ZİNCİR TRANSFER REAKSİYONU VE "İNİFTER" SİSTEMİ
YARDIMIYLA BLOK KOPOLİMERSENTEZİ

YÜKSEK LİSANS TEZİ
Kimyager Perihan DEMİRCİOĞLU

Anabilim Dalı : KİMYAGERLİK
Programı : KİMYAGERLİK

ŞUBAT 1991

T. C.
Yükseköğretim Kurum
SYNTHESIS OF BLOCK COPOLYMERS BY THE COMBINATION OF CHAIN TRANSFER POLYMERIZATION AND INIFERTER TECHNIQUE

M. Sc. THESIS
Chemist. Perihan DEMİRCİOĞLU

Date of Submission : 21 JANUARY 1991
Date of Approval : 5 FEBRUARY 1991

Examination Committe
Supervisor : Prof. Dr. Yusuf YAĞCI
Member : Y.Doç.Dr. Metin ACAR
Member : Doç.Dr. Niyazi BIÇAK

FEBRUARY 1991
ACKNOWLEDGEMENTS

The work described in this thesis has been carried out in the Department of Chemistry, Faculty of Science and Letters of Technical University of Istanbul between September 1989 January 1991.

I wish to thank to Prof. Dr. V. Yağcı for offering involuble help in all possible ways.

I am also indebted to Dr. M. Acer for his help during my studies.

I should also like to thanks all colleagues at our laboratory for their comments on this study.

January 1991

Chemist Perihan DEMİRCİOĞLU
SUMMARY

In this study, we have tried to synthesize block copolymer by a two-step procedure. In the first step, terminally active prepolymer were prepared by using high chain transfer reactions of triphenylmethyl mercaptane (TPMM). For this purpose styrene (St) and methyl metacrylate (MMA) were polymerized with the aid of 2,2'-azo bis iso cyano butyronitrile (AIBN) and TPMM to yield triphenylmethyl (trityl) terminated polymers according to the following reaction.

\[
\begin{align*}
\text{Ph} & \quad \text{CH}_3 \\
\text{Ph-C-S-H+n} & \quad \text{CH}_2=\text{C} \quad \text{AIBN} \quad \text{Ph-C-S-CH}_2=\text{C}^n \\
\text{Ph} & \quad \text{CO} \\
\text{OCH}_3 & \\
70^\circ & \quad 0^\circ
\end{align*}
\]

Transfer constants were found to be 17.8 and 0.71 for St and MMA respectively.

Presence of triphenylnethyl end groups was evidenced by spectral measurements. These prepolymer can polymerize the same or different monomers by free radical mechanism after cleavage of C-S bond attached to the trityl end group.

In the former case, \bar{M}_n of the polymers increased linearly with conversion which indicates that this polymerization proceeds via a quasi-living radical mechanism. This mechanism was for the substantiated by the GPC traces recorded with polymer isolated at various polymerization times.

Similarly, if these prepolymer were used as polymeric inifiter in the second step, to polymerize another monomer, block copolymers were obtained, and characterized by 1H-NMR and GPC measurement.
ZİNCİR TRANSFER REAKSİYONU VE "İNIFERTER" SİSTEMİ
YARDIMIYLA BLOK KOPOLİMER SENTEZİ

ÖZET

Aynı mekanizma ile polimerleleşebilen monomerlerin
cpyok kopolimerizasyonu için uygulanan klasik yöntemler
mevcuttur. Bu yöntemlerin belirli sayıda monomer türü
ne uygulanması ve karşılaştırılan sentez güçlükleri, bu
yöntemlerin kullanılabilibirlılığını sınırlamaktadır. Bu
yözden çok daha fazla monomer kombinasyonuyla değişik özelliklere blok kopolimer sentezine olanak sağlayan dönüşüm (transformasyon) reaksiyonları geliştirilmiştir. Bu
reaksiyonlarla önce bir monomer bir mekanizma ile poli-
merleştiriilip. ucunda veya ortasında aktif grup olacak
 şekildedə sonlanır. Dahasonra başka bir yöntemle po-
limerleleşebilen ikinci bir monomer, prepolimer üzerindeki aktif gruplar yardımıyla polimerleştirilir ve blok kopo-
limer ele geçir. Bu dönüşümlerin, katyonik-radikal, an-
yonik-radikal, kondenzasyon-radical, radoks-isesal radi-
cal ve 1sisesal radical-fotokimyasal radikal oalanları li-
teratürde gösterilmiştir.

Birkaç organik disülfitler ve fenilazotrifenil
metan fotokimyasal ve 1sisesal iniferterler olarak kul-
nanılmıştır. İnfiterer kullanımları ile elde edilen po-
limerler diğer bir monomerin polimerizasyonu başlatabile-
cek iniferter fonksiyonuna sahiptir.

Zincir transfer reaksiyonlarından yararlanarak poli-
mer uçlarına istenilen fonksiyonel gruplar sokulabilir.
Son zamanlarda uygun merkapto bileşiği kullanarak karboks-
el ve Taç-ester (crown-ether) ile sonlandırılmış poli
(metilmetakrilat) hazırlanmıştır.

Bu bilgiler 1971 yılında, çalışmamızda zincir transfer
reaksiyonları yardımıyla polimerlerin uçlarına trifenil
metil(trtil) grupları soklmaya çalışılmıştır.
Bu amaçla Stiren (St) ve metilmetakrilat (MMA), bağlayıcı olarak azoisobutironitril (AIBN), transfer birleştği olarak trifenilmetilmerkepten (TPMM) kullanılarak aşağıdaki reaksiyon uyarınca polimerleştirilmiştir.

\[
\begin{align*}
\text{Ph} & \quad \text{CH}_3 \\
\downarrow & \quad \text{C} \quad \text{S-H} \quad n \\
\text{Ph} & \quad \text{CH}_2=\text{C} \quad \overset{\text{AIBN}}{\text{70°C}} \quad \text{Ph-C-S} \quad \text{CH}_2-\text{C} \quad \uparrow \\
\downarrow & \quad \text{CO} \\
\downarrow & \quad \text{OCH}_3
\end{align*}
\]

Aşağıdaki şekilde TPMM'a ve triti sorununun PMMA'a (TPM-PMMA) ait IR spektralı verilmiştir. TPMM nin IR spektrumunda 2570 cm\(^{-1}\) deki S-H grubuna ait band polimerin IR spektrumunda yoktur. Buda S-H bağının bulunmadığını göstermektedir.

Bu bulgular \(^1\)H-NMR spektrumuyla da desteklenmiştir. TPM (a) ve TPM-PMMA in (b) \(^1\)H-NMR spektralı aşağıdaki şekilde gösterilmiştir. Buna göre 7.2 ppm bölgesinde aromatik protonlar, 3.6 ppm 'de OCH\(_3\)'e ait ve 1.4 - 2.0 ppm'de vinil protonlara ait pikler görülmektedir.
Polimerin UV spektrumu alındığında 330nm bölgesinde bir absorpsiyon bandı görülmektedir ki bu da tritil son grupların polime bağı olduğuunu göstermektedir.

Bu bulgularдан anlaşıldığına göre TPMM (trifenilmetil mercaptan), Stiren (St) ve metil metakrilat (MMA) polimerizasyonunda etkin bir transfer bileşiği olarak davranmıştır.

Stiren için transfer sabiti 17.8, metilmetakrilat için 0.71 bulunmuştur. Bu değerler 1/\(P_n\)'e karşılık [S]/[M] arasında grafik çizilmiş bu grafiğin eğiminden yararlanarak hesaplanmıştır.

