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THERMALLY CURABLE BUTADIENES BY CLICK REACTIONS 

SUMMARY 
One of the most significant artificially synthesized materials are polybenzoxazines. 
Polybenzoxazines are derivatives of phenolic type resins that accomplish deficiencies 
of the traditional phenolics. Phenolic resins have excellent properties such as good 
mechanical strength, dimensional stability and flame retardance. In addition to these 
features polybenzoxazines also show nearly zero shrinkage during, low absorption of 
water, high char yield and non-toxic by-product upon curing. Benzoxazine monomer 
can be prepared from the reaction of a starting phenolic compound, formaldehyde 
and primary amines. Another important synthetic materials are rubbers. Rubbers 
have several desirable properties that allow them to have wide range of usage. Click 
chemistry brings another aspect to polymer chemistry and gives the opportunity to 
combine rubbers with benzoxazines to create a polymer with great features. Click 
reactions occurs between terminal acetylenes and azide by metal catalyst at room 
temperature. Click reactions are preferable reactions for modification because of 
moderate reaction conditions, high yields, short periods of reaction times and high 
selectivity, tolerance of functional groups, insensitivity of the reaction solvents.  
There is a wide range of application field of this reaction, which varies with the sort 
of polymers. 

In this study, novel side-chain benzoxazine functional polybutadiene                       
(PB- Benzoxazine) was synthesized by using “Click Chemistry” strategy. First, 
approximately 10% of double bonds were brominated with Br2 in CCl4 then these 
bromo groups converted to azido groups by using NaN3 in DMF. Propargyl 
benzoxazine was prepared independently by a ring closure reaction between p-
propargyloxy aniline, paraformaldehyde and phenol. Finally, azido functionalized PB 
was coupled to propargyl benzoxazine with high efficiency by click chemistry. The 
spectral and thermal analysis confirmed the presence of benzoxazine functionality in 
the resulting polymer. It is shown that PB containing benzoxazine undergoes 
thermally activated curing in the absence of any catalyst forming PB thermoset with 
high char yield. 

Keywords: thermoset, click reactions, polybutadiene, benzoxazines, 
polybenzoxazines 
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KLİK KİMYASI ile ISISAL SERTLEŞTİRİLEBİLEN  POLİBUTADİENLER 

 

ÖZET 

Önemli sentetik malzemelerden biri olan polibenzoksazinler fenolik reçinelerin bir 
türevi olup, geleneksel reçinelerin dezavantajlarını ortadan kaldıran polimerlerdirler. 
Fenolik reçinelerin sahip olduğu mekanik dayanıklılık, yanıcı olamama gibi 
özelliklerine ek olarak kürleme sırasında geçekleşebilcek hacimce küçülmenin 
olmaması, düşük su absorpsiyonu, kürleme sırasında toksik yan ürünlerin 
olmuşmaması ve yüksek verimlilikle char eldesi gibi avantajlara da sahiptirler. 
Benzoksazin monomerleri fenolik bir bileşik ile başlanarak formaldehit ve primer 
aminlerin reaksiyonu ile sentezlenebilirler. Sahip olduğu mükemmel özelliklerden 
dolayı büyük öneme sahip sentetik malzemelerden biri de kaçuklardır. Kullanım 
alanları oldukça geniş olan kauçukların, polimer kimyasına başka bir bakış açısı 
getiren klik kimyası ile benzoksazin grupları içeren polimerlerinin sentezleri 
mümkün olabilir. Klik reaksiyonları terminal asetilenler ve azidler arasında 
gerçekleşen reaksiyonlardır. Klik reaksiyonlarının tercih edilir olmalarının sebepleri 
arasında; makul reaksiyon koşullarında gerçekleştirilebilmeleri, yüksek verim 
alınabilmesi, yüksek seçicilik ile gerçekleşmeleri, fonksiyonel grup çeşitliliğine 
olanak sağlamaları, kısa reaksiyon sürelerine sahip olmaları ve kullanılan çözücülere 
karşı hassas olmamaları gösterilebilir. Klik reaksiyonlarının uygulama alanları 
kullanılacak polimer tiplerine bağlı olarak çeşitlendirilebilir. 
Bu çalışmada polibutadienin uygun koşullarda bromlanarak aizdleme reaksiyonuna 
hazır hale getirilip, polibutadienazid elde edilerek klik kimyası uygulanarak 
propargilbenzoksazin fonksiyonlarının polybutadiene bağlanarak halka kapanması 
reaksiyonlarının gerçekleştirilmesi ve böylece yüksek oranlarda ısıya dayanıklı 
özellikteki polimerlerin elde edilmesi amaçlanmaktadır. Bu yöntemle azidleme ve 
klik reaksiyonu sonucunda polibutadienin mekanik özelliklerindeki değişimler ve 
avantajları incelenecektir.Benzoksazin fonksiyonu içeren polybutadienlerin ısısal 
olarak sertleştirilebilir oldukları gösterilmiştir.Sentezlenen polimerlerin molekül 
ağırlıkları ile polidisperistelerinin belirlenmesinde GPC kullanılacaktır.  
 
