glass plates and curing by thermal treatment 

[81]. 

Inter Penetrating Networks (IPN) of  PU/ PB-a was prepared by mixing B-a with PU 

in warm N,N-dimethylacetamide (DMA). The mixture was procured at 120°C for 1 h 

and was coated into a preheated Teflon mould at 180°C. The mould was then kept in 

a vacuum oven at 120°C for 2 h and then cured at 200°C for 2 h [82].  

A melt blending technique was used for alloying polybenzoxazine with PU and 

epoxy [83]. 
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2.2.1.5 Epoxy blends with polybenzoxazine 
The benzoxazines were first copolymerized with an epoxy resin in order to modify 

their performance [84]. The addition of epoxy to the polybenzoxazine network 

greatly increases the crosslink density of the thermosetting matrix and strongly 

influences its mechanical properties. Copolymerization led to significant increase in 

the glass transition temperature, flexural stress, and flexural strain at break over those 

of the polybenzoxazine homopolymer, with only a minimal loss of 

stiffness.Copolymers from polybenzoxazines and epoxy resins were also designed 

keeping in mind that the ring opening reactions of benzoxazines produces phenolic 

hydroxyl groups, which can react with epoxy resins and provide additional cross-

linking points into the matrix offer a network structure [85]. Samples containing 50 

mol % B-a and 50% DGEBA (diglycidyl ether of bisphenol A) was prepared and 

cured in a mold in the oven using the curing condition of 150°C/1 h + 170°C /1 h + 

190°C /2 h  + 200°C/2 h  + 220°C/2 h. As it is reported that terpenediphenol-

formaldehyde resin possesses superior heat resistance, water resistance, and 

mechanical properties, terpenediphenol based benzoxazine monomers were 

synthesized (reaction 2.13) and cured blend samples containing 50 mol% DGEBA 

and 50 mol% benzoxazine monomers were prepared employing the above mentioned 

cure conditions [86].  

 

 

 

 

(2.13) 

The molding compounds were prepared by hot roll-kneading of a mixture of 50 phr 

(per hot roll-kneading) Ya, 50 phr OCNE (o-Cresol novolac-type epoxy resin) wax 

and 100 phr fused silica. Test pieces of the molding compounds were prepared by 
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compression molding at 190°C for 20 min after preheating to required moldability 

for compression molding. All test pieces were postcured at the same cure conditions 

to complete the cure reactions, and they were used for the various measurements. 

Copolymers of chain extended epoxy (40 mol%) with benzoxazine (bisphenol A and 

aniline based) (60 mol%) were prepared using a solutiong mixing method in acetone 

and investigated the effects of molecular weight of the added epoxy resins [87]. 

2.2.1.6 Phosphorous containing blends with polybenzoxazine 
Organo-phosphate compounds have attracted attention for their use as flame 

retardant polymers. Two different routes were suggested for the preparation of flame 

retardant polymers. [88,89] (1) modified novalac resins with benzoxazines were 

copolymerized with a glycidyl phosphinate, (2) modified novalac resins with 

benzoxazines were cured with isobutyl bis(glycidylpropylether) phophine oxide 

(IHPOGly) as cross-linking agent. Mixtures of novolac resin, diglycidylethers and 

PPh3 were made by dissolving the components in acetone and then evaporating the 

solvent at room temperature under a vacuum. The resin was placed into a 60 x 40 x 

0.5 mm mold and compression molded at 180°C for 2 h under 0.1 Mpa pressure. 

Post-curing was carried out at 220°C for 5 h. 

Three approaches had been applied to obtain flame-retardant benzoxazines [90]. In 

the first approach, a novel phosphorous containing dopotriolbenzoxazine was 

copolymerized with a commercial benzoxazine [6,6-bis(3-phenyl-3,4-dihydro-2H-

1,3-benzoxazineyl) methane (F-a)] or diglycidyl ether of bisphenol A (DGEBA). In 

the second case, the element phosphorus was incorporated into benzoxazine via 

curing reaction of dopotriol and F-a. In the third approach, dopo reacted with 

benzoxazine to incorporate the element phosphorus (Figure 2.6). 

2.2.1.7 Clay-polybenzoxazine composites 

Smectite clays became good candidates for the preparation of organic–inorganic 

nanocomposites because they can be broken down into nanoscale building blocks 

and act as reinforcing phase in organic–inorganic hybrid nanocomposites [91, 92]. 

Designing and creation of new materials from polymer and layered silicates 

composites has become extremely interesting in the field of research, because they 

typically exhibit properties far superior to those of separate components and are 

capable of achieving the recent technological requirements. Thus, the general 
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perception that clays act as low cost fillers in polymers has been changed because of 

their ability to enhance the properties of the final materials. 

 
Figure 2.6 : Flame retardant materials.  

A nanocomposite composition comprising clay and an effective amount benzoxazine 

monomer, oligomer and/or polymer was developed. The presence of benzoxazines in 

the clay resulted in an at least about 5% increase in the spacing between platelets of 

the clay. In another study, the polybenzoxazine–clay hybrid nanocomposites have 

been prepared from a polybenzoxazine precursor (B-a) and organically modified 

montmorillonite (OMMT), as a type of layered silicates. OMMTs were prepared by 

surface treatment of montmorillonite (MMT) by octyl, dodecyl or stearyl ammonium 

chloride. In the melt of B-a OMMT was mixed by using a mechanical stirrer at 

100°C, where small amount of methylene chloride was added to achieve better 

dispersion. The mixture was then heated at 120°C for 2 h to remove solvents, 

followed by film casting on glass plates. Then film was cured by step wise increase 

of heating up to 230°C.  

Poly(urethane-benzoxazine)-clay hybrid nanocomposites (PU/P-a-OMMTs) were 

prepared [93] from an in situ copolymerization of a polyurethane (PU) prepolymer 

and a mono-functional benzoxazine monomer, 3-phenyl-3,4-dihydro-2H-1,3-

benzoxazine (P-a), in the presence of an organophilic montmorillonite (OMMT), by 

solvent method using DMAc. OMMT was prepared by the cation-exchange reaction 

between Na+ cation and dodecyl ammonium chloride. In the OMMT suspension in 

DMAc a solution of Pa in DMAc was added at 60°C. To this solution PU prepolymer 
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was added with continuous stirring. The homogeneous solution was cast on a glass 

plate followed by thermal treatment for curing.  

Another type of organically modified montmorillonite was prepared by ion-exchange 

reaction between Na+-montmorillonite and various protonated amines [94]. The 

amines used as the modifying agent were dodecylamine (DODEC), 6-aminocaproic 

acid (CAPRO), 4-amino-N,N-dimethyl aniline dihydrochloride (ANDAD), p-

phenetidine (PHEN) and 2,4,6-trimethylaniline (TMAN). Mixtures of 3 wt % 

OMOM with benzoxazine monomers were prepared by using solvent, binary solvent 

and non-solvent systems. All samples were cast on aluminium foil surface, and 

solvents were allowed to evaporate and then cured at 230 °C for 90 min. 

For preparation of nanocomposites, OMMT was mixed with B-a and PBO (2,2'-(1,3-

phenylene)-bis(4,5-dihydro-oxazoles)) in their melt state (reaction 2.14) [95].  

 

(2.14)

Carbon fiber, glass fiber and natural fiber have been used to develop high 

performance fiber reinforced polybenzoxazine composites and reported their 

properties [96-98]. They also investigated the use of CaCO3 as filler [99]. The 

preparation of titania-polybenzoxazine as organic inorganic hydrid material by using 

sol-gel process was reported [100]. 

2.3 Preparation of Polymers with Benzoxazine Moieties 

Regarding chemical linking of polybenzoxazines with the other conventional 

polymers the macromonomer technique was followed. The benzoxazine groups are 

introduced by initiation of a selected polymerization or synthesizing benzoxazines 

from amino or phenol functional prepolymers. In the former case, the propagating 

species should be unreactive towards the benzoxazine ring and N and O hetero 

atoms.   
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2.3.1 Benzoxazine functional polystyrene 
Poly(p-vinylphenol) (Poly(VP)) based benzoxazine was prepared from Poly(VP), 

formaline, and aniline (reaction  2.15). The curing behavior of the benzoxazine with 

the epoxy resin and the properties of the cured resin were investigated.  

 

 

(2.15) 

Consequently, the curing reaction did not proceed at low temperatures, but it 

proceeded rapidly at higher temperatures without a curing accelerator. The reaction 

induction time or cure time of the molten mixture from Poly(VP) based benzoxazine 

and epoxy resin was found to decrease, compared with those from conventional 

bisphenol A based benzoxazine and epoxy resin. The curing reaction rate of 

Poly(VP) based benzoxazine and epoxy resin increased more than that of 

conventional bisphenol A based benzoxazine and epoxy resin. The properties of the 

cured resin from neat resins and from reinforced resins with fused silica were 

evaluated. The cured resins from Poly(VP) based benzoxazine and epoxy resin 

showed good heat resistance, mechanical properties, electrical insulation, and water 

resistance compared to the cured resin from VP and epoxy resin using imidazole as 

the catalyst.  

More recently, copper catalyst 1,3-cycloaddition reaction (named as “Click 

Reaction”) was used to synthesize side-chain benzoxazine functional polymers [101]. 

This route has the unique feature of being quantitative and at the same time 

preserving the benzoxazine ring structure. The benzoxazine groups have been shown 

to readily undergo thermal ring opening reaction to form cross-linked polymer 

networks (reaction 2.16). 
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(2.16)

2.3.2 Benzoxazine functional poly(ε-caprolactone)  

A novel benzoxazine ring-containing PCL was synthesized. For this purpose, first 

hydroxyl functional benzoxazine was prepared. Subsequently, this benzoxazine was 

used as the co-initiator for the stannous-2-ethylhexanoate (Sn(Oct)2) catalyzed living 

ring-opening polymerization of CL. The synthesis of the initiator and benzoxazine 

ring-containing PCL are shown in reaction 2.17. 

These authors also prepared porous polybenzoxazine materials by using this 

macronomer together with bisbenzoxazine [102]. Films were cast and thermally 

cured, which resulted in the nanoscale microphase separation of these two dissimilar 

blocks. Then, the labile PCL constituent was removed selectively through hydrolysis 

using NaHCO3, which created nanoporous morphology.  

 

(2.17)

2.3.3 Benzoxazine functional poly(methyl methacrylate) 
It is well known that photosensitized aromatic carbonyl compounds in conjunction 

with hyrodgen donors can readily initiate free radical polymerization of appropriate 

olefinic monomers. Among various hydrogen donors tertiary amines were found to 

be the most suitable co-initiators. Depending on the substituents, dialkyl aniline 

derivatives are also used in these systems. Besides the oxazine ring, benzoxazines 

possess substituted dimethyl aniline groups in the structure. It seemed, therefore, 

appropriate to test whether they would also act as hydrogen donor in photoinitiated 

free radical polymerization using aromatic carbonyl sensitizers. Accordingly, free 

radical polymerization of methyl methacrylate (MMA) was demonstrated [103]. 
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Polymerization was initiated upon irradiation at λ > 350 nm in CH2Cl2 solution 

containing benzoxazine (P-a) and one of the following photosensitizers: 

benzophenone (BP), thioxanthone (TX), isopropyl thixanthone (ITX), 

chlorothioxanthone (CTX) and camphorquinone (CQ) (reaction 2.18). The postulated 

mechanism is based on the intermolecular reaction of excited photo-sensitizer with 

the tertiary amino moiety of ground state benzoxazine and subsequent hydrogen 

abstraction reaction. The resulting aminoalkyl radicals initiate the polymerization. 

The possibility of deep curing using described photo-initiating system followed by 

the thermal ring opening of the incorporated benzoxazine groups was also 

demonstrated.  

 

 

 

 

(2.18) 

2.3.4 Alternating maleimide copolymers with pendant benzoxazine groups 
It was recently reported that alternating copolymers of maleimide-benzoxazine with 

styrene (St) can readily be prepared by photo-induced radical polymerization at room 

temperature using 2,2'-dimethoxy-2-phenylacetophenone (DMPA) as photo-initiator 

(reaction 2.19). The photochemical method was deliberately chosen so as to preserve 

the benzoxazine ring structure. Copolymers’ compositions and the monomer 

reactivity ratios suggested the alternating nature of the copolymerization. These 

polymers underwent cross-linking through the thermal ring opening reaction of 

pendant benzoxazine groups [104].  
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(2.19)

2.3.5 Naphthoxazine functional poly(propylene oxide) 
Thermally curable naphthoxazine-functionalized polymers were synthesized by the 

reaction of linear (Diamines) and branched (Triamines) poly(propylene oxide)s 

(Jeffamine series) having various molecular weights, with p-formaldehyde, and 2-

naphthol (see reaction 2.20). Properties and morphologies of the products before and 

after curing were investigated [105]. 

 

(2.20)

2.3.6 Benzoxazine functional polyhedral oligomeric silsesquioxane (POSS)  
Recently, a novel class of organic-inorganic hybrid materials has been developed 

containing Polyhedral Oligomeric Silsesquioxane (POSS) [106-110] which contains 

an inorganic Si8O12 core surrounded by eight hydrocarbon substituents, or seven of 
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them plus a functional group. The unique and well-defined structure of POSS moiety 

provides the possibility of preparing hybrid materials with interesting structures. 

Several reports during last few years have reported the synthesis and characterization 

of mono-substituted POSS derivatives.  

Synthesis of benzoxazine monomer containing a POSS moiety (BZPOSS) by two 

different routes has been reported as described below: 

i) Benzoxazine-POSS (BZ-POSS-1) was synthesized from the reaction of hydro-

silane functionalized POSS (H-POSS) and allyl functional benzoxazine (3: 4 molar 

ratio) in toluene in presence of a Pt catalyst at 80 °C under nitrogen atmosphere 

(reaction 2.21). 

 

 

 

(2.21) 

ii) Another structurally similar macromonomer was synthesized from the reaction of 

primary amine terminated POSS, phenol and paraformaldehyde in THF medium at 

90 °C (reaction 2.22).  

 

 

 

(2.22) 
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2.4 Polymeric Benzoxazine Precursors 

2.4.1 Main-chain precursors 
 High molecular weight polybenzoxazine precursors can be synthesized from 

aromatic or aliphatic diamine and bisphenol-A with paraformaldehyde (see reaction 

2.23). 

 
   (2.23)

The possibility of the preparation of polymers containing oxazine ring in the main 

chain was discussed before. Later, more detailed work on the effect of water, 

solvents, catalyst, ratio of reactants and temperature was reported by the same 

research group. The major problems associated with the preparation of such main-

chain benzoxazine precursor polymers were low molecular weight and cross-linking 

arising from the Mannich reactions of multiple functional groups. The choice of the 

right conditions for a Mannich reaction is critical for achieving high yields with the 

minimum of side reactions. In this type of Mannich polymerization, partially ring-

opened structures were also observed, but the ratio of the ring-closed structure in the 

precursor was high enough to be used as polybenzoxazine precursors. The precursor 

solution was cast on glass plate, giving transparent and self-standing precursor films, 

which was thermally cured up to 240oC to give brown transparent polybenzoxazine 

films. The toughness of the cross-linked polybenzoxazine films from the high 

molecular weight precursors was greatly enhanced compared with the cured film 

from the typical low molecular weight monomer. Tensile measurement of the 

polybenzoxazine films revealed that polybenzoxazine from aromatic diamine 

exhibited the highest strength and modulus, while polybenzoxazine from longer 

aliphatic diamine had higher elongation at break. The viscoelastic analyses showed 

that the glass transition temperature of the polybenzoxazines derived from the high 

molecular weight precursors were as high as 238-260°C. Additionally, these novel 

polybenzoxazine thermosets showed excellent thermal stability [111,112]. 

2.4.2 Side-chain precursors 
The only reported side-chain polymeric benzoxazine precursor is based on 

polyphenylene structure. Soluble and thermally curable conducting high molecular 
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weight polybenzoxazine precursors were prepared by oxidative polymerization 3-

phenyl-3,4-dihydro-2H-benzo[e][1,3] oxazine (P-a) alone and in the presence of 

thiophene (Th) with ceric ammonium nitrate in acetonitrile (reaction 2.24). The 

resulting polymers exhibit conductivities around 10-2 S cm-1 and undergo thermal 

curing at various temperatures. The partially ring-opened structure which was formed 

during the oxidative polymerization affects the thermal curing behavior of the 

polymers. The cured products exhibited high thermal stability but lower 

conductivity, than those of the precursors [113]. 

 

 

 

 

 

 

(2.24) 

2.5 Reaction Mechanism of Ring Opening Polymerization of Benzoxazine 

To understand the polymerization reaction mechanism of benzoxazines, 

understanding of the chemical structure of its oxazine ring is very important. A 

single crystal X-ray crystallographic study revealed that the preferential 

conformation of a mono-oxazine ring containing benzoxazine is a distorted semi-

chair structure, with the nitrogen and the carbon between the oxygen and nitrogen on 

the oxazine ring sitting, respectively, above and below the benzene ring plane. The 

resulting ring strain from this molecular conformation helps this type of six-

membered ring to undergo ring-opening reaction under specific conditions. In 

addition, due to their high basicity (by Lewis definition) both the oxygen and the 

nitrogen of the oxazine ring can act as potential cationic polymerization initiation site 

and makes the ring very likely to open via a cationic mechanism [114,115]. The 

electron charge calculation after energy minimization predicts that oxygen might be 
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the preferred polymerization site over nitrogen due to its high negative charge 

distribution (O, -0.311; N, -0.270). 

The ring opening reaction of the benzoxazine was first reported . In the reaction of 

1,3- dihydrobenzoxazine with a phenol, having both ortho and para position free, it 

was found that aminoalkylation occurred preferentially at the free ortho position to 

form a Mannich base bridge structure, along with small amount reaction at  para 

position. To explain this ortho preferency formation of a intermolecular hydrogen-

bonded intermediate species was proposed. High reactivity of the ortho position was 

also observed when following the kinetics of mono-functional benzoxazines with 

2,4-di-tert-butylphenol catalyst. The typical method of polymerization of 

benzoxazine monomers is thermal curing without using any catalyst [21]. It should 

be emphasized that the polymerization mechanism of benzoxazine resins is still not 

well established. 