Stiren'in zincir transfer sabiti metilmetakrilat'ın kinden önemli derecede yüksektir. Genelde bilinen zincir transfer bileşikleri ile aynı davranışlar gözlenir.

\[P_n = \text{Polimerizasyon derecesi} \]
\[[M] = \text{Monomerin konsantrasyonu} \]
\[[S] = \text{TPMM'ın konsantrasyonu} \]
Bu sentetik yöntemle ele geçen, trtil ile sonlanması polistireen, stirene polimerizasyonunda ısısıal ini-fertler olarak kullanılabılır.

\[
\begin{align*}
\text{CH}_2-\text{CH}_2 \rightarrow n \text{S} & \quad \text{CH}_2-\text{CH}_2 \rightarrow n \text{S}^+ + \text{C}^+ \\
\text{Ph} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

\[
\begin{align*}
\text{CH}_2-\text{CH}_2 \text{S}^+ + m \text{CH}_2= \text{CH} & \rightarrow \text{CH}_2-\text{CH}_2 \rightarrow n \text{S}^+ \text{CH}_2-\text{CH}_2 \rightarrow m-1 \text{CH}_2= \text{CH} \\
\text{Ph} & \quad \text{Ph} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

\[
\begin{align*}
\text{CPh} & \rightarrow \text{CH}_2-\text{CH}_2 \rightarrow n \text{S} \rightarrow \text{CH}_2-\text{CH}_2 \rightarrow m \text{C}^+ \\
\text{Ph} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

Burada S-C bağıın kopabileceği iki olsılık mevcuttur, polimer yönündeki C-S bağı (a) veya üç gruptaki trtil'e bağlı C-S bağı (b). Tritil'e bağlı C-S bağıın kopma olsılığı karbon atomunun bir tersiyer karbon
atomu olması ve bağlı zayıflatması dolayısıyla daha fazladır. Buna göre tiil radikali (S) monomer ile reaksiyonca girişen tritil radikali sadece göğüslen radikallerle birleşerek sonlanma aşamasında görev alır. Eğer ikinci aşamada polimerik iniferter diğer bir monomerin polimerizasyonunda kullanılırsa aynı mekanizma uyarınca blok kopolimer ele geçer.

Stiren ve metil metakrilatın blok kopolimerizasyonu zincir transfer ve iniferter prosesleriyle deneySEL olarak gerçekleştirilmiş.
CHAPTER 1. INTRODUCTION

There has been several classical methods for the preparation of block copolymers which generally involve the successive polymerization of two or more monomers by the same mechanism. Transformation reactions extend the range of possible monomer combinations in block copolymer [1,2]. This approach allows polymers produced by one type of polymerization to be terminally functionalised by groups capable of initiating a different mode of polymerization. It has reported the synthesis of block copolymers may be accomplished by the combination of cationic and radical [3,4], anionic and radical [5], condensation and radical [6-7], redox and thermal radical [8,9] and thermal radical and photochemical radical polymerization [10-11] routes.

Iniferter method for the preparation of block copolymers was extensively explored during last decade mainly by Otsu and coworkers [12]. Several organic disulfides and phenylazotriphenylmethane were found to serve as photo and thermal iniferter, respectively. Polymers obtained by using iniferter still have iniferter function capable of initiating the polymerization of another monomer yielding block copolymers.

It has been shown that radical transfer polymerization can be used successfully for the preparation of polymers with functional end groups. Chujo et al recently prepared carboxy [13] and crown-ether terminated [14] poly (methyl methacrylate) (PMMA) using appropriate mercapto compound.
On the basis of these approaches, this work deals with the synthesis of polymers with terminal trityl (triphenylmethyl) group, using the corresponding chain transfer compound, capable of acting as thermal inhibitor and its further use for the preparation of block copolymers.
CHAPTER 2. THEORETICAL PART

2.1. General Concepts

A polymer is a large molecule constructed of many smaller structural units called monomer. The essential requirement for a small molecule to qualify as a monomer is the possession of two or more bonding sites through which each can be linked to other monomers to form the polymer chain and the number of the bonding sites is referred to as the functionality.

When only one species of monomer is used to build a macromolecule the product is called a homopolymer, normally referred to simply as polymer. If the chains are composed of two types of monomer unit, the material is known as a copolymer and if three different monomers are incorporated in one chain a terpolymer results.

\[
\begin{align*}
\text{-A-A-A-A-} & \quad \text{Homopolymer} \\
\text{-A-B-A-B-A-B-A-} & \quad \text{Alternating copolymer} \\
\text{-A-A-A-A-B-B-B-A-A-A-} & \quad \text{Block copolymer} \\
\quad \text{B} \quad \text{B} \\
\quad \text{B} \\
\quad \text{B} \\
\quad \text{B} \\
\quad \text{B} \quad \text{B} \\
\quad \text{B} \\
\end{align*}
\]
2.2. Classification Of Polymerization Reactions

A process used to convert monomer molecules into a polymer is called polymerization and the two most important groups are step-growth and addition.

2.2.1. Step Growth Polymerization

Condensation or step-reaction polymerization is entirely analogous to condensation in low molecular weight compounds, in polymer formation the condensation takes place between two polyfunctional molecules to produce one larger polyfunctional molecule, with the elimination of small molecule like water. The reaction continues until almost all of one of the reagents is used up.

All step polymerizations fall into two groups depending on the type of monomers used.

The first involves two different bifunctional or polyfunctional monomers (in which each monomer contains two functional groups per molecule). The second involves a single monomer containing both types of functional groups. The synthesis of polyamids illustrates both groups of polymerization reactions. Thus polyamids can be obtained from the reaction of diamines with diacids.

\[
\text{NH}_2\text{N-}R\text{-NH}_2 + \text{H}_2\text{O-C-R'-CO}_2\text{H} \rightarrow \text{H}(\text{NH}_2\text{N-HCO-R'-CO})_n\text{-OH} + (2n-1)\text{H}_2\text{O} \quad (2.1)
\]

or from the reaction of amino acids with themselves.

\[
\text{NH}_2\text{-}R\text{-CO}_2\text{H} \rightarrow \text{H}(\text{NH}_2\text{-R-CO})_n\text{-OH} + (n-1)\text{H}_2\text{O} \quad (2.2)
\]
The characteristics of these two polymerization reactions are very similar. The polymerization proceeds in this stepwise manner with the molecular weight of the polymer continuously increasing with time. Step polymerizations are characterised by the disappearance of monomer very early in the reaction for before the production mixture at any distance consists of various-sized diol, diacid and hydroxy acid molecules. Any HO containing molecule can react with any COOH containing molecule. Rate of polymerization is maximum at the start and decreases continuously during the reaction as the concentration of functional groups decreases.

2.2.2. Addition Polymerization

Long chains are readily obtained from monomers such as vinylidene compounds with the general structure \(\text{CH}_2=\text{CR}_1\text{R}_2 \). These are bifunctional units where the special reactivity or \(\pi \) bonds in the carbon to carbon double bond makes them susceptible to rearrangement if activated by reaction must be capable of rupturing one of the bonds in the monomer and may be either a radical, electrophile or nucleophile. The choice of the most convenient one depends on the groups \(\text{R}_1 \) and \(\text{R}_2 \) in the monomer and their effect on the double bond.

Generally electron withdrawing substituents; -CN, -COOR, -CONH₂ reduce the electron density at the double bond and favour propagation by an anionic species. Groups which tend to increase the double bond nucleophilicity by donating electrons such as alkenyl, alkoxyl, and phenyl encourage attack by cationic initiators and in addition the active centers formed are resonance stabilized.

As resonance stabilization of the active center is an important factor, monomers like styrene and 1,3-
butadiene can undergo polymerization by both ionic methods.