Anahtar Kelimeler: termoset, click reaksiyonları, polibutadien, benzoksazin, 
polibenzoksazinler 
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INTRODUCTION 

With recent advances in technology, chemistry has accelerated its growing pace in its 

several branches. Technology is based on polymer science which has shown an 

incredible boost within past fifty years. As the technology develops, the need for new 

materials to be synthsized is increasing. One of the most promising material is 

benzoxazine polymers which have high mechanical properties, expansion or near-

zero shrinkage during polymerization. On the contrary with the materials contain 

hydroxyl groups, benzoxazines provide low absorption of water and also excellent 

dimensional stability. Phenolic resins have low Tg  which is a shortcoming of these 

type of resins but, polybenzoxazines have high Tg values. Furthermore, flexibility of 

molecular design, non toxic by-products are some of the advantages of 

polybenzoxazines. Moreover, polybenzoxazines are very stable when they are heated 

or exposed to UV light and it is easy to synthesize benzoxaznine monomers. Another 

important synthetic materials are rubbers. Synthetic rubber is any type of artificially 

made polymeric material which acts as an elastomer. They have amazing mechanical 

properties, which can be improved, allow them to recover after applied stress with no 

deformation. In addition to that, synthetic rubbers can be synthesized by 

polymerization. Monomer types can vary like 1,3-butadine or isobutylene. There is a 

wide usage area of rubbers like tires, motor vehicles, pharmaceuticals etc…In 

conclusion; the world needs new materials with superior properties for advanced 

technology. Therefore, there is a way of having a polymer by combining 

benzoxazines with rubbers via click chemistry.  This kind of polymer which would 

have unique features deserves a great attention.  
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2. THEORETICAL PART 

 

2.1 Rubber 

Hydrocarbon polymers which can be found in the cauline of plants are milky 

colloidal suspensions and they are called rubber [4]. Rubber was first discovered in 

1771 by Joseph Prisetly [4, 6]. In its native Central America and South America, 

rubber was collected for a long time [7]. Rubber has a wide range of usage area 

begins from household products to tires and tubes. Tires and tubes constitute 56 % 

total consumption of rubbers [8]. Based on its origin, rubber can be divided into two; 

natural rubber and synthetic rubber [6]. 

2.1.1 Natural Rubber 

The most famous example of natural rubber is polyisoprene which can be obtained 

from para rubber tree called Hevea Brasiliensis [9]. Polyisoprene can be synthesized 

by polymerization of isoprene monomer with Zieglar-Natta catalyst (See Figure 2.1) 

[1, 2]. Natural rubber can be stretched out and it will return to its original shape upon 

relaxation. It shows the same mechanical properties with thermoplastics and 

sometimes even with elastomers [9].Most thermoplastics are high molecular weight 

polymers and they known as plastics in daily life. A thermoplastic can be melted to 

liquid by heat and freezes to brittle [34, 35].Also, it can undergo heating and cooling 

processes over and over [10, 11]. Because of that, it can remould by reheating and 

that makes it recyclable.  Thermoplastic polymer chains can be either linear or 

branched. These chains stay associated with the effect of London forces, hydrogen 

bonds and polar interactions. Thermoplastics have amorphous structure, which 

makes thermoplastic flexible below their Tg values.  
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(2.1) 

Figure 2. 1 Polymerization of isoprene 

2.1.2 Synthetic Rubber 

The types of polymeric materials, which are artificially made and show elastomer 

features, are called synthetic rubbers [1-3, 5]. An elastomer remains between the Tm 

and Tg points. Most of them have amorphous structure. If a stress is applied to an 

elastomer, it can return to its original shape without permanent deformation by the 

movements of the backbone [74]. This behavior can be explained in two ways. 