2.5.1 Cationic polymerization of benzoxazine 

2.5.1.1 Acid catalyzed polymerization of benzoxazine 
Some investigations on catalyst assisted benzoxazine curing showed that the 

presence of catalysts influence to reduce the induction time and accelerate the 

reaction rate [116]. However, no significant polymerization was observed below 100 

°C. Various acids ranging from strong acids to weak carboxylic acids to phenols 

have been surveyed as catalyst for this type of polymerization reaction. It has been 

observed that polybenzoxazines cured with strong carboxylic acids were inferior to 

those cured with weak carboxylic acids [117]. Several initiators, such as PCl5, PCl3, 

POCl3, TiCl4, AlCl3 and MeOTf, were also reported as effective catalyst for 

polymerization which provides polybenzoxazines with high Tg and high char yield. 

From the investigations on use of various cationic, anionic and radical initiators it 

has been proposed that the ring opening polymerization of the benzoxazine proceeds 

through a cationic mechanism [118,119]. 3,4-dihydro-2H-1,3-benzoxazine exhibits 

ring/chain tautomerism when protonated, by migration of the proton from the 

nitrogen to the oxygen atom,  and thereby produce iminium ions in the chain form 

was reported [11]. Ring opening mechanism by protonation of the oxygen atom to 

form an iminium ion, followed by electrophilic aromatic substitution, as shown 

below in reaction 2.25 was proposed [117].  
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But this mechanism does not take into account the effect of the pKa of the acid, 

which controls the structure of the reactive intermediate. The effects of strong and 

weak carboxylic acids and phenols as catalysts on curing 3,4-dihydro-3,6-dimethyl-

2H-1,3-benzoxazines to polybenzoxazines has been described. The curing reaction 

was monitored in situ by using Fourier transform infrared (FT-IR) spectroscopy. The 

IR bands, used to evaluate the curing reaction, were (i) 1050 cm-1,  representative of 

the oxazine ring, (ii) 813 cm-1, associated with 1,2,4 substitution of the monomeric 

benzene, and (iii) 1030 cm-1 , attributed to the methyl rocking on the para position of 

the benzene ring and used as an internal standard.  

 

 

 

 

 

(2.25) 

In the presence of strong organic acid, such as trifluroacetic acid, benzoxazine 

monomer converts to polybenzoxazine immediately at low temperatures after ring 

opening. The formation of the iminium ion as intermediate was proposed, because 

trifluoroacetic acid can provide a counter ion, capable of existing in the ionic form 

rather than the covalent form and can give stability of the intermediate. As the curing 

temperature increases, side reactions also took place, which also leads to curing. But 

when weak acid, sebacic acid, was used as catalyst, the polymerization reaction was 

slow in the early stage of the reaction. The ring opening polymerization of 

benzoxazines when catalyzed by a weak carboxylic acid was proposed to be an auto-

accelerated reaction, where aminomethyl ester species were initially formed as 

intermediate. At the beginning of the reaction a covalently bonded aminomethyl 

species existed in equilibrium with the iminium ion form of the intermediate. This 

explains the large difference seen in the early stages of the reaction. Since the 

reaction of this intermediate with another benzene ring to form the aminomethylene 
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bridge was occurring very slowly catalyst was consumed but could not be 

regenerated.  As the dielectric constant of the medium increased through the 

appearance of hydroxyl groups due to the ring opening, the equilibrium shifted 

toward the reactive carbocation form. Thus, the consumption of trisubstituted 

benzene was accelerated by this shift in the equilibrium. Then, electrophilic aromatic 

substitution occurred and regenerated the acid catalyst. This explains how the pKa 

value of the organic acid effects the polymerization of benzoxazine. In the early 

stages of the reaction, the acids, having pKa in the range of 0.70-4.43, provide a 

stable counterion for the intermediate iminium cation where as adipic acid and the 

acids with higher pKa values do not provide support for the iminium ion and this 

factor influence the reaction. 

When pure benzoxazine was cured without catalyst at 160 and 170°C, the curing 

may be catalyzed by phenols, which can be formed by the ring opening from trace 

impurities. The ring opening and the Mannich bridge formation were consecutive 

reactions, whereby the consumption of one benzoxazine ring and one trisubstituted 

benzene ring should be occurred simultaneously. This is reflected in the in the FT-IR 

study of the early part of the reaction. In the later stages the ring opening reaction 

occurred by termination. 

Based on the results obtained from PCl5 initiated polymerization of different mono-

oxazine ring containing substituted 3,4-dihydro-2H-1,3-benzoxazines, three different 

mechanisms were proposed and explained the dependency of formation of different 

polymeric structures on the number and the position of substitutions in the benzene 

ring of the monomer [115]. The structures of four types of investigated monomers, 

pC-m, 24DMP, 235TMP and 345TMP, are shown in Figure 2.7. 

1H-NMR, 13C-NMR and FT-IR study of the polymers obtained from the PCl5 

initiated polymerization of the above mentioned monomers revealed that (i) the 

polymers having Mannich base phenoxy-type structure (Type I) forms by 

polymerization of  from 24DMP-m and 235TMP-m monomers, (ii) the Mannich base 

phenolic-type structure (Type II) polymer produce from pC-m monomer, and (iii) the 

mixed polymers result from 345TMP-m monomer, with the phenoxy type (Type I) as 

the major component.  
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Figure 2.7 : Methyl substituted benzoxazines. 

These results demonstrate how the change of the position of substitute of the benzene 

ring affects the nature of the resulting polymers. The proposed reaction mechanisms 

are shown in reaction 2.26 and 2.27 [115].  

 

 

 

 

(2.26) 

Reaction 2.26 illustrates the mechanism of formation of Type I polymer, having the 

Mannich base phenoxy-type structure, from 24DMP-m and 235TMP-m monomers. It 

was proposed that the oxygen on the oxazine ring acts as the initiation site and due to 

the attack of a cationic initiator (H+) cyclic tertiary oxonium ion intermediate form. 

The polymerization then proceeds via the insertion of the monomers through the 

reaction between the intermediate and the oxygen of another oxazine ring and results 

the formation of Mannich base phenoxy-type (Type I) polybenzoxazine structure. An 

alternative polymerization route for Type I structure formation was also suggested as 

shown in reaction 2.32, which is similar to the mechanism A, but in this case N acts 

as the initiation and as well as propagation sites. The formation of Mannich base 

phenolic-type structure (Type II) polymer from pC-m monomer was explained by 

assuming that upon initiation by a cationic initiator, the propagation proceeds by the 
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incorporation of monomers through the reaction of the unobstructed ortho position of 

benzene and eventually produces a Mannich base phenolic-type (Type II) polymer. 

This proposed mechanism is illustrated as mechanism B in reaction 2.27.  

 

 (2.27)

Moreover, in this case, the monomers propagate via reasonably stable carbocations, 

i.e., the intermediate oxonium cation is stabilized by intramolecular hydrogen 

bonding, which could lead to high-molecular weight polymer formation. It has been 

observed that the polymer, having highest molecular weight, was formed from pC-m 

amongst these four type monomers. 

In case of 345TMP major polymerization proceeds via mechanism A (formation of 

Type I polymer), the unobstructed ortho position on the benzene ring also partially 

participate in the polymerization through mechanism B, resulting a small portion of 

the phenolic type (Type II) polymer structure formation. Quantitative analysis by 

NMR of two different polymer structures revealed a 9:1 ratio for the Mannich base 

phenoxy-type (Type I) and the Mannich base phenolic-type (Type II) 

polybenzoxazines. 

It was also mentioned that polybenzoxazine structure via thermal curing can also be 

thought of as the Type II polymer structure which can be generated through 

mechanisms similar to mechanism B.  

Phenols (trace amount of which may present as impurity) with free ortho positions 

can act as initiators in the oligomerization of benzoxazine compounds. It can be 

speculated that at elevated temperatures, the self dissociation of the benzoxazine ring 

can produce free phenol structures and also initiate the ring opening reaction. 

2.5.1.2 Photoinitiated polymerization of benzoxazine 
The photoinitiated ring-opening cationic polymerization of a mono-functional 

benzoxazine, 3-phenyl-3,4-dihydro-2H-1,3-benzoxazine (P-a), with onium salts such 

as diphenyliodonium hexafluorophosphate and triphenylsulfonium 

hexafluorophosphate as initiators was investigated [120]. In this work, both direct 
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and indirect activations by using radical sources and photosensitizers were reported. 
1H-NMR and FT-IR study revealed the complex structure of the resulting polymers 

which was related to the simultaneous ring-opening process of the protonated 

monomer either at the oxygen or nitrogen atoms. The phenolic mechanism also 

contributed, but its influence decreased with decreasing monomer concentration. Free 

radical promoted cationic polymerization of benzoxazines was also examined. In this 

case, the polymerization can be performed at much higher wavelengths and carbon-

centered radicals formed from the photolysis of 2,2-dimethoxy-2-

phenylacetophenone (DMPA), were oxidized to produce  carbocations. These 

carbocations are capable to initiate benzoxazine polymerizations. Reaction 2.28 

describes that after addition of a proton (or carbocation) to the either heteroatom 

(oxygen or nitrogen) yields oxonium or ammonium cations, respectively. For the 

next step, several probable routes were proposed by which polymerization can 

proceed and produce different polymeric structures. 

2.5.2 Thermal polymerization of benzoxazines 
A cross-linked network structured polybenzoxazines, with higher Tg and degradation 

temperature, can be obtained when difunctional or multifunctional benzoxazines 

undergo polymerization. The polymeric structures form due to curing of mono-

functional and difunctional benzoxazines are shown below in reaction 2.28. 

Obviously, difunctional benzoxazines derived from diamines are expected to 

undergo similar cross-linking. 

In the DSC thermogram of a mono-functional benzoxazine, P-a, a sharp exotherm 

was observed with onset and maximum temperatures of the exotherm at 202 and 

230°C respectively, corresponding to the ring-opening polymerization. The amount 

of exotherm for P-a was 62 cal/g. In case of difunctional benzoxazine, B-a, DSC 

showed an exotherm on with onset at ca. 223°C and maximum at 249°C 

corresponding to the ring-opening polymerization of benzoxazine. The amount of 

exotherm for B-a was 79 cal/g.  

It has been observed that during synthesis of a difunctional benzoxazine (from 

bisphenol A, formaldehyde and methyl amine) not only bisphenol-A based 

benzoxazine (B-m) monomer forms as major product but also dimers and small 

oligomers form by the subsequent reactions between the rings and ortho position of 

bisphenol A hydroxyl groups.  
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(2.28)

 

These free phenolic hydroxy structure containing dimers and oligomers trigger the 

monomer to be self-initiated towards polymerization and cross-linking reactions. 

Attempts have been taken to understand the cure mechanism and kinetics of the 
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thermal curing of mono and difunctional benzoxazines utilizing DSC, FT-IR, DMA, 
13C and 15N solid sate NMR spectroscopic measurements [121-127]. 

It has been proposed that, the ring-opening initiation of benzoxazine results the 

formation of a carbocation and an iminium ion which exist in equilibrium (reaction 

2.29). Polymerization proceeds via the electrophilic substitution by the carbocation 

to the benzene ring. This transfer occurs preferentially at the free ortho and para 

position of the phenol group. The stability of the iminium ion greatly affects the 

propagation rate because carbocation is responsible for propagation. Further, the 

reactivity of the equilibrium pair depends on the basicity of the amine group. The 

more basic the amine, with more the free electron density of the nitrogen, has the 

capability to stabilize more the positive charge of the iminium ion. If the iminium ion 

is more stable, the equilibrium shifts toward it, causing lowering in propagation rate. 

If the iminium ion is unstable, the equilibrium will be shifted toward the carbocation, 

resulting in a higher propagation rate. 

 

 

(2.29) 

It should be noted that since the propagation reaction involves chain transfer to a 

benzene ring temperature should have a great impact on the rate of propagation. 

Kinetic study indicated that in the early stages of polymerization, the reaction may be 

relatively independent of the cure temperature. As the reaction proceeds, the 

temperature effect on propagation becomes more evident in the reaction kinetics.  

Curing reactions at two different temperatures, below and above Tg temperature, 

demonstrate that the kinetics are significantly different for the two cure temperatures. 

Vitrification occurs sooner at higher cure temperature than the lower cure 

temperature, especially below the Tg. As vitrification causes a large increase in the 

viscosity of the system, at the reaction becomes largely diffusion-controlled, and 

greatly affect the curing kinetics. Reaction 2.30 illustrates the thermal polymerization 

of B-a through cationic mechanism. 



 39

 

(2.30)

Solid State 15N-NMR study identified the formation of a structure generated possibly 

due to the electrophilic substitution reaction between ortho position of the aniline 

and carbocation. Similar to phenol, the electron donating nature of nitrogen of the 

aniline makes its ortho and para position as possible sites for electrophilic 

substitution with the carbocation. The formation of this structure is shown in reaction 

2.31 [121].  

 

(2.31)

2.6 Properties of Polybenzoxazines and Their Blends and Composites 

2.6.1 Properties of polybenzoxazines 
A typical polybenzoxazine, prepared from mono-functional 3-phenyl-3,4-dihydro-

2H-1,3-benzoxazine (P-a), exhibit Tg at 146 and 161°C, obtained from maximum of 

loss modulus and the maximum of tan δ respectively of DMA results. The storage 

modulus decreases sharply at about 110°C. From TGA profile it was observed that, 

its 5 and 10% weight loss temperatures were 342 and 369°C, respectively and char 

yield was 44%. 

A comparative investigation on several physical properties of polybenzoxazines (PB-

a and PB-m), prepared by thermal curing of difunctional B-a and B-m monomers, 

has been reported [70]. They exhibit high Tg and significantly higher tensile moduli 
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than both phenolics and epoxies at the same time maintain adequate tensile strength 

and impact resistance.  

From the DMA study of these cured polybenzoxazine materials; it has been observed 

that they possess the characteristic features of cross-linked thermosetting materials. 

The PB-a has a higher storage modulus in the glassy region than the PB-m, as 

observed from their respective room-temperature values of 2.2 and 1.8 GPa. The 

glass transition temperature of the PB-m (180°C), however, is significantly higher 

than that of the cured PB-a material (150°C), as determined from the maxima of the 

loss spectrum. As the presence of high free volumes responsible for lowering of Tg, it 

was postulated that the PB-a might contain a greater free volume than the PB-m. The 

crosslink density of cured PB-a was estimated of about 1.1 x 10-3 mol/cm3 where as 

that of PB-m was not able to be determined, because the torque in the plateau region 

dropped below the minimal sensitivity of the transducer. But as the storage modulus 

was at the level of the PB-a plateau and still decreased at its last measurable point, it 

was assumed that the PB-m has an even lower crosslink density than the PB-a. 

For these polybenzoxazines the concentration of network chains is significantly 

lower than is typically seen in cross-linked epoxides. Though the polybenzoxazines 

posses low cross-linking density, they exhibit higher Tgs. The intra and 

intermolecular hydrogen bonding in the network of the polybenzoxazines and the 

cured materials are responsible for low crosslink density [128,129]. However, these 

hydrogen bindings are sufficiently strong to confine segmental mobility and 

contribute rigidity in the glassy state, which would normally be expected only from a 

much tighter network structure. In this connection it should be pointed out that the 

higher value of storage modulus of PB-a than that of PB-m should not be explained 

from the crosslink density point of view. According to many authors for epoxy 

resins, the crosslink density has little or no influence on stiffness or rigidity in the 

glassy state [130-132]. Free volume, chain interaction, and intermolecular packing 

influence the small strain properties of a material in its glassy state, including the 

modulus. Hydrogen bonding should decrease the flexibility of a cross-linked network 

as it hinders rotational isomeric configurational changes and other segmental motion 

of chain. Thus, the higher glassy modulus of PB-a indicate that the hydrogen bonding 

is more prevalent in the PB-a than in the PB-m (see reaction 2.31 for the structure). 



 41

The reported values of notched Izod impact strengths for PB-a and PB-m are 18 and 

31 J/m, which are higher than for these phenolic materials (∼ 17 J/m) and similar to 

epoxy resins (∼ 32 J/m). Because of the difference in the crosslink densities the lower 

value of impact strengths for PB-a than PB-m was expected. A more highly cross-

linked material behaves in a more brittle manner because high cross-linking lowers 

segmental mobility. 

Generally, intermolecular packing, free volume, molecular architecture, and 

molecular weight between cross-links influence the large-strain glassy state 

properties, namely tensile strength and elongation at break. Higher free volume tends 

to enhance the mobility of network segments under load to increase ultimate 

elongation. PB-a exhibits brittle fracture at a higher strain than PB-m. PB-a possesses 

superior tensile strength and elastic modulus than those of PB-m, which indicate that 

the regularity and perfection of the network formed for the PB-a are superior to those 

of the PB-m network. These two materials exhibit near zero shrinkage due to curing 

at about 200 °C where as typical epoxy resins show higher cure shrinkage. One 

possible explanation might be the relieving of ring strain during the ring opening 

polymerization of benzoxazines. However, the ring strain alone can not explain the 

near zero volumetric shrinkage. Chain conformation influenced by strong 

intramolecular hydrogen bonding is also an important factor for the volumetric 

expansion. It has been observed that the volumetric expansion coefficients for PB-a 

and PB-m are competitive with that of epoxides and the values are listed in Table 2.1 

[133, 134]. 

Table 2.1: Volumetric expansion coefficient values of polymers obtained from 
difunctional benzoxazine and epoxy resins 

Polymer Volumetric expansion coefficient (cm3/ 
cm3-°C) 

PB-a 1.7x 10-4 
PB-m 2.1 x 10-4 
Epoxy resin 1.7- 2.8 x 10-4 

It has been observed that, after 600 days in water at room temperature PB-a absorbs 

water up to 1.9%, where as PB-m up to 1.3% by weight and the former material 

absorbs water at a slower rate. Despite the presence of hydrophilic phenolic and 

tertiary amine groups polybenzoxazines do not absorb water as much as do phenolic 
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or epoxy resins. The mode of sorption of water of these materials was determined by 

plotting the log of the amount of the amount of water vs. logarithmic time, which 

indicated the occurrence of a very near- Fickian Manner. The rate of diffusion of PB-

m (diffusion coefficient= 4.9 x 102 cm2/s) is higher than that of PB-a (diffusion 

coefficient= 3.6 X 102 cm2/s). 