Because of its electrical neutrality, free radical is a less selective and more generally useful initiator because most substituents can provide some resonance stabilization for this propagating species. The complete polymerization proceeds in three distinct stages.

i)- Initiation, when the active center which acts as a chain carrier is created.

ii)- Propogation, involving growth of the macromolecular chain by a kinetic chain mechanism and characterised by a long sequence of identical events, namely the repeated addition of a monomer to the growing chain.

iii)- Termination, where by the kinetic chain is brought to a halt by the neutralization or transfer of the active center.

At this type of polymerization production of polymer involves the rapid addition of monomer to a few active centers, the monomer concentration decreases slowly throughout the reaction. High molecular weight polymer is present even at low conversions. The reaction mixture always consists of high polymer and unreacted monomer. Typically the polymer formed has the same chemical composition as the monomer, i.e. each unit in the chain is complete monomer and not a residue as in step-growth reactions.

Successful addition polymerization requires highly purified materials to avoid adventitious termination by impurities.
2.2.2.1. Free Radical Polymerization

A free radical is an atomic or molecular species having an odd number of electrons and an unpaired electron. The radical is capable of reacting with an olefinic monomer to generate a chain carrier which can retain its activity long enough to propagate a macromolecular chain under the appropriate conditions.

\[R^* + CH_2 = CHX \rightarrow R^* - CH_2 = CHX \rightarrow RCH_2CHX. \]
(2.3)

Radicals can be produced with many ways:

a)- Thermal decomposition: This is applied to organic peroxides or azocompounds.

\[C_6H_5COO = OOC - C_6H_5 \rightarrow 2C_6H_5-O^* \rightarrow 2C_6H_5^* + 2CO_2 \]
(2.4)

b)- Photochemical decomposition: This one is applicable to metal iodides, metal alkyls and azo compounds, e.g. \(\alpha - \alpha' \)-azobis isobutyronitrile is decomposed by radiation with a wavelength of 360nm.

\[(CH_3)_2 - C-N=N-C -(CH_3)_2 \rightarrow 2(CH_3)_2 - C^* + N_2 \]
\[\downarrow \text{ON} \downarrow \text{CN} \downarrow \text{CN} \]
(2.5)

c)- Redox reactions: For example the reaction between the ferrous ion and hydrogen peroxide in solution produces hydroxyl radicals,

\[H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH^- + OH^* \]
(2.6)
Alkyl hydroperoxides may be used in place of H_2O_2. Free radical polymerization can be regarded as a chain reaction and it proceeds in initiation, propagation and termination stages.

Initiation: When free radicals are generated in the presence of a vinyl monomer the radical adds to the double bond with the regeneration of another radical.

\[
\begin{align*}
\text{I} & \rightarrow 2R^* \\
R^* + \text{CH}_2=\text{CHX} & \rightarrow \text{RCH}_2\text{C}^* \quad \text{(2.7)}
\end{align*}
\]

Propagation: The chain radical formed in the initiation step is capable of adding monomers to propagate the chain.

\[
\begin{align*}
\text{R}^* \frac{\text{CH}_2\text{CHX}}{x=1} & \text{CH}_2\text{CH}^* \quad \text{+ CH}_2=\text{CHX} \rightarrow \text{R}\left(\text{CH}_2\text{CHX}\right)_{x=1}\text{CH}_2\text{C}^* \\
\text{X} & \text{X} \quad \text{(2.9)}
\end{align*}
\]

Termination: Propagation will continue until all monomer in the system is consumed. But free radicals are particularly reactive species and interact as quickly as possible to form inactive covalent bonds, that's why short chains are produced if the radical concentration is high.

Termination of chains can take place in several ways:

1) The interaction of two active chain ends.

2) The reaction of an active chain end with an initiator radical.

3) Termination, by transfer of the active center to another molecule which may be solvent, initiator or monomer.
iii)- Interaction with impurities (e.g. oxygen) or inhibitors.

The most important termination reaction is a bimolecular interaction between two chain ends.

Two routes are possible:

1)- Combination where two chain ends couple together to form one long chain

\[
\text{\begin{tikzpicture}
\node at (0,0) {\text{\large CH}_2\text{- CH}};
\node at (1.5,0) {\text{- CH}_2\text{- CH-CH-CH}_2\text{-}};
\node at (3,0) {\text{R}_1\text{- R}_1};
\end{tikzpicture}}
\]

\[\text{(2.10)}\]

ii)- Disproportionation with hydrogen abstraction from one end to give unsaturated group and two dead polymer chains.

\[
\text{\begin{tikzpicture}
\node at (0,0) {\text{\large CH}_2\text{- CH}_2\text{- CR}_1\text{ + R}_1\text{HC - CH}_2};
\node at (3,0) {\text{\large CH}_2\text{- CH=CR}_1\text{+R}_1\text{H}_2\text{C-CH}_2};
\end{tikzpicture}}
\]

\[\text{(2.11)}\]

One or both processes may be active in any system depending on the monomer and polymerization conditions [15].

2.3. Chain Transfer Reaction

A growing polymer often reacts with a neighboring molecule to form a "dead" polymer with the concurrent creation of a new center of growth—a death procreating a new seed of life, as it were. This is the basic picture of chain transfer. All free radicals, big or small, are involved in radical displacement reactions, in which a radical extracts an atom (or a group of atoms) from the nearest available source to saturate
its free valency, with the production of a new free radical, as shown in equation (2.12) for a radical Mn

If the radical Mn is a growing polyradical, this reaction is called a chain-transfer reaction and the molecule XQ, a chain-transfer agent

\[\text{Mn}^* + XQ \rightarrow \text{MnX} + Q. \] (2.12)

The basic points in chain transfer are, first, that it is an ubiquitous though inessential side reaction in polymerization which adversely affects molecular weight and often, also the rate of reaction; second, that the chain can be transferred to any species present, whether it is a solvent, a monomer, a catalyst, or a preformed polymer molecule; and third, that not only radical polymerization but also ionic polymerization involves chain transfer. The study of chain transfer helps to throw light on the quantitative aspect of radical displacement reactions, to give an insight into telomerization process which are now rapidly gaining in industrial importance, to show how to prepare branched-chain polymers and graft copolymers, and to understand the behavior of the so-called modifiers and regulators which are extensively used for controlling molecular weight in industrial polymerization.

The Mayo Equation:

In solvent polymerization the second term of the general equation (2.13) usually makes the major contribution. By keeping the initiator concentration low or, preferably, through the choice of an initiator such as an aliphatic azonitrile which is not susceptible to chain transfer the third term is rendered negligible. The last term of the general equation may be kept constant by so adjusting the initiator concentration as
to keep $R_p/[M]^2$ constant while concentration of the solvent is varied. In the case of thermal polymerization, which follows second-order kinetics, $R_p/[M]^2$ is constant with dilution and no adjustment is needed. As a consequence the last term of the general equation is a constant and equation (2.13) reduces to equation (2.14), in which DP_o is the degree of polymerization in the absence of a solvent. This is the well-known Mayo equation (2.13) extensively used for determining C_s, the solvent chain-transfer coefficient [16].

$$\frac{1}{DP} = CM + C_s \frac{[S]}{[M]} + CI \frac{[I]}{[M]} + \frac{S^2}{[M]^2} R_p$$

$$\frac{1}{DP} = \frac{1}{DP_o} + C_s \frac{[S]}{[M]}$$

(2.13)

(2.14)

2.4. Block Copolymers

Block copolymers are becoming increasingly important in technological applications, and are currently used as thermoplastics, elastomers, adhesives etc. Their synthesis and properties have recently been comprehensively reviewed. The preparation of block copolymers was greatly stimulated by the development of living (i.e. terminationless) anionic polymerization techniques by Szwarc. Preparing A8 block copolymers using an anionic mechanism is certainly the best way of obtaining monodisperse copolymers, homogeneous in composition. Free of homopolymers, with well defined and predetermined structure and molecular weight and which can be easily functionalised (alcohol, acid, acyl chloride, alkyl, etc)

Since Szwarc[17] first demonstrated the living character of anionic polymerization involving a "living
chain" mechanism, a tremendous amount of research has been performed to synthesize block polymers. This peculiar type of chemical structure displays unusual physical properties which are dependent on the aggregation state as well in solution as in bulk. Block polymers consist of generally immiscible sequence resulting in a phase separation process which ultimately controls the colloidal and mechanical properties of the material.