For epoxy-amine systems the rate of water transport in the networks is governed by 

polymer-water interactions and is inversely related to the extent of intermolecular 

hydrogen bonding was reported [135]. The presence of inter- and intramolecular 

hydrogen bonding within the polybenzoxazine systems, which shield the hydroxyl 

groups (present abundantly in the network) from interaction with water molecules is 

the probable main cause for the low water diffusivities and saturation contents of the 

polybenzoxazines. The lower diffusion rate of PB-a, despite of its higher overall 

absorption, than that of PB-m is consistent with their finding that, diffusivity 

decreases with hydrophilicity. 

The dielectric constant value of PB-a is 3.6 and has only a slight dependence on 

frequency, at temperatures below approximately 120°C. It decreases less than 3% as 

the testing frequency increases from 428 Hz to 1 MHz. Thus, the polybenzoxazine 

not only has a lower electrical capacitance than other thermosetting materials (for 

conventional phenolic resins dielectric constant is 4.8-5 and for epoxides 3.7-4) but 

also is less sensitive to the changes in frequency. The change of loss factor with 

temperature shows the B-a material withstands electrical power loss at least as well 

as epoxies, which have loss factors that are typically between 0.01 and 0.08.  

As the relaxation process of PB-a begins at about near Tg (150°C) the dielectric 

properties of the resin begin to deteriorate. Even so, the polybenzoxazine material 

appears to possess excellent electrical performance up to service temperatures 

(150°C for B-a) beyond those of most other polymer resins. 

In another paper it has been reported that DMA analysis of polybenzoxazines from 

B-m (synthesized from bisphenol A and methyl amine) shows Tg at 215°C when the 

sample was cured at 210°C [6].  

A systematic study of thermal and mechanical properties for a series of 

polybenzoxazines, based upon alkyl substituted aryl amines, has been reported. 
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Difunctional bisphenol A based benzoxazines monomers were synthesized from 

different methyl substituted amines.  

The curing of these monomers was performed by following the step profile: 140°C 

for 30 min, 160°C for 30 min, 170°C for 45 min, 180°C for 45 min, 190°C for 75 

min, and 200°C for 90 min. The substitution on different positions show pronounced 

effect on polymerization.  Due to the activation of ortho and para positions on the 

pendent ring by placing electron-donating alkyl substituent groups on one or both 

meta positions, the oxazine ring-opening polymerization occurs at lower 

temperatures. In addition, significant numbers of arylamine Mannich bridges and 

methylene bridges were formed during the cure of these monomers [24]. DSC results 

showed that, B-a-ot exhibits the lowest glass transition temperature of 114°C and 

comparatively lower extent of reaction in this material is possibly due to the lower 

basicity and greater steric hindrance of the arylamine. B-a and B-pt showed Tg at 168 

and 158°C, respectively where as B-mt and B-35x exhibit at 203 and 205°C after the 

initial cure. BA-a and BA-pt after curing an additional 30 min at 240°C, exhibit the 

final Tg at 209 and 238°C, respectively. Further curing at higher temperatures did not 

increase the Tg of these materials appreciably. 

Amongst this series of materials B-mt possess highest mechanical property, with 

storage modulus 1.78 GPa at 28°C and the plateau modulus is 11.9 MPa at 265°C. 

This is much higher than other polybenzoxazines, which showed definable rubbery 

plateaus. In addition, it was quite stable in the rubbery region since no void forming 

was observed even after 2 h at temperatures above 260°C, whereas many 

polybenzoxazines used to undergo degradation and weight loss soon after reaching 

temperatures above Tg. B-mt is one of the few polybenzoxazines which shows such a 

large window of thermal stability in the rubbery region. 

When thermogravimetric analysis was employed to determine the thermal stability of 

these materials three major events were observed. Ishida and coworkers analyzed the 

evolved gases to determine the nature of these weight loss events and also proposed 

degradation mechanism [136]. The first event near 310 °C was due to the breakage of 

Mannich bridge in the phenolic Mannich bridge network which produced free aniline 

via a deamination reaction, along with some N-methyl anilines by 

deaminomethylation. During second event at about 400°C, the breakup of the 

isopropylidene linkage of the bisphenol A occurred. The primary weight loss 
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products were aniline and various phenolic species. Finally the last weight loss, 

centered near 460 °C, was attributed to the degradation of char, with release of traces 

of phenolic and significant amount of substituted benzene compounds. The meta 

substituted materials, B-mt and B-35x, achieved the highest thermal stability and 

showed a different weight loss behavior where the first weight-loss event was absent. 

For BA-35x a new peak appeared at 350°C, which was due to the release of amine. It 

was proposed that, these two materials possess such a polymeric structure which is 

not a pure phenolic Mannich bridge network but contain additional arylamine 

Mannich bridge network and various methylene bridges similar to those in a phenolic 

network [137].  

Two difunctional polybenzoxazines, 22P-a PBZ and 440-a PBZ, were prepared by 

curing the benzoxazine monomers, 8,8'-bis(3,4-dihydro-3-phenyl-2H-1,3-

benzoxazine) 

22P-a, and 6,6'-bis(2,3-dihydro-3-phenyl-4H-1,3-benzoxazinyl) ketone, abbreviated 

as 44O-a, respectively [25] . Tgs of these polybenzoxazine materials increase linearly 

without showing the ultimate value with the increase of postcure temperature. 

Although 440-a PBZ cured at 316°C for 1 h exhibited Tg of 410°C, it slowed 

decomposition starting at 300°C accompanied by weight loss. The high Tg may be 

due to secondary reactions involving bisphenolic methylene bridge formation and 

some other unknown structures. Therefore, the recommended postcure temperature 

was 290°C rather than 316°C. As the Tg’s of the 440-a PBZ are always higher than 

the cure temperatures applied (Tg was 365°C at postcure temperature 300°C), it 

provides a great advantage in processibility. There are only a few thermosetting 

polymers that exhibit such behavior [138]. The Tg higher than Tcure behavior might 

be due to cross-linking reaction, which is not completely quenched in the glassy sate 

and surpasses the curing temperature. 

DMA results of the samples cured at 180°C indicate that further curing at higher 

temperature was necessary by showing the increase of G' and G" after the α 

transition (Tg). But this behavior disappeared when the samples were cured at higher 

temperature (ca 240°C). The storage moduli at room temperature of these polymers 

are approximately 2.0 GPa.  

The TGA of the 22P-a PBZ (cured at 240°C) and 440-a PBZ (cured at 290°C) 

indicate that they start decomposing at 200°C in both air and nitrogen, followed by 
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oxidation in air at 550-600°C. The high char yield of 440-a PBZ makes it a good 

candidate for the precursors of carbon-carbon composites.  

It has been reported that, incorporation of several transition metal salts (2 mol%) 

results improvement of the char yield of the polybenzoxazines by 10-20%. The metal 

salts initiate the ring opening but do not catalyze the polymerization and promote the 

carbonyl group formation during polymerization [139].   

Degradation of polybenzoxazines (derived from different phenols and amines) by 

UV radiation has been reported and degradation mechanism has been proposed [140-

142]. 

2.6.1.1 Properties of polybenzoxazines with additional functionalities 
The incorporation of several other functionalities can influence the curing behavior 

of benzoxazine. Obviously, this would result different microstructure and 

consequently the thermal and mechanical properties of the cured products. In the 

following section, the effect of different functional groups on the properties of both 

precursor benzoxazine monomers and the corresponding polymers will be described.  

For the benzoxazine with acetylene group. The non isothermal DSC thermograms of 

Ph-apa resins show that oxazine ring opening polymerization exotherm overlaps with 

acetylene polymerization exotherm at the temperature range of 220-235°C. However, 

Ph-apc exhibited two well resolved exotherms for both processes (i) the sharp 

exotherm at 230°C for the benzoxazine polymerization, and (ii) the broad exotherm 

at 350°C was because of the acetylene polymerization. These assignments were 

supported by the FT-IR studies of the polymerization of this compound. It was also 

reported that polymerization of disubstituted arylacetylenic monomers occurs at the 

higher temperature of 350 °C, as identified by DSC [143]. 

Char yield of polybenzoxazines from purified acetylene functionalize benzoxazine 

monomers were 5-10% lower than the char yield of resins from as-synthesized 

monomers, as determined from TGA.  Very high char yield of 80 wt % was achieved 

for this type of polybenzoxazines. The high char of these polymers are due to 

introduction of another polymerizable functional group, acetylene, by which a more 

cross-linked network structure forms due to polymerization. The char yield of the 

analogous compound (B-a) containing aniline instead of 3-aminophenylacetylene is 

32 wt %. Side phenyl groups present in the structure of polybenzoxazines from 
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unfunctionalized monomers (B-a) can easily be volatilized during thermal 

degradation. Linking these weak groups by introducing polymerizable acetylene 

group contributed to improve the thermal stability of these materials. 

These polybenzoxazines exhibit very high glass transition temperatures (Tg) ranging 

from  320 to 370°C and high values of shear modulus (G’), up to 2.3 GPa, as 

determined by the DMA. 

For benzoxazine with propargyl ether functional group. In the DSC runs for the 

monomers with propargyl group, P-appe, the exotherm, starting at 191°C with a 

maximum 235°C, indicate the ring opening polymerization and cross-linking of 

propargyl group took place within the same temperature range. The appearance of 

another exotherm, starting at 325°C with maximum at 341°C, is due to the 

degradation of cross-linked structure. For bifunctional benzoxazine with propargyl 

group, B-appe, the similar behavior was observed.  From DMA results revealed that 

the Tg of these polymers were increased by about 100-140°C and the storage moduli 

were maintained constant up to ~100°C higher temperature than the typical 

unfunctionalized polybenzoxazines. Excellent thermal stability of these polymers, as 

reflected from TGA results, were due to the prevention of aniline derivatives from 

volatilization as a degradation product by anchoring the aniline component in the 

network structure through cross-linking by the propargyl ether groups [36]. The char 

yield of these polymers were also increased by ca. 22-29%. 

For benzoxazine with allyl group. DSC investigations  reveled that, for 3-allyl-3,4-

dihydro-2H-1,3-benzoxazine (P-ala)  the thermal curing of the allyl group occurred 

first, showing an  exotherm with the onset temperature at 145°C with exotherm peak 

at 207°C, followed by the ring-opening of the oxazine ring, which was appeared as 

second exotherm, having onset at 225°C with maximum at 260°C. The total amount 

of exotherm of P-ala was 84 cal/g.  DSC thermograms after each cure for P-ala was 

showed that the first exotherm for the cross-linking of allyl groups disappeared after 

curing at 200°C and the second exotherm decreased with the increasing cure 

temperature and disappeared after 240°C. 

On the other hand, P-alp (3-phenyl-3,4-dihydro-8-allyl-2H-1,3-benzoxazine) showed 

only one exotherm, the onset of which  was at 241°C and maximum at 263°C, 

without showing any exotherm at lower temperature range for to the thermal cure of 

the allyl group. The amount of exotherm was 20 cal/g, much smaller than P-ala. The 
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difficulty of the radical polymerization of the allyl phenyl group is due to the 

stability of the radical [174]. In case of P-alp, the ortho position, the primary reaction 

site to form phenolic Mannich bridge structure via the ring-opening polymerization, 

is blocked by allyl group. Therefore, this exotherm at high temperature might be due 

to the cleavage of the oxazine ring that leads to degradation [24]. 

The curing of of a bifunctional allyl-containing benzoxazine, B-ala (bis(3-allyl-3,4-

dihydro-2H-1,3-benzoxazinyl)isopropane), was investigated and compared  with the 

typical bifunctional benzoxazine, B-a. When the DSC plots of B-a showed an 

exotherm with onset at ca. 223°C with maximum at 249°C corresponding to the ring-

opening polymerization of benzoxazine, B-ala exhibited an unsymmetrical broad 

exotherm with the onset at 145°C and maximum at 265°C corresponding to both the 

cross-linking of allyl group and the ring-opening polymerization of benzoxazine. The 

heat of polymerization for B-a was 79 cal/g and that for B-ala was 127 cal/g. 

Thermal polymerization of N-allyl group is known to occur at lower temperature. In 

the case of P-ala, it was considered that the thermal polymerization of allyl group 

occurred first, followed by the ring-opening polymerization of benzoxazine at 

slightly higher temperature than P-a. The shift of the ring-opening polymerization to 

higher temperature range was due to the restricted mobility of P-ala because of the 

polymerization of allyl group. 

 A significant increase in Tg was observed due to the introduction of allyl groups in 

the monomers. For example, when the typical polybenzoxazine, PP-a (from mono-

functional benzoxazine without acetylene group), exhibited the Tg at 146°C, that for 

PP-ala was shifted to as high as 285°C. Since the introduced allyl groups provide 

additional cross-linking sites into polybenzoxazine, the rigidity of the polymer 

backbone was increased with cross-linking density, and hence the damping was 

significantly decreased. However, for PP-alp, the Tg was as low as 107°C. The poor 

thermo-mechanical properties for PP-alp were due to its low cross-linking density 

which arises from the difficulty in the polymerization of the monomer as described 

above. Bifunctional polybenzoxazines, PB-ala (with acetylene side group) and PB-a 

(without acetylene side group), showed similar behavior exhibiting Tgs at 298 and 

154°C respectively, indicating the beneficial effect of additional cross-linking 

offered by the introduction of allyl group as another cross-linkable site. 
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TGA showed that for PP-ala and PB-ala, the thermal stability was improved 

compared to the cured samples of the corresponding benzoxazines without allyl 

functionality (PP-a and PB-a). This was inferred from their increase in 5 and 10% 

weight loss temperatures. Notably, these temperatures were decreased for the 

benzoxazines possessing allyl group on the phenyl ring (PP-alp). The observed 

increase for PP-ala and PB-ala was due to the prevention of amines from volatizing 

at the initial stages of the degradation because of the additional cross-linked 

structure. The char yields of PP-a  PP-ala and PP-alp  were almost the same (~44%) 

[41].  

For benzoxazine with nitrile functional group. Phenylnitrile- and phthalonitrile- 

functional benzoxazines and their copolymers possess high thermal stability because 

terminal phthalonitrile group introduce extra cross-linking in the network structure. It 

was reported that, the ortho nitrile group in the ortho-phenyl nitrile functional 

benzoxazine is more reactive during polymerization than meta and para- nitrile 

analog. TGA-FTIR analysis revealed that some portion of the nitrile groups present 

in the monomer undergoes cross-linking reaction during curing and the rest react 

during char formation and results in high char yields. These highly cross-linked 

materials also possess higher Tg in the range of 275 to 300°C and Tg which is higher 

than Tcure. The neat phthalonitrile benzoxazine resins have high melting point 

(160°C) and higher melt viscosity than unfunctionalized benzoxazines, whereas 

phenylnitrile mono-functional benzoxazines are viscous liquids at room temperature 

with viscosity 6 x 105 Pa s and 1 Pa s at 80°C.  

For benzoxazine with maleimide & norbornane functional group. Benzoxazine 

monomers with imide functionalities, maleimide (MIB) and norborane (NOB) 

showed improved thermal properties. The DSC and FT-IR studies of maleimide 

containing monomer, HPM-Ba, revealed that polymerizations occurs in two stages in 

the temperature range from 120 to 250°C (i) polymerization of C=C bonds of 

maleimide group at about 150°C by free radical mechanism, and (ii) the ring opening 

polymerization of oxazine at about 230°C. DSC thermograms of MIB and NOB 

showed benzoxazine polymerization occurred at 213 and 261°C, respectively. In case 

of NOB the cross-linking reaction of nadimide group proceeds via reverse Diels-

Alder reaction at higher temperature ca 271°C. The char yields and Tg of the 

benzoxazine based polymers has also been increased due to incorporation of these 
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additional functionalities, since they improve the network structure by providing 

extra cross-linking [49].   

For benzoxazine with adamantine functional group. Polymers obtained by thermal 

curing of benzoxazines with adamantine functional group exhibited different Tg 

values depending on the substituents on the benzoxazine ring. The lower Tg noted 

with poly(2-benzoxazine) was attributed to the presence of bulkier phenyl group in 

the structure which causes hindrance in the molecular chain movement in the 

network structure. Due to the same reason, poly(3-benzoxazine) possesses higher 

cross-linking density and also higher decomposition temperature. However, due to 

the incorporation of adamantane group into the polybenzoxazine backbone, the 

crosslink density of these polymers becomes lower than that of unmodified 

polybenzoxazines, which reflects as the comparatively lower char yield of 

adamantane functionalized polymers. Interestingly, they show high decomposition 

temperature. In Table 2.2 thermal properties of polybenzoxazines prepared from 

different benzoxazine monomers are listed. 

2.6.1.2 Properties of rubber-modified polybenzoxazine 
It has been reported that stress intensity factor, KIc, was increased when 

polybenzoxazine was  modified with amine terminated butadiene acrylronitrile 

rubber (ATBN) or with carboxyl-terminated butadiene acrylronitrile rubber (CTBN) 

[65]. For toughening polybenzoxazine with liquid rubber, the particle size and the 

content of rubber dissolved in matrix phase are the main factors of the toughness 

improvement. Improvement of toughness is shown better by ATBN than CTBN and 

the trend of change of KIc values with the rubber content was different in both the 

cases.  The KIc of polybenzoxazine increased from 0.6 MP.m1/2 to 1.8 MP.m1/2 with 

the increase of rubber content. Due to the highly cross-linked nature of the structure, 

the crack propagation rate is very fast for neat polybenzoxazine. However, a rough 

fracture surface, which may cause multiple crack initiation, was observed in both 

CTBN and ATBN modified systems. In addition, several different features were 

observed in the morphologies of CTBN- and ATBN-modified cases. It has been 

observed that the flexural strength of the ATBN-modified polybenzoxazine was 

increased with increasing rubber content, but decreased slightly for CTBN-modified 

polybenzoxazine. 
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The flexural strength of polybenzoxazine increased slightly or was maintained, and 

its flexural modulus decreased up to 2.4 GPa as rubber content increased. 

From DSC study of the cure reaction of CTBN and ATBN modified systems; it was 

observed that cure peak temperature decreased with the increase of rubber content. 

By acting like an acid catalyst. CTBN helps the ring opening and this effect results 

the decrease of cure temperature. But ATBN, an amine terminated rubber, acts as a 

stabilizer of the ring-opened compound and helps to reduce the cure temperature. 

The Tg was also found decrease with the increase of CTBN and ATBN concentration 

[81]. It has been reported that when polybenzoxazine modified with hydroxy 

phenylmalemide (HPMI) and/ or ATBN, the incorporation of ATBN causes lowering 

of onset and the maximum exotherm of the ring opening of benzoxazine to 180°C 

and 216°C respectively, whereas for HPMI those values were 160°C and 200°C [71]. 

Viscoelastic measurements showed that the incorporation of HPMI increased the Tg 

and the storage modulus compared to that of the unmodified polybenzoxazine and 

ATBN modified polybenzoxazines.   

Table 2.2: Thermal properties of benzoxazines 

 
Monomers 

Tg 
(°C) 

T5% 
(°C)

T10% 
(°C) 

Char 
yield 
(%) 

 
Reference 

  (P-a) 

 

146 

 

342 

 

369 

 

44 

 

[41,70] 

O

N

O

N CH3

H3C

   (B-a) 

 

150 

 

 

310 

 

327 

 

32 

 

[41,70] 

O

N

O

N
H3C

CH3

H3C

CH3

 (B-m) 

 

180 

 

- 

 

- 

 

- 

 

[41] 

H3C

CH3

O

N

O

N

CH3

CH3   (B-mt) 

 

209 

 

350 

 

- 

 

31 

 

[144] 
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Table 2.2 : (continued) Thermal properties of benzoxazines  

CH3

H3C

O

N

O

N
H3C

CH3

  (B-pt) 

 

158 

 

305 

 

- 

 

32 

 

[144] 

CH3

H3C

O

N

O

N

H3C

CH3

CH3

CH3

   (B-35x) 

 

238 

 

350 

 

- 

 

28 

 

[144] 

O
N

O
N

      (22P-a) 

 

200 

 

250 

 

260 

 

45 

 

[25] 

O

O

NN

O   (44O-a) 

Acetylene functionalized monomers 

 

340 

 

290 

 

370 

 

65 

 

[25] 

O
N

CH

  (Ph-apa) 

 

329 

 

491 

 

592 

 

81 

 

[43] 

O

N

O

H3C

CH3N

CH

CH   (B-apa) 

 

350 

 

458 

 

524 

 

74 

 

[43] 

O

N

O

F3C

CF3N

CH

CH   (B-af-apa) 

Allyl functionalized monomers 

 

 

368 

 

 

494 

 

 

539 

 

 

71 

 

 

[43] 

 

O

N

CH2

  (P-ala) 

 

 

285 

 

 

348 

 

 

374 

 

 

44 

 

 

[41] 
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Table 2.2 : (continued) Thermal properties of benzoxazines 

O
N

CH2

  (P-alp) 

 

107 

 

288 

 

356 

 

45 

 

[41] 

O

N

O

N
H2C

CH3

H3C
CH2

 (B-ala) 

Phenyl propargyl functionalized monomers 

 

298 

 

343 

 

367 

 

28 

 

[41] 

 

O

N

O

CH

 (P-appe) 

 

 

249 

 

 

362 

 

 

400 

 

 

66 

 

 

[36] 

O

N

O

N CH3

H3CO

O

HC

CH

 

(B-appe)  Nitrile functionalized monomers 

 

295 

 

352 

 

388 

 

66 

 

[36] 

 

O

N

CN  (I) 

 

175 

 

332 

 

371 

 

60 

 

[35] 

O

N CN

CN

 (x) 

 

278 

 

450 

 

560 

 

76 

 

[46] 

O

N

O

N CH3

H3C

CN
NC

CN

CN

  (IV) 

Malemide functionalized monomers 

 

300 

 

423 

 

468 

 

68 

 

[46] 

 

N

O

O

O

N

 (MIB) 

 

 

252 

 

375 

 

392 

 

56 

 

[49] 
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Table 2.2 : (continued) Thermal properties of benzoxazines  

NO O

O N

n

   (HPM-BaI) 

 

204 

 

330 

 

366 

 

49 

 

      

  (NOB) 

Adamantane functionalized monomers 

 
 

>250 

 

365 

 

383 

 

58 

 

[49] 

  

 
N

O  (2-benzoxazine) 

 

109 

 

335 

 

365 

 

24.2 

 

[51] 

N

O

H3C

  (3-benzoxazine) 

 

189 

 

399 

 

439 

 

30.8 

 

[51] 

      

TGA thermograms indicated that these modifications did not increase the thermal 

stability remarkably. However, thermal stability was slightly decreased with 

incorporation of ATBN whereas the incorporation of HPMI into PB-a or into ATBN 

modified PB-a thermal stability slightly increased 

It has also been observed that the incorporation of HPMI into ATBN-modified 

polybenzoxazine improved the thermal and mechanical properties of the materials. 

AFM study was employed to investigate the hydroxyl-terminated polybutadiene 

rubber modified polybenzoxazine. Both the dissolved rubber and phase-separated 

rubber were found to facilitate the energy dissipation upon mechanical deformation, 

yet the later was appeared to be much more effective, as only 40% of extra damping 

was observed from the former compared with 80% from the latter. 
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2.6.1.3 Polycarbonate (PC)-modified polybenzoxazine 
From DSC analysis polycarbonate (PC) was found to be completely miscible with 

the cured polybenzoxazine resin, which was reflected by the presence of a single 

glass-transition temperature and the disappearance of the PC melting behavior in the 

DSC thermograms of PC-polybenzoxazine blends. Ishida and Lee concluded that, the 

main reason for this miscibility of PC in the PC-polybenzoxazine blend is the 

hydrogen-bonding interaction, which occurs between the hydroxyl groups of 

polybenzoxazine and the carbonyl groups of the PC. It was observed that hydrogen-

bonding of carbonyl groups did not occur until 1 h of curing at 180°C, because of the 

existence of rather stable intramolecular hydrogen bonding within the flexible 

polybenzoxazine main chain at an early stage of curing. The content of hydrogen-

bonded carbonyls gradually increased after prolonged heating because the hydroxyl 

groups became more accessible to the mobile PC chains after gelation. Moreover, 

both the fraction of hydrogen-bonded carbonyls of PC and the strength of the 

hydrogen-bonded hydroxyl groups of polybenzoxazine were greater in the blends 

with a lower PC concentration. DSC experiments revealed that due to the addition of 

PC modifier, the ring-opening and polymerization reactions became slow at an early 

curing stage and a lesser extent of polymerization was observed in the blend with a 

higher percentage of PC. For this reason the exothermic peak of the polymerization 

shifted toward a higher temperature and the glass transition temperatures of PC 

blends appeared to be lower than the predicted values from the Fox equation. 

2.6.1.4 Properties of polycaprolactone (PCL)-modified polybenzoxazine 
FT-IR investigation of PCL- polybenzoxazine blends, with a wide range of 

compositions, indicated the existence of hydrogen bonding between hydroxyl groups 

of polybenzoxazines and carbonyl groups of PCL [74]. DSC results of various PCL-

polybenzoxazines blends revealed that the addition of PCL delays the polymerization 

reaction, which was reflected by the appearance of onset and peak temperatures of 

benzoxazine exotherms at higher temperatures as more PCL added into the 

benzoxazine monomers. The  Tg’s of  the blends, with PCL concentrations greater 

than 55%, were located in the range of PCL Tg, whereas the blends with a PCL 

content less than 33% exhibited  final Tg’s  in the benzoxazine range. The Tgs of the 

blends were increased continuously with increasing concentration of PCL till 33wt 

%. This is due to the fact that in presence of PCL, higher polymerization conversion 
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occurred, which was supported by FT-IR results. The addition of PCL improved the 

flexural properties of the blends and as well as thermal properties. Phase separation, 

thermal properties and morphological features of PCL- polybenzoxazine blends were 

also been reported [76,77].  

2.6.1.5 Properties of polyurethane-polybenzoxazine 
Poly(urethane-benzoxazine) films were prepared by blending the PU prepolymer 

with a benzoxazine monomer, B-a, (derived from bisphenol A). The PU prepolymer 

was blended with various amount of B-a in THF and followed by thermal treatment. 

It was believed that the cross-linking between -NCO of the PU prepolymer and 

phenolic OH, from ring-opening polymerization of B-a, and the allophanate 

formation via the intermolecular reaction of the PU prepolymer construct the main 

structures of the PU/B-a composite. The transparent nature of the cured PU/B-a films 

suggested the good compatibility between PU and B-a components. Only one Tg of 

all the PU/B-a films, from their viscoelastic properties, indicated that no phase 

separation in poly(urethane-benzoxazine) occurred due to the in situ polymerization. 

Tg was increased with the increase of B-a content. Elasticity characteristics with a 

good elongation with excellent reinstating behavior was exhibited by the films 

containing less than 15% of B-a, while those containing more than 20% of B-a 

exhibited plastic characteristics.  

The films possessed excellent resistance to organic solvents such as THF, DMF, and 

NMP. Compared with PU these films showed an improvement in thermal stability. 

The decomposition temperature of PU/B-a films increased with the higher B-a 

content. 

But, FT-IR study of the PU/ polybenzoxazine based IPN indicated that there was no 

apparent graft reaction occurred between the two components during IPN formation. 

SEM and TEM studies showed that although PU/ polybenzoxazine IPN film was 

transparent, phase separation occurs to a certain level regardless of the composition 

[82]. It was concluded that the structure of PU significantly influenced the B-a 

monomer distribution in PU network and subsequently affected the ring opening 

polymerization. The B-a monomers were well distributed in a noncompact PU 

network and with the increase of the degree of cross-linking this distribution of 

monomers was probably disturbed. During the thermal polymerization, 

rearrangement of B-a oligomers was hindered, resulting from the hydrogen bonding 



 56

between the renascent hydroxyl groups of PB-a and the PU segments. The higher the 

cross-linking degree of the PU network, the more difficult becomes such an 

interaction. The size of the PB-a network was decreased with increasing cross-linker 

in the PU composition. 

2.6.1.6 Properties of epoxy-polybenzoxazine 
For the improvement of the mechanical and water resistance properties of the cured 

resins from benzoxazine compounds and epoxy resins, terpendiphenol-based 

benzoxazines were synthesized and their curing with epoxy resins were investigated. 

It has been observed that the curing reaction did not proceed below 150°C, but it 

proceeded quantitatively without curing accelerators above 180°C. The cured resins 

derived from terpendiphenol-based benzoxazines and epoxy resins exhibited higher 

Tg, because of the hindrance of molecular chain mobility by the rigid and bulky 

cyclohexane ring from terpen backbone. The cured resins showed superior heat 

resistance, electrical insulation, and specially water resistance properties compared 

with the epoxy resins cured by bisphenol A type Novalac resin or B-a. 

Appearance of two exotherms in the DSC plots of binary mixture of benzoxazine and 

epoxy resins was due to the existence of at least two reactions: (i) curing reaction 

among benzoxazine monomers was the reason for the first exotherm, at the 

temperature range of about 240-250°C, (ii) the second exotherm was attributed to the 

reaction between benzoxazine and epoxy resins, which occurred at temperatures of 

about 290-300°C [145].  

Curing behavior of an epoxy resin and benzoxazine resin was described. The epoxy 

rings opened when they reacted with the hydroxyl groups that resulted from the ring 

opening of benzoxazines, and construct a network structure. For blends with equal 

functionality of oxirane to oxazine, the ring opening of benzoxazine and the partial 

curing of epoxy with hydroxyl functionalities was indicated by a single exotherm at 

temperatures of about 240°C in DSC thermograms. For the blends with higher molar 

ratio of epoxy, the homopolymerization of the residual epoxy resins with secondary 

hydroxyl groups, resulting from the ring opening of epoxide, [146] was observed by 

the second exotherm appears at 300°C in the DSC plot. 

For better understanding of the curing behavior of the epoxy resins by bisphenol A 

based benzoxazine the curing reaction of model reactions of phenyl glycidyl ether 
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(PGE) and a mono-functional benzoxazine, P-Ca, (synthesized from p-cresol, 

formaldehyde and aniline) was investigated. Curing reaction at different 

temperatures were monitored by using 13C-NMR spectroscopy, which confirmed that 

the phenolic hydroxyl groups produced by the ring opening of P-Ca reacted rapidly 

the epoxy groups of PGE at higher temperature, especially above 190°C, without a 

catalyst. It was postulated that the tertiary amine group produced by ring opening of 

benzoxazine accelerated the reaction. For another set of curing reactions with 

DGEBA and bisphenol A based benzoxazine (B-a) was carried out to compare the 

curing behavior of DGBA with bisphenol A type Novalac hardener. It was observed 

that epoxy resin cured by B-a possess higher Tg (175°C) along with superior heat 

resistance, water resistance and electrical insulation to those of the epoxy cured by 

BisA-N.  

The effects of epoxy concentrations on the properties of benzoxazine-epoxy 

copolymers have been extensively studied. The effect of molecular weight epoxy 

resins in epoxy-benzoxazine was also reported. Epoxy resins having different 

molecular weights were synthesized by the chain extension of glycidyl ether of 

bisphenol A with bisphenol A and tetrabromobisphenol A. Copolymers having 

higher crosslink density and Tg were resulted due to the incorporation of epoxy into 

the polybenzoxazine network. The reduction of Tg with increasing molecular weight 

due to reduced crosslink density, whereas a marginal increase in storage modulus 

with chain extension was observed from DMTA studies. TGA results indicated that 

the samples were stable up to 300°C. Copolymerization with epoxy in fact causes 

reduction of char yields compared with pure polybenzoxazine, but chain extension 

caused slightly increase in the char yield. Increasing molecular weight between 

epoxy groups by chain extension of bisphenol-A and tetrabromobisphenol A has 

afforded copolymers with reduced crosslink density, improved storage modulus, 

reduced glass transition temperature and a slight increase in the char yield. 

Comparative study of the properties of polybenzoxazine alloying with urethane 

prepolymer and epoxy resins was reported. According to their report the toughness of 

polybenzoxazine was effectively improved by alloying with isophorone diisocyanate 

(IPDI)-based urethane prepolymers (PU) or with flexible epoxy (EPO732). The 

flexural testing and dynamic mechanical analysis revealed that due to the addition of 

more flexible molecular segments in the polymer hybrids, the toughness of the alloys 
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of the rigid polybenzoxazine and the PU or the EPO732 systematically increased 

with the amount of either toughener. The curing temperature of the benzoxazine resin 

(B-a) at about 225°C shifted to higher value when the fraction of B-a in alloy 

decreased. Interestingly, Tg of the B-a/PU alloys was significantly higher (Tg 

beyond 200°C) than those of the parent resins, i.e., 170°C for BA-a and-70°C for PU, 

whereas decreases of the Tg was observed as the content of epoxy fraction increased. 

Furthermore, the degradation temperature of the B-a/PU alloys was improved with 

the presence of the PU, though the opposite trend was observed in the B-a/EPO732 

systems. The char yield of  both alloy systems was steadily enhanced with the 

increased benzoxazine content because the char yield of the polybenzoxazine was 

inherently higher than that of the two tougheners.  

2.6.1.7 Polybenzoxazines with flame retarding properties 
Modified novolac resins with benzoxazine rings was synthesized and copolymerized 

it with glycidyl phosphinate (DOPO-Gly). From DTA results showed that modulus, 

cross-linking densities and Tgs of the blends decreased with increasing DOPO-Gly 

content. The reason of this trend may be the presence of bulky DOPO group, which 

decrease the cross-link density and appear to be less able to restrict segmental 

motions. These phosphorylated resins showed high char yield, which increases with 

increasing phosphorous content. This also indicates that their flame retardancy would 

be high. The thermal stabilities of DOPO-benzoxazine-novolac resins are relatively 

poor compared to the phosphorous free benzoxazine-novolac resins, because 

phosphorous DOPO group degrades at relatively low temperatures. The burn tests 

(UL-94) of these materials indicate that, novolac modified benzoxazines are V-1 

materials where as high phosphorous content polymers belong to V-0 category. 

When novolac resins with benzoxazine rings cured with isobutyl 

bis(glycidylpropylether) phosphine oxide) (IHPOGly), they produce flame retardant 

polymers of V-0 grade. Thermo-gravimetric analysis of these materials showed that, 

the temperature of 5% weight loss decreases with increase of phosphorous content 

and char yields were around 20%. The phosphorous containing materials showed 

higher Tgs, because of the presence of strong polar P=O group.  
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2.6.1.8 Clay-polymer composite 
Polybenzoxazine-clay (B-a-OMMT) [39] and poly(urethane-benzoxazine)-clay 

(PU/P-a-OMMT) nanocomposites with various compositions were prepared.  It has 

been observed that due to the catalytic effect of OMMT, the ring opening 

temperature of benzoxazines was reduced for these composites compared to the 

pristine polymer. Tg
’s and char yield of these hybrid materials were also higher and 

increased with increasing OMMT content. The initial decomposition temperatures 

(5% and 10% weight loss temperatures) were enhanced by hybridizing with OMMT. 

In the case of Pu/P-a- OMMT composites, the tensile strength and modulus 

increased, while the elongation decreased with the increase of OMMT loading. Due 

to the addition of OMMT, the solvent resistance was also improved. This may be 

because of the layered silicate structures in OMMT which acts as a protecting wall 

and prevents solvents to penetrate into the nanocomposites. 

TGA of the polybenzoxazine-OMOM composites were prepared and it was indicated 

that the char yield of the composites is greater than that of polybenzoxazines (except 

for MOM-dodecylamine-polybenzoxazine, which may undergo some decomposition 

during curing). The heat resistance of these composites has been improved. 