The ability of block polymers to improve properties like surface activity adhesion, elasticity and impact strength deserves great interest. Several important types of these polymers have reached commercial development as raw materials for surfactants, adhesives, fibers, elastomers, thermoplastics and thermoplastic elastomers. Another recent technological development focuses on polymer blends as heterophase polymeric materials, in which the useful properties of each polymeric partner can be combined at a very low cost to compete with block polymers in their field of application. However, immiscible polymer blends generally display disappointing mechanical performances due to lack of interfacial adhesion and to uncontrolled phase-separation process. In that fastly growing area of industrial research and development, block polymers find their way as surfactants. Indeed it has been reported that limited amounts of block polymers of suitable composition and structure are able to control the morphology of polymer blend and to alleviate their ultimate properties. The synthesis of block polymers of known composition and molecular weight combining a large number of chemically different chains is therefore a renewed challenge for polymer researchers [18].
Block copolymers are macromolecules comprised of chemically dissimilar, terminally connected segments. Their sequential arrangement can vary from A-B structures, containing two segments only, to A-B-A block copolymers with three segments, to multiblock \((A-B)_n\) systems possessing many segments. These are shown in Scheme 2-2. It is obvious that to prepare the above well-defined structures it is necessary to resort to sophisticated synthetic techniques,

\[
\begin{align*}
A & \quad B \\
A-B \text{ block copolymer} \\
A & \quad B & A \\
A-B-A \text{ block copolymer} \\
(A-B)_n & \\
(A-B)_n \text{ block copolymer}
\end{align*}
\]

The requirements include (a) accurate knowledge and control of initiating and propagating species (b) low impurity levels, (c) the use of low concentration solution polymerization methods, and/or (d) the need for separately producing reactive polymeric intermediates of known functionality. These requirements can result in an economic penalty with respect to production of the other polymeric hybrids. Step-growth, anionic, cationic and, to some extent, free radical methods have been used with varying degrees of success to prepare block copolymers. A number of useful reviews on synthesis and characterization have been published.
The best block copolymer syntheses are based on sequential anionic addition or ring opening polymerization techniques or on step-growth polymerization. These methods allow the control of block integrity and sequential architecture that is so important for achieving the ultimate attainable properties. Although block copolymers are more difficult to prepare than random copolymers, they are not hampered by the comonomer reactivity ratio restrictions of the latter. Furthermore, combinations of techniques can be used for synthesizing the various block copolymer segments.

A basic difference between, block and graft copolymers is the number of intersegment linkage sites one or two versus many. It is this difference that makes free radical techniques more applicable to graft copolymerization than to block systems. Because of the many potential grafting sites present in backbone polymers, the probability is high for forming at least some grafted segments along with significant quantities of homopolymer. However, in block systems, prepared by free radical techniques, the probability of forming copolymer structures is lower due to the non-selective nature of the polymerization process. Ionic synthetic methods are suitable for graft as well as block copolymers, but step-growth techniques do not give thermoplastic graft copolymers, since these multifunctional reactions would produce cross-linked systems. In contrast, the applicability of step-growth techniques to block copolymers permits the synthesis of a wide spectrum of high performance compositions.

The degree to which structural control is achieved can only be ascertained through the use of effective characterization tools. The characterization techniques traditionally used to analyze homopolymers can also be
employed in elucidating hybrids. Simple physical blends, in principle, are the easiest hybrids to characterize. Separation of the blend components via solution fractionation or extraction techniques should lead to the easily characterized homopolymer components. Both random and block copolymers are more difficult to characterize than homopolymers or polymer blends. Since most block copolymers are, in reality, contaminated to at least a minor degree with homopolymer, they are frequently more difficult to define than uniform statistical copolymers. In addition, the question of the determination of block copolymer architecture (e.g., A-B versus A-B-A) is indeed a difficult feature to elucidate.

Graft copolymers clearly present additional obstacles to accurate structural characterization. These macromolecules are even more complex than block copolymers for several reasons while the number of segments in a block copolymer can be deduced with some certainty from the synthetic technique employed, this is rarely possible with graft copolymers due to the multifunctional nature of the backbone and to the questionable efficiency with which these functionalities participate in the grafting reaction.

The length of the graft segments and their polydispersity are also more imponderable for the same reasons. An important further complication is the unanswered question of the spacing of graft junction points along the backbone. In block copolymers, this parameter is more accessible. In A-B and in A-B-A block copolymers there are, by definition one and two junction points, respectively. In \(\{A-B\}_n \) block copolymers, the distance between intersegment linkages can be deduced from knowledge of the block molecular weight.
2.4.1. Properties Of Block Copolymers

Many basic characteristics of block copolymers and graft copolymers are similar. This is due to an important feature that they have in common, namely, the presence of intersegment chemical linkages. From a simplistic point of view block and graft copolymers resemble incompatible physical blends in some respects and homogeneous random copolymers in others. Such systems usually exhibit two-phase morphology but his occurs on a microscale rather than the macroscale dimension of incompatible physical blends. This is due to the influence of the intersegment linkage, which restricts the extent to which the phases can separate. The small domain size and excellent interphase adhesion resulting from this microphase morphology can produce a high degree of transparency and a good balance of mechanical properties. This behavior is reminiscent of homogeneous copolymers and is not typical of polymer blends many other properties, such as permeability and chemical resistance, are dependent upon which segment exists in the continuous phase.

The thermal properties of block and graft copolymers resemble those of physical blends. They display multiple thermal transitions such as glass transitions and/or crystalline melting points, characteristic of each of the components.

In contrast, homogeneous random copolymers display a single, compositionally dependent glass transition temperature. Furthermore, while crystallinity is possible in block or graft copolymers, due to long sequences, it is diminished or eliminated in the random systems due to a disruption of chain regularity.
The presence of long segments in block and graft copolymers presents the possibility of using these materials as emulsifiers or surfactants. The incompatibility of homopolymer blends, both in solution and in the solid state, is reduced by the addition of small quantities of the respective block or graft copolymers. In addition, blending a block or graft copolymer with one of the respective homopolymers provides a means of achieving a fine dispersion of the "foreing" segment in the homopolymer matrix. The latter feature is made use of in important commercial products such as impact-modified thermoplastics. The above discussion points out of similarities of two-phase block and graft copolymers and the features that distinguish them from physical blends and random copolymers. It is important to recognize that a high degree of structural control and integrity is necessary in order to achieve the ultimate properties inherent in such two-phase systems. It is in this respect that block copolymers offer a clear advantage over graft copolymers. Because of the greater reliability and predictability of block copolymer synthetic techniques. It is possible to achieve desired structures more precisely.

This results in much better control of important parameters such as sequence architecture, segment length and spacing polydispersity, and contamination by homopolymer or undesired copolymer architectures. These factors lead to a higher degree of morphological perfection in block copolymers than in graft copolymers, which, in turn, is reflected in superior physical properties.