In case of PBO-Bz-OMMT composites, the inclusion of OMMT decreases the curing 

temperature and increases Tg and the storage modulus of these nanocomposites was 

maintained up to higher temperatures was reported. 

2.6.1.9 Boron nitride-polybenzoxazine composites 
To develop highly conductive molding compounds for electronic packing 

applications boron nitride filled polybenzoxazines were prepared. These materials 

exhibited a very high conductivity along with high and stable mechanical strength up 

to 200°C with a high Tg of ca. 220°C and a very low water absorption property 

[147,148]. Specific heat capacity of boron nitride filled polybenzoxazines has been 

investigated by using temperature modulated differential scanning calorimetry 

(TMDSC) and it was observed that filler loading is the critical factor that can change 

the heat capacity of the composite. A linear relationship between the composite heat 

capacity and filler loading was found out [149]. During investigation of the inter-

phase of boron nitride-polybenzoxazine, it has been observed that the boron nitride 

surface inhibits curing of benzoxazine coatings in the interfacial region. DMA results 
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indicated a slightly higher activation enthalpy of the glass transition process, as well 

as slightly higher Tg for the cured composite specimens [150]. 

2.7 Telechelic Polymers 

Telechelic polymers are defined as macromolecules that contain two reactive end-

groups that have the ability to react selectively with another molecule. Depending on 

the functionality, telechelics can be classified as mono-, di-, tri-, and multifunctional 

telechelics (polytelechelics) [151]. Telechelic polymers can be used as cross-linkers, 

chain extenders, and precursors for block and graft copolymers. Moreover, star and 

hyper-branched or dendric polymers are obtained by coupling reactions of 

monofunctional and multifunctional telechelics with appropriate reagents. Various 

macromolecular architectures obtained by the reactions of telechelics are represented 

in Figure 2.8. The end group functionality designates the polymerization pathways. 

When end groups are bifunctional (eg, vinyl groups) they yield graft copolymers or 

networks; such telechelic polymers are called macromolecular monomers, 

macromonomers. Telechelics can be synthesized by conventional radical 

polymerization in two ways: End groups can be controlled using large concentration 

of functional initiator, or polymerization can be conducted in the presence of suitable 

transfer agents. Controlled radical polymerization is another way to synthesize 

telechelics. Control of chain ends was traditionally accomplished using living ionic 

polymerization techniques. However, recently controlled living radical 

polymerization provided the possibility to synthesize well-defined telechelic 

polymers with controlled functionality with radical routes. Atom transfer radical 

polymerization, stable free radical mediated polymerization (SFRP), also called as 

nitroxide mediated polymerization (NMP), and reversible addition fragmentation 

chain transfer polymerization (RAFT) are useful for preparation of various 

telechelics. 

Addition to radical routes, the synthesis of telechelics by ring opening has attracted 

great interest. The end groups are introduced by initiation, end capping, or transfer 

reactions. Telechelics can be obtained from cyclic ethers, cyclic acetals, cyclic 

sulfides, cyclic amines, lactones, siloxanes, oxazolines in various methods. For 

example, polymerization of ε-caprolactone by suitable alcoholates simply yields 

telechelic polymers 
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Figure 2.8 : Reactions of telechelics for various structures 
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3.  EXPERIMENTAL PART 

3.1 Materials 

3.1.1 Monomers 
Styrene (St, 99.0%, Aldrich)  

It was vacuum distilled over calcium hydride just before use. 

ε-Caprolactone ( ε-CL, 99.0%, Aldrich) 

It was vacuum distilled over calcium hydride. 

Terephthaloyl dichloride (99.0%, Alfa Aesar) 

It was was recrystallized from hexane. 

Adipoyl chloride (98.0%, Acros) 

It was used as received.  

3.1.2 Solvents 
N,N-Dimethyl formamide (99.0 %, Aldrich)  

It was used as received. 

1,4-dioxane (≥99.0%, Sigma-Aldrich) 

It was used as received. 

Tetrahydrofuran (THF, 99.8%, J.T.Baker)   

(a) It was used as eluent for chromatography as received (High Performance Liquid 

Chromatography Grade).  

(b) For use in the chemical reactions, it was dried and distilled over benzophenone-

sodium. 

Diethyl ether (≥ 99.0%, J.T. Baker) 

It was used as received. 

Toluene (99.9%, Acros) 
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It was used as received. 

Methanol (Technical) 

It was used for the precipitation of polymers without further purification. 

n-Hexane (99.0%, Aldrich)  

It was used as received. 

Chloroform (≥99%, Aldrich) 

It was used as received. 

Dichloromethane (≥99%, J.T. Baker) 

It was used as received. 

Acetic acid (99-100%, Merck) 

It was used as received. 

Dimethyl sulfoxide (DMSO) (≥99.5%, Sigma) 

It was used as received. 

Ethanol (≥99.5%, Aldrich) 

It was used as received. 

3.1.3 Other chemicals 
Paraformaldehyde (powder, 95%, Sigma-Aldrich) 

It was used as received. 

Phenol (loose crystals, ≥99.0%, Sigma-Aldrich) 

It was used as received. 

3-Aminophenylboronic acid hemisulfate (Acros) 

It was used as received. 

2,2-bipyridine (bpy) (≥99%, Sigma-Aldrich) 

It was used as received. 

Copper(I) bromide (CuBr) (≥98.0%, Sigma-Aldrich) 

It was used as received. 
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Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4)  (99%, (Aldrich) 

It was used as received. 

1,4-Dibromo-2,5-dimethylbenzene (98%, Aldrich) 

It was used as received. 

2,5-dibromotoluene (98%, Aldrich) 

It was used as received. 

2,5-Dibromotoluene (99%, Acros) 

It was used as received. 

N-bromosuccinimide (NBS) (99%, Acros) 

It was used as received. 

Ethanolamine (99%, Acros) 

It was used as received. 

β-naphthol (≥98.0%, Fluka) 

It was recrystallized from water. 

Aniline (≥99.5%, Sigma-Aldrich) 

It was distilled before usage. 

Sodium hydroxide (Granulated, ≥ 98%, Merck) 

It was used as received. 

Sodium sulfate (≥ 99.0 %, Merck) 

It was used as received. 

Triethylamine (≥99%, Aldrich) 

It was dried with NaOH pellets and distilled. 

2-(2-aminoethoxy)ethanol (98%, Acros) 

It was used as received. 

4,4'-Isopropylidenediphenol (97%, Aldrich) 

It was used as received. 
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Stannous 2-ethyl-hexanoate (stannous octoate) (~95%, Aldrich) 

It was used as received. 

Acetic anhydride (≥99%, Sigma-Aldrich) 

It was used as received. 

[(norbornadiene)rhodium(I) chloride]2 [(nbd)RhCl]2 (≥98%, Fluka) 

It was used as received. 

Propargyl bromide (~80 volume % in toluene, Fluka) 

It was used as received. 

HCl (37%, Sigma-Aldrich) 

It was used as received. 

1,4-Dibromo-2,5-bis(bromomethyl) benzene and 1,4-dibromo-2-(bromomethyl) 

benzene 

They were prepared by bromination of methyl groups of 2,5-dibromo-p-xylene or 

1,4-dibromotoluene, respectively, using N-bromosuccinimide.  

3.2 Objectives Characterization 

3.2.1 Nuclear magnetic resonance spectroscopy (NMR) 
1H-NMR measurements were recorded in CDCl3 with Si(CH3)4 as internal standard, 

using a Bruker AC250 (250.133 MHz) instrument. 

3.2.2 Infrared spectrophotometer (FT-IR) 
FT-IR spectra were recorded on a Perkin Elmer FTIR Spectrum One B spectrometer.   

3.2.3 UV-visible spectrophotometer  
UV-Visible spectra were recorded on a Shimadzu UV-1601 UV-visible 

spectrophotometer.  

3.2.4 Fluoresans spectrophotometer 

Fluoresans spectra were obtained on a Perkin Elmer LS 50 Luminesans spectrometer. 
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3.2.5 Gel-permeation chromatography (GPC) 
a) Gel permeation chromatography analyses were performed with a set up consisting 

of a Waters 410 Differential Refractometer, a Waters 515 HPLC Pump and an 

apparatus equipped with three Waters ultrastyragel columns (HR series 4, 3, 2 

narrow bore), with THF as the eluent at a flow rate of 0.3 mL/min. Molecular 515 

weights were calculated on the basis of a calibration curve recorded with mono 

disperse polystyrene standards.  

b) Gel permeation chromatography analyses were measured on a Shimadzu system 

equipped with a SCL 10A system controller, a LC-10AD pump, a RID-10A 

refractive index detector, a SPD-10A UV detector and both a PSS Gram30 and a PSS 

Gram1000 column in series, whereby N, N-dimethyl acetamide with 5 mmol LiCl 

was used as eluent at 1mL/min flow rate and the column oven was set to 60°C. The 

molecular weight and the molecular weight distribution of the prepared polymers 

were calculated by using poly(methyl methacrylate) standards.   

c) Gel permeation chromatography instrument equipped with a Waters 1515 pump 

and Waters styragel column (HT4) utilizing DMF containing 5mM  NH4PF6  at a 

flow rate of 0.5 ml/min and the column oven set to 50°C.  

3.2.6 Differential scanning calorimeter (DSC) 
Differential scanning calorimeter was performed on a Perkin Elmer Diamond DSC 

with a heating rate of 10°C min-1 under nitrogen flow. 

3.2.7 Thermal gravimetric analysis (TGA) 
TGA was carried out on Perkin Elmer Diamond TA/TGA with a heating rate of 10°C 

min-1 under nitrogen flow. 

3.3 Synthesis 

3.3.1 Synthesis of monofunctional benzoxazine monomer (P-a) 
The general procedure is as follows; 18.6 g (0.2 mol) aniline is added slowly to the 

flask containing 12.0 g (0.4 mol) p-formaldehyde, keeping the temperature below 

10°C in ice bath. The mixture is stirred for 10 min, 18.8 g (0.2 mol) phenol is added 

to the mixture. Then the flask heated up to 110°C for one and half an hour. The 

content of the flask is dissolved in ethyl ether. The ether solution was washed several 

times with 1 N sodium hydroxide solution and de-ionized water, respectively. 
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Organic layer was dried with anhydrous sodium sulfate and diethyl ether was 

evaporated to yield light yellow viscous liquid. Solid product was formed after 

applying vacuum at 50°C in 24 h. (Yield: 65%) 

 

 

 

(3.1) 

3.3.2 Synthesis of difunctional bisbenzoxazine (B-a)  
Synthesis of bisbenzoxazine was performed as follows [306]; to 100 mL of 1,4-

dioxane, aniline (40.0 mmol, 3.72 g), 4,4'-Isopropylidenediphenol (40.0 mmol, 9.13 

g), and p-formaldehyde (160 mmol, 4.80 g) were added and refluxed for 3 days. The 

reaction mixture was filtered and 1,4-dioxane was evaporated under vacuum. 

Resulting oily product was dissolved in chloroform and washed five times with 40 

mL 0.1 N sodium hydroxide aqueous solution and distilled water, respectively. Then, 

the chloroform solution was dried with anhydrous sodium sulfate. Removal of 

solvent by evaporation afforded orange yellow oil. (Yield: 60%) 

 

 

(3.2) 

3.3.3 Synthesis of ATRP initiators 
 1,4-Dibromo-2,5-bis(bromomethyl)benzene (1a), was prepared by bromination of 

methyl groups of 2,5-dibromo-p-xylene using N-bromosuccinimide in CCl4. 6.2 g 

(0.025 mol) 2,5-dibromo-p-xylene, 9.26 g (0.52 mol) N-bromosuccinimide and 0.1g 

benzoyl peroxide were dissolved in 20mL CCl4. The solution was maintained at 

reflux temperature for 4 h. After that time the solution was filtered. The succinimide 

was washed with a supplementary amount of CCl4 and finally with a little quantity of 

CH2Cl2. The combined organic solutions were washed several times with water and 

than dried over MgSO4. The solvent was removed by rotary evaporator. The product 

was purified by passing through a silicagel column using diethyl ether as eluent. 
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Finally, the product was obtained as white crystals after recrystallizing twice from 

benzene. 1,4-Dibromo-2-(bromomethyl)benzene (1b) was prepared in a similar way 

with (1) from 1,4-dibromotoluene.  

1,4-Dibromo-2,5-bis(bromomethyl)benzene (1a) and 1,4-dibromo-2-(bromomethyl) 

benzene (1b) were prepared by bromination of methyl groups of  2,5-dibromo-p-

xylene or 1,4-dibromotoluene, respectively, using NBS.  

1(a): 1H-NMR (CDCl3): δ = 4.5 (s, 4H, CH2), 7.65 (s, 2H, aromatic); white crystals, 

m.p. (DSC): 159-160oC. Anal. (C8H6Br4): Calc. C 22.78; H 1.43. Found C 22.52; H 

1.35 

1(b): 1H-NMR (CDCl3): δ = 7.58 (s, 1H, ArH -3-position), 7.43-7.40 (d, 1H, ArH -5 

position), 7.28-7.26 (d, 1H, ArH -6 position), 4.51 (s, 2H, CH2Br); white crystals, 

m.p. (DSC): 94-95oC. 

Anal. (C7H5Br3) Calc. C 25.57; H 1.53. Found C 25.63; H 1.73 

 

(3.3)

3.3.4 General procedure for atom transfer radical polymerization 
A round-bottom flask equipped with a magnetic stirrer and a lateral neck with tap 

was used. The system was evacuated and back-filled with dry nitrogen several times. 

The catalyst (CuBr), ligand (bpy), initiator (1a or 1b), and styrene were introduced 

under an inert atmosphere. The flask was placed in an oil bath warmed at 110°C and 

stirred at that temperature for a given time, after which the reaction was stopped and 

the mixture was diluted with tetrahydrofuran and finally poured into a ten-fold excess 

of methanol. The solid was collected after filtration and dried in an oven at 40°C and 

at reduced pressure overnight. The polymers were purified by passing through a 

silica gel column using tetrahydrofuran as eluent and re-precipitated in methanol. 



 70

 

 

(3.4) 

3.3.5 General procedure for the synthesis of amino functional polymers by 
Suzuki Coupling 

A 100 mL three-necked round bottom flask equipped with a condenser, a rubber 

septum, a nitrogen inlet-outlet and a magnetic stirrer was charged with 1M NaHCO3 

(10 mL) and THF (15 mL). The mixture was previously bubbled with nitrogen over a 

period of 30 minutes and refluxed under nitrogen for 4 h. A 20 mL three-necked 

round bottom flask equipped in the same way as the previous one was charged under 

inert atmosphere with 0.208 mmol of polymer (2a or 2b), 0.174g (1.04 mmol) 3-

aminophenylboronic acid hemisulfate and 0.01 g (0.008 mmol) of Pd(PPh3)4. The 

solvent mixture (4 mL) was introduced with a syringe through the septum. The 

mixture was refluxed under nitrogen for 4 days, maintaining vigorous stirring and 

with the exclusion of oxygen and light. The amino-functionalized polymers (3a or 

3b) were separated by precipitation in methanol, filtrated, washed several times with 

water for the removal of inorganic salts and dried. Further purification was 

performed by passing the polymers through a silicagel column using THF as eluent 

and re-precipitated in methanol. 
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(3.5) 
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3.3.6 Synthesis of benzoxazine functional macromonomers 
Solid phenol (10 g, 0.106 mol) was placed in a 100 mL round-bottom flask 

containing a magnetic stirring bar. The flask was heated and after complete melting 

of the phenol crystals, the polymer with amino functions, 3b, (0.2 g, 0.05 mmol) and 

paraformaldehyde (0.3 g, 0.01 mol) were added to the flask. A yellow solution was 

obtained. The solution was stirred at 110ºC for 2 h, then cooled to room temperature. 

Tetrahydrofuran (10 mL) was added to the flask. The resulting polymer was 

precipitated in excess (200 mL) methanol and then filtered. The solid polymer was 

dissolved in dichloromethane, washed with 0.1N NaOH solution two times and 

neutralized with distilled water. Dichlorometane was evaporated to concentrate the 

polymer solution. The solution was re-precipitated in methanol (200 mL), and 

filtered. Solid polymer (4b) was dried under vacuum before analysis. The same 

method applied for the synthesis of 4a. 

R'

Br

n

NH2

H2N

CH2O

OH

R'

Br

n

N

NO

O

R':-H (4a), Pst (4b)
Pst: Polystyrene  

(3.6)

3.3.7 General procedure for synthesis of 2-(1H-Naphtho[1,2-e][1,3]oxazin-2-yl)-
ethanol (N-a-OH) 

A 100 mL round-bottomed flask, equipped with magnetic stirrer and a reflux 

condenser, placed in ice bath, was charged with paraformaldehyde (0.03 mol) and 

ethanolamine (0.015 mol). 2-Naphthol (0.015 mol) was subsequently added to the 

mixture. The flask is then placed in an oil bath which is heated to 110°C and the 

mixture was maintained at that temperature for three hours. At the end of the reaction 

the mixture was diluted with dichloromethane and by means of a separatory funnel. 

The organic layer was washed successively several times with 0.1 N NaOH and 
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diluted AcOH solution. Then organic phase was neutralized with distilled water. 

Organic layer was dried with anhydrous Na2SO4 and dichloromethane was 

evaporated to yield 2-(1H-Naphtho [1,2-e][1,3]oxazin-2-yl)-ethanol (N-a-OH). 

Yield: 56%. The same synthetic procedure in dioxane as a solvent gave the same 

product with a relatively lower yield (49%). 

1H-NMR (CDCl3): δ = 2.57 (broad s, 1H, OH), 3.00 (t, 2H, CH2), 3.73 (t, 2H, CH2), 

4.34 ( s, 2H, CH2 ), 4.94 (s, 2H, CH2), 7.00-7.04 (d, 1H, aromatic -3-position), 7.32-

7.39 (t, 1H, aromatic -7-position), 7.45-7.51 (t, 1H, aromatic -6-position), 7.58-7.61 

(d, 1H, aromatic -5-position), 7.63-7.67 (d, 1H, aromatic -4-position), 7.75 (d, 1H, 

aromatic -8-position). 