A unique development resulting from block copolymer technology is the concept of thermoplastic elastomeric behavior. Block copolymer systems of this type are
characterized by rubbery behavior in the absence of chemical cross-linking. This feature permits the fabrication of these materials by means of conventional thermoplastic processing techniques. The key to this unique behavior is the ability to achieve a network structure by physical rather than chemical means. This in turn, results from finely controlled morphology in A-B-A or (A-B) systems containing both flexible and rigid segments. In principle, this type of behavior is also attainable with graft copolymer structures. However, in actual practice, only limited success has been achieved to date. This is indubitably due to the difficulties in obtaining a high degree of architectural and structural control in graft copolymers [19].

2.4.2. General Methods On Block Copolymer Synthesis

There are various methods for the synthesis of block copolymers with different mechanisms it is beyond the scope of this work to discuss all these procedures in detail. Therefore we would outline the general synthetic approaches to prepare block copolymer.

The methods of block polymerization will be discussed according to the classical scheme based on the type of the active centers. Five sections will be devoted to free radical, anionic, cationic, coordination, and step-growth polymerization.

2.4.2.1. Anionic Living Polymerization

The living polymeric carbanions are especially interesting because they can react with compounds which provide either functional end groups ready for subsequent reactions or the linking of the initial macromolecules to form star-branched polymers of precise structure.
Living macromolecules can initiate the polymerization of other monomers to produce well-defined block copolymers. In the anionic polymerization reactions it is the non-terminating character of the growing chains which can lead to an extremely narrow molecular weight distribution [20].

$$\text{Sec-BuLi} + \text{Styrene} \rightarrow \text{Sec.Bu}^-\text{Li}^+$$ \hspace{1cm} \text{Polystyryl anion} \hspace{1cm} (2.15)

$$\text{Polystyryl anion} + \text{butadiene} \rightarrow \text{Sec - Bu}^-\text{Li}^+$$

$$\text{Sec- Bu}^-\text{Li}^+$$

1)Styrene $$\rightarrow$$ \hspace{1cm} $$\text{PS}$$ \hspace{1cm} (2.16)

2)termination $$\rightarrow$$ \hspace{1cm} $$\text{PB}$$ \hspace{1cm} $$\text{PS}$$ \hspace{1cm} (2.17)

2.4.2.2. Cationic Polymerization

The cationic polymerization of olefin and vinyl monomers was generally restricted by chain transfer and chain termination, where as the living polymers prepared in cationic polymerization of cyclic ethers had too low electrophilicity to add the less basic olefin and vinyl monomers [21].

Ion generation : $$\text{RX} + \text{MeX}_n \rightleftharpoons \text{R}^+\text{MeX}_{n+1}$$ \hspace{1cm} (2.18)

Cationation and propagation:

$$\text{R}^+\text{CH}_2\text{C}^- + n \text{CH}_2=\text{C}^-\rightarrow \text{RCH}_2^-\text{CH}_2^-\text{C}^+$$

(2.19)

Termination:

$$\text{RCH}_2^-\text{CH}_2^-\text{C}^+\text{MeX}_{n+1} \rightarrow \text{RCH}_2^-\text{MeX}_n + \text{CH}_2^-\text{CX} + \text{MeX}_n$$ \hspace{1cm} (2.20)
2.4.2.3. Step-Growth Polymerization

The step growth block copolymers consist of low molecular weight sequence, usually arranged in a \(-\text{A-B}\) configuration, nevertheless A-B-A structures can also be generated. In this type of block copolymer, sequence having low solubility parameter are generally associated with highly polar sequences (polyester, polyamide, polycarbonate, polyurethane) [22].

\[
\text{nCl} \quad \text{C} \quad \text{C} \quad \text{Cl} \quad \text{+} \quad \text{nHOC(OH)C} \quad \text{Cl} \quad \text{C} \quad \text{O} \quad \text{O} \quad \text{H} \\
\]

(2.21)

2.4.2.4. Coordination Polymerization

Coordination and especially Ziegler-Natta type catalysts are extremely helpful in controlling the chain growth processes and more specially the stereospecificity of polyolefins and some vinyl and methacrylate polymers. To prepare block copolymers, the catalyst must have a lifetime sufficient to permit sequencing of the monomers, particularly for \((\text{AB})_n\) and \((\text{ABA})_n\) type block copolymers and chain transfer reactions must be minimal. Otherwise, the reaction product will be at best, a mixture of homopolymers and block copolymer [23].

2.4.2.5. Free Radical Polymerization

The radical polymerization of a mixture of monomers usually does not lead to a block copolymer. However creation of free radical sites or radical generating species such as azo or peroxide on a given polymer can then initiate polymerization of a second monomer. This can be achieved in different ways. Various methods for the synthesis of block copolymers by radical mechanism have been treated recently by two review articles [24-26].
2.4.3. Transformation Reaction For Block Copolymer Synthesis

A unique approach to block copolymer synthesis involves changing the type of propagating center part way through the synthesis via a transformation reaction for example, anionic polymerization of monomer A is carried out as a living polymerization and then the carbanion centers transformed into carbenium ions by reaction with bromine followed by silver perchlorate[27].

\[
\begin{align*}
\text{AAA}^-\text{Li}^+ & \xrightarrow{\text{Br}_2} \text{AAA}\text{Br} & \xrightarrow{\text{AgClO}_4} \text{AAA}^+\text{ClO}_4^- \\
\text{AAA}^- & \xrightarrow{\text{LiBr}} \text{AAA}\text{Br} & \xrightarrow{\text{AgBr}} \text{AAA}^+\text{ClO}_4^- \\
\end{align*}
\]

\[
\begin{align*}
\text{AAA} & \xrightarrow{\text{B}} \text{BBB}^+\text{ClO}_4^- \\
\end{align*}
\]

(2.22)

The carbenium ions are then used to polymerize monomer B.

Anionic propagating centers are transformed into radical centers by reaction with trimethyl lead chloride, followed by heating in the presence of a second monomer.

\[
\begin{align*}
\text{ClPb(CH}_3)_3 & \xrightarrow{\text{heat}} \text{Pb(CH}_3)_3^- & \text{LiCl} \\
\text{AAA}^-\text{Li}^+ & \xrightarrow{\text{LiCl}} \text{AAA}^- & \text{AAA}^- & \xrightarrow{\text{B}} \text{AAA}^- \\
\end{align*}
\]

(2.23)

Transformation reactions offer the potential for synthesizing a wider range of block copolymers. Anionic polymerization is limited to forming copolymers only from those monomers which undergo anionic propagation, cationic is limited to those which propagate through carbenium ion centers. Whether this potential is
realized depends on whether various side reactions can be controlled. A side reaction in the anionic-to-cationic transformation is the Wurtz-type coupling between lithium and bromine containing molecules. The anionic-to-radical transformation involves the formation of trimethyllead radical, which can initiate the homopolymerization of monomer B. However, the living anionic polymerization technique, although attractive, has some limitations[7]:

i)- It is limited to monomers which are sensitive to nucleophilic attack, i.e to non-polar monomers like styrene and derivatives, butadiene and isoprene, acrylic monomers, and heterocycles such as ethylene oxide. Therefore, it excludes all monomers which polymerise by radical mechanism, such as VCM, vinyl acetate, etc or monomers such as THF and isobutene which are sensitive only to cationic initiation.

ii)- Success of the anionic technique is dependent on the reactivity of the anion generated for example the polystyryl carbanion can initiate the polymerization of butadiene and vice versa but with the polymerization of ethylene oxide, the alkoxide ion generated is too stable to initiate the polymerization of styrene.