IR (neat): 3370 cm-1 (O-H stretch), 3059 cm-1 (aromatic C-H stretch), 1750-1909 cm-

1 (aromatic overtones), 1224 cm-1 (aromatic C-O stretch), 1072, 1038 cm-1 (C-O 

stretch), 940 cm-1 (aromatic ring mode) Anal. (C14H15NO2) Calc. C 73.34; H 6.59, N 

6.11 Found C 72.16; H 6.22, N 6.63. 

 

 

(3.7) 

3.3.8 General method for preparation of poly(ε-caprolactone) with the  2-(1H-
Naphtho[1,2-e][1,3]oxazin-2-yl)-ethoxy end group (PCL-N-a) 

N-a-OH (0.001 mol) , monomer (ε-CL) (0.02 mol) and stannous octoate (2.5x10-6 

mol), were added under nitrogen in previously flamed and nitrogen-purged schlenk 

tube equipped with magnetic stirrer. The ε-CL polymerization was carried out in 

bulk at 110°C. After 48 h, the polymerization was terminated by cooling the tube to 

the room temperature, then diluted with CH2Cl2 and poured into 10-fold excess of 

cold methanol. The polymer with naphthoxazine end group was collected after 

filtration and drying at room temperature in a vacuum for 2 days. (Yield: 96%) 



 73

 

(3.8)

3.3.9 Synthesis of diol containing bisbenzoxazine (B-etherdiol) 
Synthesis of B-etherdiol was performed as follows. To 100 mL of 1,4-dioxane, 2-(2-

aminoethoxy)ethanol (40.0 mmol, 4.20 g), 4,4′-isopropylidenediphenol (40.0 mmol, 

9.13 g) and paraformaldehyde (160 mmol, 4.80 g) were added and refluxed for 3 

days. The reaction mixture was filtered and 1,4-dioxane was evaporated under 

vacuum. Resulting oily product was dissolved in chloroform and washed five times 

with 40 ml 0.1 N NaOH aqueous solution and distilled water, respectively. Then, the 

chloroform solution was dried with anhydrous sodium sulfate. Removal of solvent by 

evaporation afforded orange-yellow oil. (Yield: 60%) 

(3.9)

3.3.10 Polyetherester synthesis 
In a dry 100 mL round bottom flask equipped with a Claisen head with a calcium 

chloride drying tube and a rubber septum were placed 30 mL of chloroform, B-

etherdiol (1 g, 2,05 mmol) and 5 mL of triethylamine.  The mixture was cooled with 

an ice bath and a nitrogen stream was maintained by needles through septum. Then, 

30 mL chloroform solution of terephthaloyl dichloride (0,42 g, 2,06 mmol) (or 

adipoylchloride) was added portion-wise via syringe. After addition of 

diacidchloride, the mixture was stirred for 3 h at ambient temperature and refluxed 

for 1 h.  The cooled solution was washed three times with 40 mL of distilled water. 

The chloroform solution was dried with MgSO4, filtered and concentrated under 

vacuum. The polymer was precipitated in 200 mL of methanol (diethylether was 

used in adipoylchloride case), filtered and dried under vacuum overnight. (Typical 

yield ca. 55%, Molecular weights of polymers; PEE-BA= Mn: 33.400, PDI 

(polydispersity): 4.37, PEE-BT= Mn: 33.700, PDI (polydispersity): 1.36) 
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(3.10) 

3.3.11 Preparation of N-(4-hydroxphenyl)acetamide (1) 
A suspension of p-aminophenol (15.3 g, 140 mmol,) in water (50 mL) was taken into 

a 250 mL flask. Acetic anhydride (14.2 mL, 150 mmol,) was added to this solution. 

The mixture was heated at 60oC with vigorous stirring until formation of clear 

solution. After about 20 minutes, the solution cooled to ambient temperature and the 

crude product was filtered and washed with deionized water. Crude solid was 

recrystallized from water to yield white crystals. (Yield: 80%, mp: 169ºC)  

H2N

OH

(Ac)2O

H2O, 60oC,
20 min.

H
N

OH

H3C

O

1  

 

(3.11) 

3.3.12 Preparation N-(4-(prop-2-ynyloxy)phenyl)acetamide (2) 
 In a 250 mL flask, of N-(4-hydroxphenyl)acetamide (8.1 g, 50 mmol) was dissolved 

in 100 mL of 0.4 N NaOH. The mixture was heated at 70°C until a clear solution was 

formed. To this solution, tetrabutylammonium bromide (1.6 g, 5 mmol,) was added 

as a phase transfer catalyst. A solution of propargyl bromide (6.5 g 55, mmol) in 50 

mL of toluene was added portion wise to the solution. The mixture was kept stirring 

at 70°C for 24 h. Then it was cooled to afford solid. In addition, the toluene layer 

was separated and washed repeatedly with water. Evaporating toluene afforded extra 

solid. The crude product was dissolved in 1,4-dioxane and precipitated in water (ca. 
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200 mL) , then filtered, and washed repeatedly with copious amount of water. (Yield: 

94%) 

TBAB: Tetrabutylammonium bromide.

H
N

OH

H3C

O

1. NaOH(aq),
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(3.12)

3.3.13 Preparation of p-propargyloxy aniline (3) 
In a 250 ml flask, N-(4-(prop-2-ynyloxy)phenyl)acetamide (8,5 g, 45 mmol)  was 

dissolved in  ethyl alcohol (70 mL) and HCl (36%, 70 mL) was added. The mixture 

was stirred at 60 oC for 3 h. After neutralizing with aqueous sodium hydroxide, the 

solution was extracted with chloroform, and the organic layer was dried over 

anhydrous MgSO4. Evaporation of chloroform gave a yellowish brown viscous 

product. The crude product was purified by distillation under reduced pressure (bp: 

95°C, 10 mmHg) to afford a colorless and highly viscous liquid, which crystallized 

into yellowish white crystals after a while in the flask (Yield: 75%, mp: 49-50°C). 

 

(3.13)

3.3.14 Preparation of 3-(4-(prop-2-ynyloxy)phenyl)-3,4-dihydro-2H-
benzo[e][1,3]oxazine (4)  

In a 250 mL flask, paraformaldehyde (1.9 g, 63 mmol) in 100 mL of dioxane was 

cooled by ice bath. To this solution, p-propargyloxy aniline (34 mmol, 5 g) in 25 mL 

of dioxane was added portion-wise. The solution was kept stirring for 15 min below 

5°C. Thereafter, a solution of phenol (3.3 g, 35 mmol,) in 25 mL of dioxane was 

added. The solution was refluxed at 110°C for 6 h. Removal of the solvent in a rotary 

evaporator gave a viscous residue  that was dissolved in 100 mL of diethylether and 

washed several times with 1 N sodium hydroxide solution and finally with distilled 

water. Then, the ether solution was dried with anhydrous sodium sulfate, followed by 

evaporation of ether under vacuum to afford pale yellow viscous fluid. (Yield: 60%) 
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(3.14) 

3.3.15 Polymer synthesis 
Into a 20 mL Schlenk tube with a sidearm was added 0.85 mmol of propargyl 

benzoxazine. The tube was evacuated under vacuum and then flushed with dry 

nitrogen three times through the sidearm. Toluene (3 mL) was injected into the tube 

to dissolve the monomer. The catalyst solution was prepared in another tube by 

dissolving [(nbd)RhCl]2 (10 µmol) in 2 mL of toluene with 1 drop of triethylamine, 

which was transferred to the monomer solution using a syringe. The reaction mixture 

was stirred at room temperature under nitrogen for 24 h. The mixture was then 

diluted with 3-5 mL of toluene and the solution filtered for insoluble products. Then 

the solution was added drop wise to methanol (100 mL) under stirring. The 

precipitate was collected by filtration and dried under vacuum at room temperature to 

a constant weight. The polymeric product was isolated as powder with a moderate 

yield (26%). Additionally, the insoluble product was obtained with an 18% yield. 

(Note: Polymerization without co-catalyst yielded 25% soluble and 16% insoluble 

products)  

 

 

 

(3.15) 
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4.  RESULTS AND DISCUSSIONS 

The molecular structure of polybenzoxazines offers enormous design flexibility 

which allows tailoring the properties of the cured materials for wide range of 

applications. Different synthetic strategies for the preparation of benzoxazine 

monomers and blends, their polymerization reaction mechanisms, and the structure 

property relationships of the cured materials have been studied by various research 

groups. But, pure polybenzoxazine based polymers also suffer number of 

disadvantages, in terms of (a) high curing temperature (~ 200°C or higher), (b) 

difficulty in processing and (c) brittleness. To overcome those disadvantages, several 

researchers have attempted various strategies, such as (a) preparation of modified 

monomers with additional functionality, (b) synthesis of novel polymeric precursors 

and (c) by blending with a high performance polymer or filler and fibers. The 

monomers are usually powder and processing into thin films is rather difficult. 

Addition of elastomeric materials to brittle resins is a well known approach to 

improve the ductility. But while improvement in ductility of benzoxazine may be 

achieved using this approach, it sacrifices the intrinsic advantages of thermosetting 

resins. To improve the processability and mechanical properties novel polymeric 

based precursors have been synthesized by incorporating benzoxazine units either as 

side chain or as end chain or in main chain of polymer. It is expected that, the cross-

linked network structure formed from polymer and polymerization of benzoxazine, 

will exhibit enhanced mechanical property while retaining the beneficial properties 

of polybenzoxazine.  

By using Atom Transfer Radical Polymerization, a functional end group can easily 

be incorporated in a linear polymer by varying the initiator. By this method end-

chain or mid-chain functional telechelics can be synthesized. The macromonomer 

method is proposed for obtaining polybenzoxazines with polystyrene groups. As it 

will be shown below benzoxazine type macromonomers can easily be prepared from 

amino functional telechelics which were obtained via combination of ATRP and 
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Suzuki coupling. First, ATRP initiators were synthesized and subsequently used in 

ATRP of styrene to yield dibromophenyl functional polymers (Reaction 4.1). 

 

(4.1)

Table 4.1 : Conditions and results of ATRP of styrene using initiators 1 and 2 in the  
presence of CuBr/bpy complex 

Initiator 
(mol/L) 

Time 
(min) 

Yield 
(%) 

Mn 
(GPC) 

Mn 
(Theoretical) 

Mn 
(
1

H-NMR) 
Mw/Mn Polymer 

1a (0.10) 45 41 4265 4150 4180 1.19 2b 
2b (0.15) 60 27 2182 1850 1860 1.25 2a 

a bulk, 120oC, [I]/CuBr/bpy = 1/2/6 

bbulk, 120oC, [I]/CuBr/bpy = 1/1/3 
cDetermined by GPC 

It should be noted that while the bromomethyl groups are effective for ATRP 

initiation of styrene, the bromine atoms directly connected to the benzene ring are 

preserved for further coupling reactions. Thus, Suzuki coupling with boronic acid 

amino compound in the presence of a Pd(PPh3)4 catalyst yielded respective amino 

telecehelics. Subsequently, these polymers were converted to benzoxazine 

macromonomers following the general synthetic pathway shown in reaction 4.1.  
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In this connection it should be pointed out that during the benzoxazine ring closure 

process we have encountered formation of by-products arising from the additional 

Mannich reactions.  

In figure 4.1, 1H-NMR spectrum of the product clearly reveals that instead of 

benzoxazine ring formation aminomethyl linkages between polymer backbones are 

formed. 

 
Figure 4.1 : 1H-NMR spectrum of the aminomethyl linked polystyrene. 

depending on the structure of the respective ATRP initiator, end-chain functional or 

mid-chain functional polymers were formed. As the functionalized polystyrene was 

intended to be used in further modification reactions, the conditions of ATRP (high 

concentration of initiator 0.1 M and low reaction time 45-60 minutes) were chosen to 

obtain a low molecular weight polymer, combined with a satisfactory conversion and 

polydispersity (Table 4.1). 

In the case of the preparation of low molar mass benzoxazine derivatives, such by-

products and partially ring opened oligomers can easily be removed by washing the 

crude products with NaOH solution. In order to recognize competing side reactions 

we have performed a control experiment in which conventional benzoxazine 

formation was achieved from phenol, aniline and paraformaldehyde in the presence 
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of commercial nonfunctional polystyrene sample. Indeed, the inspection of the 1H-

NMR spectrum of the isolated polystyrene indicated various additional Mannich 

reaction on the aromatic ring of the polystyrene backbone (Figure 4.2). 

 
Figure 4.2 : 1H-NMR spectrum of the product obtained from the control  

experiment. 

Thus the conventional method was slightly modified and interactions of the amino 

functions with aromatic groups of the polystyrene backbone were prevented by using 

bulk phenol as both reactant and solvent. By this way, side reactions on the polymer 

backbone were eliminated and benzoxazine macromonomers readily obtained.  

The structure of benzoxazine macromonomers, carrying polystyrene groups, was 

investigated by spectral methods (FT-IR and 1H-NMR). In IR spectra of the 

macromonomers, the disappearance of the characteristic absorption bands at 3453 

and 3376 cm-1 which they are the asymmetric and symmetric vibration modes of the 

amino groups is clearly noted. The absorption bands at 1225 cm-1 corresponds to an 

aromatic C−O streching frequency as in phenols and 944 cm-1 can be attributed to a 

C−O−C cyclic acetal vibrational mode as in oxazine ring (see figure 4.3 and 4.4) 
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Figure 4.3 : FT-IR spectra of benzoxazine-functional polystyrene 4b (a) and 

amino- functional polystyrene 3b (b). 

 

Figure 4.4 : Expanded FT-IR spectra of 4000-2800 cm-1 (a) 3b and (b) 4b. 

In IR spectra of the end chain macromonomers reveal the characteristic absorption 

bands at 3453 and 3376 cm-1 which they are the asymmetric and symmetric vibration 

modes of the amino groups. After benzoxazine formation reactions those bands were 

disappered. Both end chain and mid-chain amino-macromonomers converted to 

benzoxazines as FT-IR shows (see figure 4.5 and 4.6 also vide infra figure 4.3 and 

4.4).  
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Figure 4.5 : FT-IR spectra of amino-functional polystyrene, 3a (a) and 
benzoxazine-functional polystyrene, 4a (b). 

 

 

Figure 4.6 : Expanded FT-IR spectra of 4000-2800 cm-1 (a) 3a and (b) 4a. 

The conversion of amino groups into benzoxazines was further confirmed by 1H-

NMR spectroscopy (Figure 4.7 and 4.8).  
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Figure 4.7 :1H-NMR spectra of 3b (a) and 4b (b). 

The characteristic protons originating from the polystyrene chains appear in both 

spectra. Additionally, amino protons of the telechelic polymer (3b) appear at 3.47 

ppm as was confirmed by their disappearance with D2O exchange.  The 1H-NMR 

spectrum of benzoxazine functional PSt macromonomer exhibits two broad signals 

in the range of 5.2 and 4.5 ppm  corresponding to –CH2 protons of benzoxazine ring, 

i.e. Ar-CH2-N and –O-CH2-N, respectively. Moreover, one can observe the 

disappearance of the amino functionality at 3.47 ppm due to its consuming in 

benzoxazine synthesis. 

The curing behavior of the macromonomers was examined by DSC. Figure 4.9 

shows typical DSC thermogram of the macromonomer, 4b. An exotherm was 

observed in the first run for both macromonomers corresponding to the ring opening 

polymerization in addition to the glass transition (ca. 105ºC) of the polystyrene 

segment. The dissapearance of the exotherm in the second run was another indication 

for the ring opening process. Notably, both macromonomers became insoluble after 

thermal treatment. The onset and maximum of curing, and the amount of exotherms 

were collected in Table 4.2. 



 84

 

Figure 4.8 : 1H-NMR spectra of 3a (a) and 4a (b). 

As can be seen from the table, the polymerization of the macromonomer 4b, occurs 

at higher temperature than that of the macromonomer 4a, because benzoxazine rings 

of 4a and 4b have to encounter another benzoxazine ring for polymerization but due 

to restricted mobility of the benzoxazine rings of 4b compared to 4a, results in an 

increase at the cure temperature.   

Benzoxazine type macromonomers were prepared via ATRP and coupling reactions 

as candidates for high-performance thermosetting application.  

In this connection another telechlic synthesis was also achived. Instead of 

benzoxazines, naphthoxazines were used to incoorporate curable moeity as end chain 

of poly(ε-caprolactone). Tin octoate, Sn(O(O)CCH(C2H5)C4H9)2, in short Sn(Oct)2, 

is the most widely used initiator to synthesize designed polymers based on PCL 

[152]. 

Table 4.2 : DSC characteristics of benzoxazine macromonomers 
 

Macromonomer Onset of Curing 
(°C) 

Maximum 
Curing Temp. 

(°C) 

Amount of 
Exotherm 

(cal/g) 
4b 244.6 271.1 2.08 
4a 231.8 258.1 1.48 
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Figure 4.9 : DSC curves of benzoxazine-functional polystyrene 4b (a) first and 
(b) second run 30-300°C. 

In particular when used in conjunction with hydroxyl functional compounds or 

prepolymers, telechelics, linear and star-shaped block copolymers or networks can be 

obtained via corresponding alkyl octoate formation. In view of the reported role of 

hydroxyl groups as initiators of the ring-opening polymerization, the 2-(1H-

naphtho[1,2-e][1,3]oxazin-2-yl)-ethanol (N-a-OH) is expected to produce polymers 

containing a naphthoxazine group on one end of the chain.  

It is well known that benzoxazine or naphthoxazine monomers can easily be 

prepared from primary amines, and phenols or naphthols with formaldehyde. The 

synthesis of the initiator is shown in reaction 4.2. In this connection it should be 

pointed out that benzoxazine type initiators can also be synthesized by following the 

same strategy. However, attempts to synthesize the corresponding initiator resulted 

in the formation of side products. Thus the initiator was obtained only with a very 

low yield. Moreover, as it will be shown below, photochromophoric naphthalene ring 

present in N-a moiety gives possibility for the structural characterization of the 

intermediates at the various stages by using spectroscopic methods. 