So the combination of monomers which may be converted into block copolymers by the anionic mechanism is consequently limited.

One of Richards mayor achievement was to overcome these difficulties and to propose a general method which allows multiple combinations of monomers. Among these alternatives are;
i)- Converting carbanions to free radicals by a one-electron oxidation step:

\[
\begin{align*}
\text{C}^- & \xrightarrow{[O]} \text{C}^+ + e^- \\
& \quad \text{(2.24)}
\end{align*}
\]

ii)- Changing carbanions to carbenium ions by a two-electron oxidation process:

\[
\begin{align*}
\text{C}^- & \xrightarrow{[O]} \text{C}^+ + 2e^- \\
& \quad \text{(2.25)}
\end{align*}
\]

Therefore the range of attainable block copolymers can be greatly extended if this convenient process, i.e. changing the active species after the propagation step of the first monomer to one best suited to the propagation of the second is correctly achieved. Such a process requires three distinct stages.

The transformation of the propagating end from that employed with the first monomer to that best suited to propagate the second monomer, permits all kinds of combinations of monomers.

The interest in such research consists in developing routes to new specifically structured block copolymers for example, an ABC polybutadiene-b-tetrahydrofuran-c-styrene may be synthesized by (i) oxidation of a living
cationic polybutadiene, (ii) initiation and polymerization of a tetrahydrofuran sequence to produce a cationic AB block copolymer and (iii) titration of the living solution with monofunctional living polystyrene.

Stage 1: Polymerization of the first monomer capping of the propagating ends with stable but potentially reactive functional groups and isolation of the resulting polymer A or leaving it in situ.

Stage 2: Dissolution of polymer A and comonomer in a solvent system suitable for copolymerization.

Stage 3: Reaction or change of conditions resulting in transformation of the functional end groups of polymer A into propagating species which polymerize the comonomer by a different mechanism to that used in stage 1 to produce block copolymer.

2.5. Iniferter Process

Polymer formation in radical polymerization of a vinyl monomer (M) initiated by an initiator (R-R') is expressed by scheme (2.26) if no chain transfer (CT) reaction occur and ordinary biomolecular terminations proceed only by recombination (R=R').

\[
R-R' + 2nM \rightarrow R(M)_{2n} R' \quad (2.26)
\]

In this case, radical polymerization gives a polymer with two initiator fragments at its chain ends. However, usually in radical polymerization, termination by disproportionation and CT reactions are known to be important and hence the number of the initiator fragments per polymer molecule is always \(< 2\). At the present
time, it is impossible to control the mode of these terminations.

So if we use initiators which have very high reactivities for CT reaction to the initiator and/or primary radical termination (PRT) i.e. ordinary bimolecular termination is neglected, it is expected that a polymer with two initiator fragments at its chain ends will be obtained (Scheme 2).

\[
R - R' + nM \rightarrow R(M)_n R' \quad (2.27)
\]

Therefore, these radical polymerizations may simply be considered as an insertion reaction of monomer molecules into the R-R' bond of the initiator leading to a polymer with two initiator fragments, similar to telomerization of ethylene with carbon tetrachloride as a telogen. For initiators with these functions to the name "iniferter". Many radical initiators having somewhat low initiating reactivities would be expected to serve as iniferters, if the monomers and polymerization conditions used are selected carefully. Some organic sulphur compounds, phenylazotriphenylmethane and azobisdimethylmethane or tetraphenylethane derivatives were found to serve as iniferters for the polymerization of styrene (St) and methyl methacrylate (MMA).

From a viewpoint of tailor-made polymer synthesis, iniferters can be classified into several types; mono- di, tri, or poly—functional iniferter, thermal or photoiniferter; monomeric, polymeric or polymer-gel iniferter; monomer-or macromer-iniferter etc. Among the iniferter used, some sulfur compounds having N,N diethylidithiocarbamate groups were found to serve as an excellent photoiniferter for the controlled synthesis
of various monofunctional telechelic, block star, graft and cross-linked polymers, if photoinitifiers with the functional groups were used [12].

Radical polymerization of methyl methacrylate (MMA), with phenylazotriphenylmethane (PAT) was found to give the polymer with a trityl group bonded at its α-chain end which could further dissociate into propagating and trityl radicals. Therefore, it was confirmed that PAT served as a thermal initiator for polymerization of MMA, which proceeded via a living radical mechanism, i.e. yield and molecular weight of the polymers increased with reaction time. When the polymer thus obtained was used as a polymeric initiator for the polymerization of styrene (St), the block copolymer was obtained.

PAT has been known to decompose into a highly reactive phenyl radical and an unreactive trityl radical, according to Eq. (2.28)

\[
\text{Ph} - \text{N}=\text{N} - \text{C} - \text{Ph} \xrightarrow{-\text{N}_2} \text{Ph} + \text{Ph} - \text{C} - \text{Ph}
\]

(PAT)

In 1940s, PAT was examined as an initiator having a modifier function in radical polymerization of butadiene, similar to diazothioethers and diazoaminobenzenes. However, the experiment did not give good result, because the activity of PAT as an initiator was low. After that some studies on the decomposition of PAT and its initiator activity have been performed. PAT is now used as a source of phenyl radical in physical organic chemistry.
In radical polymerization with PAT, it is expected that phenyl radical in Eq. (2.29) can easily add to the monomer to initiate polymerization, and trityl radical reacts only with the propagating radical. If the above reactions occur preferentially in radical polymerization of vinyl monomers with PAT, the polymer with phenyl and trityl groups at its w and \(\alpha \) ends, respectively, may be produced as shown in Eq. (2.29)

\[
\text{PAT} + n \text{CH}_2=\text{C} \xrightarrow{\text{X}} \text{Ph}(\text{CH}_2=\text{CH})_n \text{C} \xrightarrow{\text{X}} \text{Ph}.
\]

From these viewpoints, Otsu has proposed in 1982 a concept of *initiator-transfer-agent-terminator* (initiferter) to design of the structure of polymer chain end in radical polymerization. As reported previously the photopolymerizations of St and MMA with some organic sulfur compounds as an initiferter were confirmed to proceed via a mechanism close to this concept, i.e. the resulting polymers have to initiferter fragments bonded at both chain ends. Moreover, if the end group of the polymers obtained with such initiferters can further induce radical polymerization as a polymeric initiferter, these radical polymerization may be considered to proceed via a new mechanism, i.e. yield and molecular weight of the polymers increase with reaction time.

Therefore, Otsu has also proposed in 1982 an ideal model for living radical polymerization in homogeneous system as shown in Eq (2.30)
\[
\begin{align*}
\text{CH}_2 - \text{CH} - \text{CH} - \text{B} & \quad \underset{\text{X}}{\text{	ext{C}}^\div} \quad \text{CH}_2 - \text{CH}^\cdot + \ \text{B} \quad \underset{\text{X}}{\text{CH}_2 = \text{CHX}} \\
\text{CH}_2 - \text{CH} - \text{B} \quad \underset{\text{X}}{\text{CH}_2 - \text{CH} - \text{B}} & \quad \underset{\text{X}}{\text{	ext{C}}^\div} \quad \text{CH}_2 - \text{CH}^\cdot + \ \text{B} \quad \underset{\text{X}}{\text{CH}_2 = \text{CHX}} \\
\text{CH}_2 - \text{CH} - \text{B} \quad \underset{\text{X}}{\text{CH}_2 - \text{CH} - \text{B}} & \quad \underset{\text{X}}{\text{CH}_2 - \text{CH} - \text{B}} \quad \underset{\text{X}}{\text{CH}_2 - \text{CH} - \text{B}} \quad \underset{\text{X}}{\text{CH}_2 - \text{CH} - \text{B}} \quad \underset{\text{X}}{\text{CH}_2 - \text{CH} - \text{B}} \quad \text{(2.30)}
\end{align*}
\]

Namely, the C-B bond in the propagating chain end dissociates into radicals in which 1 is reactive propagating radical and 2 is an unreactive small radical which does not enter the initiation, but undergoes readily primary radical termination to give the identical C-B bond.