 

(4.2)
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Figure 4.10 : DSC curves of benzoxazine-functional polystyrene 4a (a) first and 
second run 30-300°C. 

The structure of the initiator was confirmed by elemental analysis as well as 

spectroscopic investigations. The FT-IR spectrum contains characteristic C-O 

(primary alcohol), Ar-O, aromatic overtones, aromatic C=C, and O-H bands at 1038, 

1225, 1750-1909, 3059 and 3370 cm-1, respectively (Figure 4.11).  

 

Figure 4.11 :  FT-IR spectrum of 2-(1H-naphtho[1,2-e][1,3]oxazine-2-yl)-ethanol. 

The 1H-NMR spectrum recorded in CDCl3 evidenced resonance signals of protons of 

relative intensities corresponding to the number and type of protons (Figure 4.12). 
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Figure 4.12 : 1H-NMR spectrum of 2-(1H-naphtho[1,2-e][1,3]oxazin-2-yl)-

ethanol. 

The synthesis of naphthoxazine macromonomer of PCL (PCL-N-a) depicted in 

reaction 4.3, involved the reaction of N-a-OH with ε-caprolactone (ε-CL) in the 

presence of stannous octoate catalyst.  

 

(4.3)

The results of the polymerization are given in Table 1. In our experiments, the 

amount of Sn(Oct)2 catalyst was  delibaretly kept low so as to prevent side-reactions 

such as intra- and inter-molecular transesterification.  

Table 4.3 : Conditions and results of ROP of ε-caprolactona 
PCL [N-a-OH]/[CL] MnHNMR MnGPC

 b
 

P1 1/20 5790 7020 

P2 1/30 7830 9890 

aT=110ºC, bulk, 48 h, Sn(Oct)2 = 2.5x10-6 mol 
bDetermined by GPC against PS standards 
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Figure 4.13 :1H-NMR spectrum of PCL-N-a. 

As can be seen from Table 4.3, there is some discrepancy between the measured and 

H1-NMR calculated nM values. It is known that the true Mn determined for PCL is 

lower than tha calculations when polystyrene standards are used for GPC. Similar 

observation was made by Su et al for the benzoxazine functional PCL. In Figure 4.13 

the 1H-NMR spectra of the polymer can be found not only the specific signals of 

PCL but also absorptions relating to the naphthoxazine.  

For example, the characteristic peaks of an oxazine ring can clearly be seen at 4.93 

ppm (N-CH2-O) and 4.35 ppm (Ar-CH2-N), in addition to the aromatic protons of 

naphthyl group appearing at between 6.98-7.77 ppm. 

A more detailed vision the figure 4.13 and 4.6-3.9 ppm interval reveals the end 

hydroxyl group proton in NMR spectrum (see figure 4.14 and 4.15).      
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Figure 4.14 : Detailed vision the 1H-NMR spectrum of PCL-N-a. 

Incorporation of naphthoxazine groups was further evidenced by FT-IR spectral 

measurements. Figure 4.16 shows the FT-IR spectra of PCL without (neat) (a) and 

with (b) naphthoxazine end group. 

 
Figure 4.15 : 4.6-3.9 ppm interval of the 1H-NMR of PCL-N-a. 

It can be seen that spectrum (b) contains aborption bands at 1625 and 1594 cm-1 

(C=C aromatic vibrations) and 806 cm-1 (aromatic C-H out of plane deformation 

bands) characteristic of naphthoxazine groups which were not present in the 

spectrum (a). Notably, CH2 wagging of the oxazine ring are not detectable probably 

due to the relatively high molecular weight of the polymers. 



 90

 

Figure 4.16 : FT-IR spectra of PCL without (neat) (a) and with (b) naphthoxazine 
end group. 

 GPC traces recorded with the macromonomer by using RI and UV detectors are 

shown in Figure 4.17. The dual detection provided a clear evidence for incorporation 

of the naphthoxazine group into polymer chain since PCL is transparent at the 

wavelength (335 nm) of the UV detector.  

 

Figure 4.17 : GPC traces of PCL with naphthoxazine end group. 

Figure 4.18, shows the fluorescence excitation and emission spectra of the 

naphthoxazine macromonomer in chloroform at room temperature. Because of the 

fact that only one naphthoxazine groups is present at the polymer chain end, rather 

weak signals were observed. However, both spectra show the vibration structures of 

the naphtalene chromophore indicating that naphthoxazine groups were conserved 

under the polymerization conditions.  
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Figure 4.18 : Fluorescence excitation and emission spectra of the naphthoxazine 
macromonomer in chloroform. 

As stated previously naphthoxazine groups are expected to undergo ring opening 

polymerization on heating in a similar manner to benzoxazine monomers. In figure 

4.21, DSC traces of the related naphthoxazine is shown.  Because of the polymeric 

nature, the ring opening process could not be monitored neither by the disappearance 

of the benzoxazine mode in IR spectrum nor by the exothermic peak observed in 

DSC thermograms. In this connection, it should be pointed out that the benzoxazine 

functional PCL macromonomers also do not exhibit the exotherms that observed 

with low molecular weight benzoxazines. However, 1H-NMR and FT-IR 

investigations confirm the ring opening of the naphthoxazine groups. In the NMR 

spectrum of the PCL-N-a after 1 h at 200ºC, the disappearance of the benzoxazine 

ring and broadening of aromatic peaks belonging to naphtyl group are clearly 

observed (Figure 4.19).  
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Figure 4.19 : 1H-NMR spectra of (a)  PCL-N-a and (b) cured PCL-N-a. 

As can be seen from the FT-IR spectrum of the cured PCL-N-a, aromatic C-H 

stretching vibrations of naphthyl group at 3060 cm-1  are evidencing incorporation of 

naphthoxazine groups (Figure 4.20 (a)). 

 

Figure 4.20 : FT-IR spectrum of the curedd PCL-N-a (a) and thermally 
polymerization macromonomer in the absence of added benzoxazine 
(b). 
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Figure 4.21 : DSC traces of the 2-(1H-naphtho[1,2-e][1,3]oxazin-2-yl)-ethanol (a) 
first and (b) second run. 

We have also studied the curing behavior of the blends. DSC thermograms of the 

benzoxazine monomer (P-a)/(PCL-N-a) blends for various PCL-N-a concentrations 

are shown in Figure 4.22 (see Reactions 2.1 or 3.1 for the structure of P-a).  (a) 100% 

PCL with (b) 75% PCL N-a, 25% P-a, (c) 50% PCL N-a, 50% P-a; (d) %25 PCL N-

a,75% P-a; (e) 100% P-a. Only one exhotermic peak was found for all concentrations 

which are similar to the benzoxazine monomer and its blend with neat PCL [74, 75]. 

However, the curing exothermic peak shifts toward a higher temperature as the 

concentration of PCL-N-a increases. As both the onset and peak temperatures appear 

at higher temperatures as more PCL macromonomer is added into the benzoxazine 

monomer, the ring opening polymerization can be considered as delayed process. 

Even though the macromonomer also contains naphthoxazine end groups, the 

concentration of polymerizable groups is diluted with by PCL component and it 

becomes more difficult to develop the network structure. Similar trend was also 

observed with the neat PCL blends. It was shown that the cured products of such 

blends exhibit hydrogen bond formation between the hydroxyl groups of 

polybenzoxazine and the carbonyl groups of PCL. In our case, in addition to such 

interactions, PCL segments are chemically bound to the network since naphthoxazine 

groups also polymerize during the thermal process. Indeed, treatment of the cured 

product with THF and dichloromethane, which are known as solvents for PCL did 

not remove any polymer. 
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Figure 4.22 : DSC thermograms of the benzoxazine monomer (P-a)/ (PCL-N-a) 
blends for various PCL-N-a concentrations.  

Moreover, the IR spectra of this product exhibited characteristic carbonyl band at 

1728 cm-1 indicating successful incorporation of PCL segments. When this spectrum 

is compared with that of the thermally polymerized macromonomer in the absence of 

added benzoxazine (vide antre, Figure 4.20 (b)) OH band shifts appeared at 3374 cm-

1. In the spectrum aromatic C-H stretching vibration is also noted. 

Naphthoxazine type PCL macromonomers were prepared via ring opening 

polymerization of ε-CL using Sn(Oct)2 alkyl octoate formation. Such prepared 

narrowly distributed macromonomers undergo thermal ring opening polymerization. 

When used in conjunction with conventional benzoxazine monomers, the cured 

products contain chemically incorporated PCL segments which may significantly 

influence physical and mechanical properties.  

Concept of oligomeric benzoxazine resins where oxazine rings are in the main chain  

and experimental study was reported.  Very recently, more detailed studies of a 

synthetic approach for the preparation of polymers containing benzoxazine moieties 

in the main chain was independently reported. In this approach, polybenzoxazine 

precursors were prepared by benzoxazine ring forming reaction in a step-wise 

manner using bisphenol A, bifunctional amine and formaldehyde (4.4).   



 95

(4.4)

As reported, transparent thin films were easily prepared by solvent casting of the 

solutions of the resulting polymers. The films retained their shape after thermal 

curing.  

Aiming at expanding their industrial applicability, it seemed appropriate to prepare a 

family of highly flexible benzoxazine polycondensates, tailored to meet different 

requirements, depending on the specific application. Our working concept is based 

on creating polymeric backbones integrating segments that induce molecular 

flexibility, on one hand, and that comprise thermally curable benzoxazine moieties, 

on the other hand. 

This part of the thesis describes synthesis and characterization of polyetheresters 

containing benzoxazine moieties in the main chain and differing in the segments with 

two components, namely adipoyl and terephthaloyl groups. These polymers consist 

of benzoxazine units which create cross-linked network and impart the 

polybenzoxazine properties, while the etherester units form the soft segments along 

the backbone. 

The polyester family is extremely large and, depending on the nature of monomers, 

exhibits an enormous variety of structures, architectures, properties, and, therefore, 

applications. Thus, synthesis of suitable monomers for esterification is required to 

tailor polyester properties. In our work, we selected amino ethanol containing 

oxyethylenic spacer group as the primary amine component in the benzoxazine ring 

forming reaction to introduce flexible ether groups in the final benzoxazine 

polyester.  Hence, diol containing benzoxazine was synthesized as the monomer for 

the subsequent polyesterification process by reacting 4,4′-isopropylidenediphenol, 2-

(2-aminoethoxy)ethanol, and paraformaldehyde, as shown in reaction 4.5. In this 

connection, it should be pointed out that the attempts to synthesize the corresponding 

benzoxazine diols by using either ethanolamine or 3-amino-1-propanol were either 

failed or produced negligible amounts of the products. 
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(4.5) 

The structure of the diol monomer, successfully prepared from 2-(2-

aminoethoxy)ethanol, was confirmed by spectral and thermal analysis. As can be 

seen from Figure 4.23 the 1H-NMR spectrum of the monomer exhibits not only the 

specific signals of the benzoxazine ring, but also chemical shifts that belong to the 

alkyl chain and hydroxyl groups. Notably, while the two signals at 4.8 and 4.0 ppm 

corresponds to –CH2 protons of benzoxazine ring, methyl protons of the 

isopropylidene group at 1.6 ppm (singlet, 6H). Alkyl protons of the ethoxyethanol 

group resonate at 3.0 ppm (triplet, -N-CH2, 4H), 3.6 ppm (triplet, HO-CH2, 4H), 3.7 

ppm (broad triplet, O-CH2, 8H), and the OH protons at 3.7 ppm.  

 
Figure 4.23 :1H-NMR spectrum of the B-etherdiol. 

It is known that hydrogen and deuterium nuclei are very different in their magnetic 

properties. Thus it is possible to distinguish between them by NMR spectroscopy 

with the help of a chemical reaction in which a covalently bonded hydrogen atom is 

replaced by a deuterium atom, or vice versa. In Figure 4.24, 1H-NMR and its D2O 

exchange spectra of the monomer are overlaid. Sharp decrease of the intensity of the 
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OH proton at 3.7 ppm and the appearance of the HOD proton signal at 4.8 ppm are 

clearly detected.  

  

Figure 4.24 : 1H-NMR and its D2O exchange spectra of diol containing 
benzoxazine (B-etherdiol). 

Moreover, the FT-IR spectrum of the monomer further evidences the expected 

structure. As can be seen from Figure 4.25, in addition to the band corresponding to 

the C-O-C oxazine ring mode at 1390 cm -1 and aromatic C-H stretching vibration at 

3002 cm-1 , the O-H and C-O (aliphatic ether and primary alcohol) stretching bands 

at 3391 cm-1and 1120, and 1059 cm-1, respectively,  were noted.  Furthermore, the 

band at 931 cm-1 is the mode that arises from the benzene ring to which oxazine ring 

is attached.  

It is known that 1,3-benzoxazines exhibit exothermic ring opening reaction around  

200-250ºC, which can be monitored by DSC. The thermogram presented in Figure 

4.26 reveals a ring opening exotherm with an onset at 180ºC and a maximum at 

202ºC, and 74.6 J/g as the exothermic energy. Notably, a degradation process begins 

after 247ºC. According to TGA studies of monomer majority of weight loss is 

observed between 240- 300 °C which also observed in poly(vinylalcohol) (PVA) as 

water elimination. So this degradation can be attributed to water elimination and also 

water triggered formation of other volitiles such aldehydes and ketones as observed 

in PVA degradation. 
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Figure 4.25 : FT-IR spectrum of diol containing benzoxazine (B-etherdiol) 

 

Figure 4.26 : DSC thermogram of diol containing benzoxazine (B-etherdiol) (a) 
first run, (b) second run. 

Polyesters can be obtained by a wide range of reactions, the most important being 

polyesterifications between diacid chlorides and diols or their derivatives. Adipoyl 

chloride and terephtalolyl dichloride were used as the diacid chloride components to 

obtain desired polyetheresters. The polymerization reactions were achieved by using 

excess triethyl amine to trap the released HCl. This is an important provision for the 

conservation of the benzoxazine ring as acids readily react with benzoxazines 

resulting in ring opening (reaction 4.6). 
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(4.6)

The 1H-NMR spectra for both polyetheresters were measured to confirm the 

structures. The 1H-NMR spectrum of the polyetherester, derived from 

adipoylchloride (PEE-BAd), shown in Figure 4.27, indicated the characteristic peaks 

assigned to methylene protons of the oxazine ring at 4.8 and 4.0 ppm. Moreover, the 

polyester formation was evidenced by the shift of the signal from 3.6 ppm, 

corresponding to HO-CH2 protons that appeared in the spectrum of the monomer (see 

Figure 4.22), to 4.2 ppm. Aliphatic protons of propane-2,2-diyldiphenolic structure 

appears at 1.6 ppm with aliphatic protons of adipoyl group. Also,  the protons of 

CH2-C=O ester emerge at 2.3 ppm are further evidencing the formation of ester 

bond. 

 

Figure 4.27 :1H-NMR spectrum of PEE-BA. 

The structure of the polyetheresters was also confirmed by FT-IR. Figure 4.29 shows 

the IR spectra of the polyetheresters. The characteristic carbonyl stretching vibrations 
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were observed at 1721 cm-1 and 1730 cm-1 for PEE-BA and PEE-BT, respectively. In 

addition, the respective aromatic C-H stretching vibrations of the polyesters at 3014 

cm-1 and 3046 cm-1 are noted. Also, C-O vibration modes of ether and ester linkages, 

and benzene ring mode frequencies related to benzoxazine are detectable between 

1017 and 1260 cm-1, and 900 - 933 cm-1, respectively. 

 

Figure 4.28 : 1H-NMR spectrum of PEE-BT 

DSC was used for characterizing the curing behavior of the polyetheresters (Figure 4. 

30). As stated previously, benzoxazine groups are expected to undergo ring opening 

polymerization. This exothermic event was detected for both polymers. PEE-BA 

exhibited an onset at 215ºC and a maximum at 250ºC with 105 J/g of exotherm 

energy. Similarly, for PEE-BT, the onset of the exotherm started at about 210ºC with 

a maximum at 243ºC, and 95 J/g as the heat of polymerization. Expectedly, both 

polymers resembled almost the same thermal properties as they are structurally 

similar and every repeating unit contains one benzoxazine unit. The slight difference 

observed for the amount of exotherm is probably due to the difference of the 

molecular weights, and aliphatic and aromatic nature of the adipoyl and terephthaloyl 

components. 
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Figure 4.29 : IR spectra of the polyetheresters. 

  

Figure 4.30 : DSC traces of the polyetheresters (a) adipoyl (b) terephthaloyl 
derivatives. 

However, the thermal stabilities of the PEEs were not similar. The comparative TGA 

is illustrated in Figure 4.30 and the results are summarized in Table 4.4.  
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Table 4.4 : Thermal properties of the cured polyetheresters (PEE-BT and PEE-BA) 
and low-molecular weight benzoxazine (P-a) 

Polymer T5% (ºC) T10% (ºC) Tmax  (ºC) Yc (%) 
Cured P-a 298 346 421 34 
PEE-BA 248 278 397 22 
PEE-BT 288 328 386 36 

T5%: The temperature for which the weight loss is 5% 
T10%: The temperature for which the weight loss is 10% 
Yc: Char yields at 800°C under nitrogen atmosphere 

PEE-BT exhibited higher thermal stability because of the additional aromatic group 

content imparted by the terephthaloyl group. This stability is also comparable with 

that of the cured mono-functional aniline derived benzoxazine (P-a cured) (see 

Reactions 2.1 or 3.1 for the structure of P-a). Interestingly, the char yield of cured 

PEE-BT is even higher than that of cured P-a. This enhancement in the thermal 

stability can again be attributed to additional aromatic groups and also to the increase 

in the cross-linking density due to the extension of the network.    

 

Figure 4.31 : TGA thermograms of (a) cured P-a, (b) cured PEE-BT, (c) cured 
PEE-BA. 

The film forming property and flexibility of the polyetheresters were also 

demonstrated. For this purpose, free standing films were prepared by solvent casting 

of the polymers from chloroform solutions on Teflon plates. As can be seen from 

Figure 4.32, the PEE-BA film is completely bendable without any problem. After 
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gradual heat treatment between 100-240°C, a cured film retained its size and shape 

and but its flexibility was reduced. 