Accordingly, if the polymerization proceeds via the repetition of dissociation at the chain end, addition of the monomer to 1, and primary radical termination with 2 such polymerization may proceed via a living radical mechanism according to Eq. (2.30). As described above, the polymerizations of St and MMA with sulfur compounds as a photoiniferter were found to be performed by a mechanism close to Eq. [28].
<table>
<thead>
<tr>
<th>Compound</th>
<th>Type of iniferter</th>
<th>Monomer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAT (Phenylezotriphenylmethane)</td>
<td>Thermal, photo</td>
<td>MMA</td>
<td>28</td>
</tr>
<tr>
<td>BDG (Benzyl N,N-diethylthiocarbamate)</td>
<td>Photo</td>
<td>St,MMA</td>
<td>29</td>
</tr>
<tr>
<td>XDG: (p-xyylene bis(N,N-diethylthiocarbamate))</td>
<td>Thermal</td>
<td>St,MMA</td>
<td>29</td>
</tr>
<tr>
<td>DDC (Tetraakis(N,N-dietlyldithiocarbamate) benzen)</td>
<td>Thermal</td>
<td>St,MMA</td>
<td>29</td>
</tr>
<tr>
<td>TD (Tetraethylthiuram disulphide)</td>
<td>Thermal, photo</td>
<td>St,MMA</td>
<td>29</td>
</tr>
<tr>
<td>DPD (Diphenyldisulfide)</td>
<td>Photo</td>
<td>St,MMA</td>
<td>29</td>
</tr>
<tr>
<td>PEDC (2 phenylethyldiethylthiocarbamate)</td>
<td>Photo</td>
<td>St,MMA</td>
<td>29</td>
</tr>
<tr>
<td>TPSN (1,2 di cyano tetraphenylethane)</td>
<td>Thermal</td>
<td>MMA</td>
<td>30</td>
</tr>
<tr>
<td>DBD (Di benzoldisulfide)</td>
<td>Thermal</td>
<td>St,MMA</td>
<td>31</td>
</tr>
</tbody>
</table>
CHAPTER 3. EXPERIMENTAL PART

3.1. Purification Of Materials

Styrene:

Washed with aq. 5% NaOH to remove inhibitors, then with water, dried for several hours with CaCl₂ and distilled under reduced pressure (50°C/25 mmHg), middle fraction is collected and immediately used.

Methyl methacrylate:

Washed twice with aq. 5% NaOH to remove inhibitors and twice with water, dried with CaCl₂ and distilled under reduced pressure (46°C/100mmHg), middle fraction is collected and immediately used.

AIBN (Azobisisobutyronitrile)

Crystalized from acetone, Dried under vacuum at room temperature and stored in the dark under vacuum, mp 101-101.5°C.

TPMM (Triphenylmethyl Mercaptane)

Triphenylmethyl mercaptane (TPMM) was used as purchased.
3.2. Techniques

Preparation of triphenylmethyl group terminated polymers
Bulk monomers containing a known amount of AIBN and TPMM was outgassed in the usual manner and placed in a constant temperature bath at 70°C. At the end of reaction, the mixtures were poured into ten-fold excess of methanol, and precipitated polymers then filtered and dried.

Block Copolymerization

Bulk monomers containing above obtained triphenylmethyl terminated polymers were degassed and heated at 70°C. After polymerization for a given time, the content of the tubes was poured into methanol. The separation of the polymers obtained from block copolymerization was carried out by extracting them with appropriate solvents.

3.3. Analysis

Gel Permeation Chromatography

The Pn values of obtained polymers were calculated from GPC chromatograms according to polystyrene standard samples. Using Knauer M-64 instrument and THF as the eluent at a flow rate of 1ml/min at 25°C.

^1H NMR Spectroscopy

^1H-NMR spectra were recorded on Bruker 200 Spectrometer in CDCl₃ solution with tetramethylsilane as internal standard.
UV Spectroscopy

UV spectra were recorded on a UV 160 A Schimadzu UV-Vis spectrophotometer, using CH₂Cl₂ as a solvent.

IR Spectroscopy

IR spectra were recorded on a Schimadzu IR-400 model spectrophotometer.
CHAPTER 4. RESULT AND DISCUSSION

Styrene (St) and methylmethacrylate (MMA) were polymerized in the presence of 2,2'-azobisisobutyronitrile (AIBN) and triphenylmethyl mercaptane (TPMM) as initiator and chain transfer agent, respectively, yielding polymers with trityl end groups as depicted below, i.e. for MMA polymerization:

\[
\text{Ph} \quad \overset{\text{CH}_3}{\text{C}} \quad \overset{\text{AIBN}}{\text{\rightarrow}} \quad \text{Ph} \quad \overset{\text{CH}_3}{\text{C}} \quad \overset{70^\circ \text{C}}{\text{S-H + n CH}_2=\text{C}} \quad \text{Ph} \quad \overset{\text{CH}_3}{\text{C}} \quad \overset{\text{S}}{\text{\big\{CH}_2-\text{C-}} \quad \overset{\text{S}}{\text{\big\}}_{n} \quad \text{Ph} \quad \overset{\text{CH}_3}{\text{C}} \quad \overset{\text{DCH}_3}{\text{DCH}_3} (4.1)
\]

Typical IR spectra of TPMM and trityl terminated PMMA (TPM-PMMA) are illustrated in Figure 4.1. The stretching band at 2570 cm\(^{-1}\) due to S-H group dissapeared in the polymer Figure 4.1 (b) also shows trityl moiety together with the peaks for MMA. The introction of trityl groups into PMMA was also supported by \(^1\text{H-NMR}\)
FIGURE: 4.1. IR Spectra of (a) TPMM and (b) TPM-PMMA

As can be seen from Figure 4.2 aromatic protons appear in 7.2 ppm region in addition to peaks at 3.6 and 1.4-2.0 ppm for DCH₃ and vinyl protons, respectively. UV spectrum of the polymer possesses an absorption band at around 330nm region indicating attachment of trityl end groups. In addition, GPC analysis shows no contamination of physically entrained TPMM in the polymer.
FIGURE 4.2. 1H-NMR Spectra of (a) TPMM and (b) TPM-PMMA

TPMM was shown to be an efficient transfer agent in the polymerization of St and MMA. Transfer constants were found to be 17.8 and 0.71 for St and MMA, respectively, from the slope of $1/\bar{n}$ against $[S]/[M]$ as shown in Figure 4.3. Notably, chain transfer constant for St is higher than that for MMA polymerization.
FIGURE: 4.3. Plots Of Reciprocal Degree Of Polymerization Versus \([S]/[M]\) For(●) \(\text{St}\) And (■) \(\text{MMA}\) Polymerization, S=TPMM

In general, the same behaviour was observed with common chain transfer agents. The polymer with the desired molar mass can be prepared by controlling the feed ratio of the monomer to the chain transfer agent, TPMM (Tables 4.1 and 4.2).
TABLE 4.1. Polymerization of St Initiated by AIBN in the Presence of TPMM at 70°C a)

<table>
<thead>
<tr>
<th>TPMM x 10^{-3} (mol/l)</th>
<th>Conversion (%)</th>
<th>$\bar{M}_n x 10^{-3}$ b) (g/mol)</th>
<th>$\bar{M}_w x 10^{-3}$ b) (g/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.0</td>
<td>37</td>
<td>99</td>
</tr>
<tr>
<td>1</td>
<td>6.0</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>6.2</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>2.8</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>3.4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

a) Polym. time: 2h, $[\text{St}]=8.7\text{mol/l}$, $[\text{AIBN}]=5 \times 10^{-3}\text{mol/l}$
b) Determined by GPC

TABLE 4.2. Polymerization of MMA Initiated by AIBN in the Presence of TPMM at 70°C a)

<table>
<thead>
<tr>
<th>TPMM x 10^{-3} (mol/l)</th>
<th>Conversion (%)</th>
<th>$\bar{M}_n x 10^{-4}$ b) (g/mol)</th>
<th>$\bar{M}_w x 10^{-4}$ b) (g/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.5</td>
<td>36.7</td>
<td>76.4</td>
</tr>
<tr>
<td>1</td>
<td>6.9</td>
<td>38.4</td>
<td>54.5</td>
</tr>
<tr>
<td>2</td>
<td>7.1</td>
<td>32.6</td>
<td>50.0</td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
<td>22.2</td>
<td>46.3</td>
</tr>
<tr>
<td>5</td>
<td>5.6</td>
<td>17.6</td>
<td>46.6</td>
</tr>
</tbody>
</table>

a) Polym. time: 0.5h, $[\text{MMA}]=9.4\text{ mol/l}$, $[\text{AIBN}]=10^{-3}\text{mol/l}$
b) Determined by GPC
Radical Polymerization With Polymeric Thermal Initiator:

The obtained polymer has a trityl moiety at one end. Trityl terminated polystyrene (TPM-PSt) was used as a thermal initiator in the polymerization of St. The plot of molecular weight ($\overline{M_n}$) of the polymers against the conversion is shown in Figure 4.4. As can be seen, $\overline{M_n}$ of the polymers increased linearly with conversion which indicates that this polymerization proceeds via a quasi-living radical mechanism in a manner proposed by Otsu [12].

FIGURE: 4.4. Polymerization of St With TPM-PSt at 70°C [St] = 8.7 mol/l, [TPM-PSt] = 20 g/l
Figure 4.5 shows the GPC traces recorded with polymer isolated at various reaction times in bulk polymerization of St with TPM-PSt. The GPC trace of TPM-PSt showed unimodal molecular weight distribution but thereafter became a bimodal molecular weight polymer appeared and it shifted to higher molecular weight side with time.

FIGURE: 4.5. GPC Traces For Polystyrene Polymerized In Bulk With TPM-PSt At Each Time.
In relation to this, the peak of lower weight polymer decreased and that of higher molecular weight polymer increased.

Thermal instability of trityl terminated polymers was proved by heating this polymer in boiling benzene for 3h. The resulting polymer showed no initiation activity for styrene polymerization and molecular weight of the polymer did not change indicating that the polymer obtained by using TPMM as chain transfer agent was stabilized by such treatment and initiation functionality is due to trityl end groups.

Polymerization involves dissociation of trityl terminated polymer into radicals to give chain extended high molecular weight polymer. Bond dissociation is expected to occur preferentially at the S-CPh₃ bond since tertiary bonds ease the decomposition. The thiyl radical reacts with the monomer whereas trityl radical reacts only with the propagating radical.

\[
\begin{align*}
&\text{Ph} \quad \text{Ph} \\
&\text{CH}_2-\text{CH}_n^+ \quad \text{S}^- \\
&\text{C} \quad \text{Ph} \\
&\rightarrow \\
&\text{CH}_2-\text{CH}_n^+ \quad \text{S}^- \\
&\text{C} \quad \text{Ph} \\
&\text{Ph} \quad \text{Ph}
\end{align*}
\]

(4.2)

\[
\begin{align*}
&\text{Ph} \quad \text{Ph} \\
&\text{CH}_2-\text{CH}_n^+ \quad \text{S}^- + m \quad \text{CH} = \text{CH} \\
&\rightarrow \\
&\text{CH}_2-\text{CH}_n^+ \quad \text{S}^- \\
&\text{CH}_2-\text{CH}_m^+ \quad \text{CH}^{-} \\
&\text{Ph} \quad \text{Ph} \quad \text{Ph} \quad \text{Ph} \\
&\text{Ph}
\end{align*}
\]

(4.3)
Similarly, if the polymers thus obtained were used as polymeric initiator of the polymerization of second monomer, block copolymers must be produced. The results of block copolymerization of St with TPM-PMMA and MMA with TPM-PSt are summarized in Table 4.3. Polymer molecules which for any reasons fail to acquire trityl groups during the chain transfer polymerization contributes to the formation of non-blocked components. Several deactivation reactions leading to the formation of homopolymers were discussed in detail elsewhere [28].

TABLE 4.3. Block Copolymerization By Using Polymeric Initiators

<table>
<thead>
<tr>
<th>Polym. Initiator</th>
<th>Monomer (mol/l)</th>
<th>Time (h)</th>
<th>Yield (g)</th>
<th>Fractions PST (%)</th>
<th>Fractions PMMA (%)</th>
<th>Extracted Block (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPM-PSt,80 (49800)</td>
<td>MMA, 9.4</td>
<td>3</td>
<td>0.72</td>
<td>22</td>
<td>26</td>
<td>52 (110700)</td>
</tr>
<tr>
<td>TPM-PMMA,40 (110600)</td>
<td>St, 8.7</td>
<td>2</td>
<td>0.52</td>
<td>22</td>
<td>16</td>
<td>62 (142500)</td>
</tr>
<tr>
<td>TPM-PMMA,40 (106800)</td>
<td>St, 8.7</td>
<td>2</td>
<td>0.56</td>
<td>15</td>
<td>19</td>
<td>66 (145800)</td>
</tr>
</tbody>
</table>

Numbers in parenthesis show the Mn values

Representative GPC traces for TPM-PSt and after polymerization with MMA are shown in Figure 4.6. The peak at higher molecular weight is ascribed to the block copolymer.
1H-NMR data are in agreement with the block copolymer structure. The spectrum of the block copolymer (Figure 4.7) displays methyl groups of varying tacticity of poly (methyl methacrylate) block at highest field of 0.85–1.1 ppm. The corresponding methylene group resonances appear in the chemical shift range from 1.4 to 2.0 ppm overlapping with those of the polystyrene block.
FIGURE: 4.7. 1H-NMR Spectrum of the Block Copolymer.

The methyl ester protons resonate at 3.6 ppm. The aromatic ring hydrogens appear as two bands at 6.55 and 7.05 ppm which suggests that the styrene units are grouped in blocks.

In conclusion, these results indicate that combination of chain transfer polymerization and iniferter technique can be applied to produce block copolymer of monomers that are prone to free radical polymerization. This method pertains to trityl groups attached to the polymer ends by means of high chain transfer reactions and subsequent thermolysis of these groups in the presence of monomers [32].
REFERENCES

BIOGRAPHY

She was born in İstanbul in 1961. She was graduated from "Çamlıca Kız Lisesi" in 1979 and from Ege University as a Chemist in 1984. And then she worked in Topkapı Glass Company for 2 years. Afterwards, she started working as a research assistant at the Inorganic Chemistry division of the Faculty of Science, Department of Chemistry in İstanbul Technical University in 1987. After one year, she moved to Tibet A.Ş. company and worked there for 3 years. In the meantime, she has been a graduate student in chemistry programme of Institute of Sciences, İstanbul Technical University leading to the degree of M.Sc.