 
Figure 4.32 : Thin film photographs of (a) PEE-BA, (b) cured PEE-BA 

We have been able to synthesize polyetheresters containing benzoxazine moieties in 

the main chain. Two kinds of polyetheresters with the molecular weights of ca. 

34.000 Da have been synthesized by polycondensation of benzoxazine diether diol 

with adipoyl chloride and terephataloyl chloride in the presence of triethylamine. 

Transparent flexible thin films were easily obtained by the solvent casting method. 

These reactive polyetherester films can be further cross-linked thermally which could 

enhance the application of polybenzoxazines. The cured polyetheresters exhibited 

good thermal stability and the toughness induced by the soft etherester. This is the 

first study on the benzoxazine type polycondensate and the synthetic strategy 

presented here may open new pathways to prepare the other conventional 

thermoplastic elastomers that can thermally be cured in the absence of any catalyst 

leading to materials with improved properties.  

Considerable attention has been devoted to the incorporation of benzoxazines as a 

thermally reactive group into the backbone of conventional polymers. In these cases, 

polymers contain higher number of benzoxazine units per chain and upon curing the 

polymer segments chemically anchored to the network. However, the preparation of 

the corresponding side chain polymers has scarcely been dealt with. The only 

previous report concerns the preparation of side-chain benzoxazine polymers from 

poly(p-hydroxy styrene by applying usual benzoxazine synthesis. It is known that 

transition metal catalyzed polymerization of substituted acetylenes has been subject 

of substantial interest, owing to the unique physical and chemical characteristics of 
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the materials thus obtained. Accordingly, significant amount of research effort is 

directed to design and prepare catalyst systems to polymerize acetylene derivatives. 

Among those catalysts, rhodium polymerizes substituted acetylenes like 

phenylacetylene, N-propargylamides, N-propargylcarbamates, propiolic esters  

efficiently initiate the polymerization through an insertion mechanism. The resulting 

polymers are stereo-regular with generally cis-transoidal main chain structures, 

which give rise to helical conformations. Another important feature of the rhodium 

catalyst is related to its tolerance to various solvents and functional groups. For 

example, protic solvents as amines, alcohols, and even water can be used for such 

polymerization systems [153-160].  

In this study, propargyl ether group containing benzoxazine was synthesized and 

polymerized with Rh catalyst alone and in the presence of triethylamine co-catalyst 

to yield helical polymers with thermally curable side chain benzoxazines. The 

structures of the intermediate compounds, monomer and the resulting polymers were 

characterized. The thermal properties of the cured structures were also investigated 

and compared with that of typical polybenzoxazines. 

Propargyl benzoxazine was selected as thermally reactive and transition metal 

catalyst polymerizable monomer, which was prepared according to the modified 

procedure described by Agag and Takeichi (Reaction 4.7).  

 

 

 

(4.7) 
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Figure 4.33 :1H-NMR spectrum of 4-(prop-2-ynyloxy)aniline 

Instead of starting with 4-nitrophenol, we have used 4-aminophenol and protected 

amino group as amide. After eterification reaction between phenolic OH and 

propargyl bromide. Acidic hydrolysis yielded the expected amine (4-(prop-2-

ynyloxy)aniline). In Figure 4.33 the 1H-NMR spectrum reveals the successive 

synthesis of the required amine. Classical benzoxazine synthesis method was used to 

obtain propargyl benzoxazine. 

Propargyl benzoxazine is expected to yield polymers upon transition metal catalyst 

polymerization as it contains terminal acetylene group in its structure (reaction 4.8). 

The Rh-catalyzed reaction in toluene proceeded smoothly at ambient temperature for 

24 h and gave the expected light gray poly(acetylene benzoxazine) (PBA), after 

precipitation in MeOH.  In this reaction, Rh (I) was selected as the polymerization 

catalyst due to its widespread use in related polymerizations. 

 

(4.8)

Although moderate yields were attained, limited chain growth was occurred. This is 

probably due to the partial activity of the [(nbd)RhCl]2 as catalyst in the 

polymerization. It is demonstrated that this catalyst does not display a good catalytic 
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activity by itself. However, in the presence of Et3N as co-catalyst, its catalytic 

activity considerably increases by the loss of symmetry of the 2,5-norbornadiene 

ligand in the initiating species with the formation of a 16-electron Rh complex 

[(nbd)Rh(Et3N)Cl]. In our case, trisubstituted amine structure present in the 

propargyl benzoxazine would presumably act as co-catalyst (reaction 4.9). The 

results of polymerizations in the absence and presence of triethylamine are given in 

Table 4.5. The pronounced effect of triethylamine in the molecular weight is noted. 

 

 

 

(4.9) 

Table 4.5 : The results of polymerizations in the absence and presence of triethyl 
amine 

Polymer Co-catalyst Yield (%) Mn PDI 
PBA-1 Et3N 26 3450 2,56 
PBA-2 — 25 <1000 — 

Polymerizations were performed under N2 at ambient temperature for 24 h 

The chemical structure of the PBA obtained was confirmed by both FT-IR and 1H-

NMR spectral analysis. In the FT-IR spectrum (Figure 4.34), the disappearance of 

the acetylenic ≡C-H and C≡C stretching vibrations at 3290 cm-1 at 2121 cm-1, 

respectively, was clearly noted. Additionally, the observation of C=C stretching 

vibration bands at 1674 cm-1 indicates the formation of polyacetylene backbone. The 

remaining bands of the benzoxazine group, such as aromatic C=C stretching 

vibrations and C-O-C symmetric and asymmetric vibrations etc. are detected from 

the FT-IR. 
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Figure 4.34 : FT-IR spectra of propargylbenzoxazine(a) and PBA-1 (b). 

 Further analysis of PBA-1 via 1H-NMR (Figure 4.35) showed the disappearance of 

≡C-H at 2.5 ppm after polymerization. Additionally, appearance of =C-H proton at 

6.2 ppm indicates the polyacetylene formation with cis conformation. As far as the 

subsequent use of the resulting polymer (PBA) in thermal curing is concerned, the 

effect of Rh catalyst polymerization reaction on the stability of benzoxazine ring was 

an important issue. Thus, O-CH2-N and Ar-CH2-N protons of the oxazine structure 

appearing at 5.1 and 4.2 ppm, respectively, clearly indicates the retention of the 

benzoxazine ring during the polymerization reaction. Spectral characteristics of the 

compounds are tabulated in Table 4.6. 

However, after polymerization in the presence of triethylamine, some insoluble 

products (PBA-2, see Table 4.5) were formed, which was still containing oxazine 

ring as confirmed by FT-IR and DSC analysis. It should also be mentioned that 

phenolic OH stretching vibrations are detectable in the FT-IR spectra of insoluble 

PBA-2, which is evidencing the presence of ring opened benzoxazine structures in 

the polymer.  
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Figure 4.35 : 1H-NMR spectra of propargylbenzoxazine (1) and PBA-1 (2). 

Table 4.6 : Spectral characterization of propargyl benzoxazine and PAB-1 

Compound 

1H-NMR 

δ 
(ppm) 

13C-NMR
δ 

(ppm) 

FT-IR 
ν 

(cm-1) 

UV 
λmax 
(nm) 

Propargyl 
Benzoxazine 

2.48 (t, J = 2.4, 
1H),  4.55  (s, 

2H), 4.61 ( d, J = 
2.3, 2H), 

5.29 (s, 2H), 
6.78-7.14 

(aromatics, 8H) 
 

51.0, 56.3, 75.4, 
78.9, 80.5, 114.4, 

116.9, 120.4, 
120.8, 126.8, 
127.9, 128.5, 
143.2, 152.9, 

154.4 

3290, 3094, 
3060, 3036, 
2919, 2867,  
2121, 1598, 
1494, 1213, 
1035,1020, 
924, 885, 
818, 752 

244 

PAB-1 

4.23 (broad s, 
2H), 4.48 (broad 

s, 2H), 4.95 
(broad s, 2H), 
6.26 (broad s, 
1H), 6.48-6.95 
(aromatics, 8H) 

21.1, 25.6, 50.6, 
67.9, 69.7, 80.2, 

115.5, 116.8, 
120.0, 120.8, 
126.7, 127.8, 
129.4, 142.3, 
153.4, 154.3 

3041, 2937, 
2893, 1584, 
1508, 1489, 
1456, 1225, 
1034, 1012, 
972, 939, 
826, 753 

242 

The absorption spectrum of the PBA-1 is shown in Figure 4.36. PBA-1 displayed a 

strong band of the phenyl chromophore at 242 nm. Little absorption was observed in 

the long wavelength region, suggesting the polymer possesses a short persistence 

length of backbone conjugation and lack of enough stereo-regularity. It was 

previously reported that the electronic absorption of a polyacetylene chain increases 

with its stereoregularity. Moreover, the steric requirements of aromatic substituents 

may enforce a planar conformation of polyacetylene backbone, which allows better 
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conjugation of the alternating double bonds and hence makes the polymer absorptive 

in the longer wavelength region. In our case, however, such steric effect is not valid 

and as a consequence longer wavelength absorption is not detected. 

 
Figure 4.36 : UV-VIS spectrum of PBA-1 in chloroform. 

The ring strain of oxazine allows benzoxazines to undergo ring-opening 

polymerization under thermally activated reaction conditions. Because of the 

multifunctional nature, PBAs were expected to form cross-linked networks upon 

heating (reaction 4.9).   

 

(4.9)

The thermally activated cure behavior of PBAs and precursor propargyl monomer 

were studied by Differential Scanning Calorimetry (DSC) and the results are 

summarized in Table 4.7. In Figure 4.37, the non-isothermal DSC thermograms of 

PBA, first (a) and second runs (b), are plotted. As can be seen from Figure 4.36a, the 

polymer exhibits a glass transition temperature (Tg) at 104°C. The exothermic peak 



 110

with a maximum of 221°C was assigned to the ring opening polymerization of 

benzoxazine moieties. It is known that the helical structure is deformed by external 

stimuli such as heat and polar solvents. In the thermogram the cis-to-trans 

isomerization of the polymer; starting from ca.140°C with a maximum at 170°C is 

detectable. Further heating results in the conversion to a random coil structure. In the 

second run, however, no thermal transition is observed (Figure 4.36b). The fixed 

random coil form retains its configuration after crosslinking.  

 

Figure 4.37 : DSC curves of PBA-1 (a) first and (b) second run 30-320ºC. 

In Figure 4.38, DSC thermograms of propargyl benzoxazine (a), PBA-1 (b), PBA-2 

(c) are overlaid. The maximum curing temperatures of PBA-1 and PBA-2 are less 

than that of propargyl benzoxazine. This behavior can be attributed to neighboring 

effect of any ring opened benzoxazine. When phenolic structures, formed from the 

partial ring opening, are in close proximity, they trigger further ring opening process 

and reduce the curing temperature. In another words, partially ring opened structures 

play a catalytic role in the curing process. Consequently, the maximum curing 

temperature of PBA-2 is lower than PBA-1. This behavior also accounts for the onset 

curing temperature and heat exotherm. The broad exothermic interval observed in the 

case of PBA-2 (Figure 4.38, curve c) may be due the irreversible cis-to-trans 

transition merged with and/or hidden beneath the latter ring opening exotherm. DSC 

characteristics of PBA-1, PBA-2 and propargylbenzoxazine are expressed in table 

4.7. 
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Figure 4.38 : DSC curves of propargylbenzoxazine (a) PBA-1 (b) and PBA-2 (c) 
30-300oC. 

Thermal stability of the cured PBA was investigated by thermal gravimetric analysis 

(TGA) under nitrogen exposure. The TGA and derivate profiles of cured propargyl 

benzoxazine (a), (ad) and cured PBA (b), (bd), respectively are shown in Figure 4.39 

and the results are summarized in Table 4.8. It can be seen that the char yield at 

800°C of the cured PBA is significantly higher than cured propargyl benzoxazine.  

Table 4.7 : DSC characteristics of PBA-1, PBA-2 and propargylbenzoxazine 

Polymer Tg 
(oC) 

Isomerization 
Onset (oC) 

Isomerization 
Maximum 

(oC) 

Onset 
of 

curing
(oC) 

Maximum 
Curing 

(oC) 

Heat of 
Exotherm

(j/g) 

Propargyl 
Benzoxazine — — — 225 240 772 

PBA-1 104 140 170 188 221 130 
PBA-2 — — — 162 192 222 

DSC experiments were performed with a heating rate of 10 °C min under nitrogen flow. 

This behavior can be attributed to the constructive effect of the molecular weight on 

the thermal stability which may be explained in terms of more favored 

intramolecular besides intermolecular cross-linking. However, the initial weight loss 

temperature of cured PBA is slightly lower than the cured propargyl benzoxazine. 
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Table 4.8 : TGA analysis of cured propargylbenzoxazine and PBA-1 

Cured Product T5%
a
 

(ºC) 
T10%

b
 

(°C)
Td max. 

(°C) 
Yc

c at 800°C 
(%) 

Propargyl 
Benzoxazine 348 386 414 55 

PBA-1 330 371 380 65 
TGA analysis were performed with a heating rate of 10 ºC min under nitrogen flow (200ml/min) 
 aT5%: The temperature for which the weight loss is 5%                    
bT10%: The temperature for which the weight loss is 10% 
 cTmax.: Maximum weight loss temperature. 
 dYc: Char yields 

 

Figure 4.39 : TGA thermograms and their derivatives of cured 
propargylbenzoxazine (a), (ad) and cured PBA-1 (b), (bd). 

We have synthesized and polymerized benzoxazine based acetylene monomer to 

obtain thermally activated self-curable polymers. Upon heating benzoxazine 

acetylene polymers undergo irreversible cis-trans isomerization followed by random 

coil formation and finally intra- and intermolecular curing.  
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5.  CONCLUSION 

In this thesis we have discussed about the polymeric precursors and telechilics of 

benzoxazines. Benzoxazine attracted the attention of polymer scientists after 1994 

when the synthesis of the polybenzoxazine by cross-linking bifunctional benzoxazine 

monomer through a ring-opening reaction mechanism and identified the benefits this 

family of compounds can offer compared to the conventional novolac or resole or 

epoxy resins was reported. Though benzoxazine based materials possess several 

advantages, they have not yet became very attractive to the industries. To improve 

the mechanical properties and processibility several strategies have been reported 

including (i) synthesis of benzoxazine monomers with additional functionality, (ii) 

blending of benzoxazines with polymers (iii) benzoxazine based composites or 

alloys. However, all of these approaches are also associated with some limitations. In 

case of polymeric precursors and telechilics, though the polymeric chain contributes 

towards the improvement of mechanical property and processibility of the resulting 

polymer. According to this approach, we anchored benzoxazine ring to the end of a 

polymer. Here a polymeric structure act as back bone structure, which are endcapped 

with benzoxazine. Telechelics with relatively large molecular weight oligomers 

possess thermoplastic-like properties, while allowing later cross-linking for 

dimensional stability, chemical resistance, and high-temperature stability. A unique 

synthetic route was reported in this thesis for synthesis of a macromonomer where 

benzoxazine ring was anchored to the polysterene polymer. Using Atom Transfer 

Radical Polymerization (ATRP) to synthesize dibromophenyl terminated 

polystyrene, followed by Suzuki coupling reaction amino functional polymer was 

prepared. These amino functional polymers were when reacted with phenol and 

paraformaldehyde to produce benzoxazine functionalized polystyrene 

macromonomer. In the literature it was reported that the miscible blends of 

polybisbenzoxazine (PB-a) and poly(ε-caprolactone) (PCL) can be prepared by an in 

situ curing reaction of benzoxazine in the presence of PCL. The miscibility was 

attributed to the intermolecular hydrogen bonding between the hydroxyl groups of 

PB-a and the carbonyl groups of PCL. On the basis of this information, we have 
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synthesized naphthoxazine ring-containing PCL macromonomers. Thermosets of 

polybenzoxazines with covalently bonded PCL segments were formed, when PCL 

macromonomers cured with conventional benzoxazine monomers. Such prepared 

narrowly distributed macromonomers undergo thermal ring opening polymerization. 

When used in conjunction with conventional benzoxazine monomers, the observed 

properties of physical mixing can be attained with additional benefits of covalent 

attachment.  

Concept of oligomeric benzoxazine resins where oxazine rings are in the main chain 

was reported. Synthetic approach for the preparation of polymers containing 

benzoxazine moieties in the main chain have been independently reported. In both 

cases high-molecular weight polybenzoxazine precursor was synthesized from 

aromatic or aliphatic diamine and bisphenol-A with paraformaldehyde. The major 

problems associated with the preparation of such main-chain benzoxazine precursor 

polymers are low molecular weight and cross-linking arising from the Mannich 

reactions of multiple functional groups. As a solution to this problem we have 

synthesized high molecular weight poly(etheresters) (PEE) containing benzoxazine 

units in the main chain by using diol functional monomer which was synthesized 

from bisphenol A, formaldehyde and 2-(2-aminoethoxy) ethanol. Polycondensation 

of the resulting benzoxazine dietherdiol ((B-Etherdiol) with adipoyl chloride and 

terephthaloyl dichloride in the presence of triethyl amine resulted in corresponding 

PEE with molecular weights of 34,000 Da. Upon thermal treatment these polymers 

formed cross-linked network. Here, presence of polyester introduced flexibility in 

both precurser polymers and crosslinked network.  

Side chain polymer strategy is another concept that ultimately lead to highly dense 

network; due to the presence of benzoxazine structure in every repeating unit. We 

therefore have synthesized and polymerized benzoxazine based acetylene monomer. 

Upon heating, benzoxazine acetylene polymers undergo irreversible cis-trans 

isomerization followed by random coil formation and finally intra- and 

intermolecular ring opening reactions to form such crosslinked polymers with high 

crosslinking densitiy.  

Future direction of research in this area should be towards the development of 

benzoxazine based materials with better processibility, low curing temperature and 
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good mechanical strength. We believe the pioneering studies reported in the thesis 

will contribute to achieved new pathways in the future. 
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