Firstly, randomly grew polymer chain has higher entropy than organized polymer 

chain. As the stress is removed polymer chain prefers its previous size, which has 

higher entropy [74]. The second reason why a permanent deformation does not occur 

is coiled-up polymer chains can be inter-linked. These inter-links not only protect the 

polymer coil from split off and keep attached together but also prevent from 

permanent deformation [74]. 

Figure 2.2 shows stressed (B) and unstressed (A) polymer. The dots represent cross-

linking points where the polymeric chains linked to each other. After the applied 

force is removed, polymer returns to the A configuration. This type of presentation is 

generally accepted as ‘spaghetti and meatball’ structure [74]. There exist many ways 

to achieve cross-linking between polymer chains. For example, some polymers can 

be cross-linked by vulcanization process which imparts elastomeric properties to the 

initial polymer [13, 25]. 
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Figure 2.2 Representation of stressed polymer 

%1-3 Sulfur is enough to have elastomeric behavior. It should be pointed out that the 

excess of sulfur cause thermosetting properties [73]. Also we can find the ideal stress 

behavior by using the laws of thermodynamics;  

 (2.2) 

where, n is the number of chain segments per unit volume, k is Boltzmann’s 

Constant, T is temperature, and    is distortion in the 1 direction [13]. 

Polybutadiene (PB), styrene-butadiene-styrene triblock copolymer (SBS), nitrile 

rubber etc… are good examples for elastomers. 
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2.1.2.1 Polybutadiene (PB) Rubber 

Polybutadiene (PB) rubber is the second largest volume synthetic rubber produced. 

Upon low transition temperature, cured PB rubber have low rolling resistance and 

corrosion resistance [3,36]. Butadiene rubber is usually blended with Styrene-

butadiene-styrene (SBS) rubber or natural rubber in order to improve its poor 

absorption of water (wet traction). A research indicates that, 20.000 tons of high cis-

PB is used each year in golf ball spheres and also coat of electronic assemlies is 

butadiene rubber due to its high resistance to electricity [33, 12]. 

PB is a homopolymer synthesized from the corresponding 1,3-butadiene monomer. 

 

Figure 2. 2 Structure of 1,3 butadiene 

 
Although 1,3-butadiene undergoes free radical polymerization (FRP) to form PB, the 

polymerization may lead to some side reaction including cross-linking due to the 

nature of the monomer [15]. When the polymerization involves between the double 

bond of C1-C2 the polymer contains side chain reactive groups capable of creating 

cross-linkinking (vide infra). However with Zieglar-Natta catalyst it is possible to 

obtain completly linear polymers [14]. It is the most common and useful reaction to 

form a polymer from vinyl monomers [72]. 

FRP has for main steps: 

1. Initiation 

2. Propagation 

3. Transfer Reactions 

4. Termination 

There are three types of initiators such as organic peroxides, azo compounds and 

peresters for the initiation step of free radical polymerization (See Figure 2.4) [68, 

69] . 



 
 

6

 These molecules produces radicals to initiate the polymerization by decomposition 

(See Figure 2.4 ). 

 

 

 

Figure 2. 3 Structures of FRP initiators 

The adding of more and more monomer molecules to the growing chains is called 

propagation [22, 70]. Propagation step occurs very fast in FRP because of that there 

are always high weight polymers and unreacted monomers in the reaction mixture 

[71]. 
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(2.3) 

 

 

 

(2.4) 

 

 

 

(2.5) 

Figure 2. 4 Decompositions of FRP initiators 

 

The third step of FRP is transfer reactions. As the transfer reactions occur, growing 

side of the polymer which is the chain end will be removed. These reactions can exist 

between molecule of solvent or initiator or monomer [70]. 

Termination process usually includes two types of reactions, recombination and 

disproportionation [70]. 
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(2.6) 

 

(2.7) 

 

 

(2.8) 

Figure 2. 5 Various steps of FRP 

As mentioned before, PB can synthesized by with the presence of Ziegler-Natta 

catalyst. This catalyst which is a transition metal, helps to generate linear polymers. 

If the Ziegler-Natta catalyst is used during polymerization of butadiene the final 

product would be cis-PB (See Figure 2.7 ) [18].But without the catalyst vinyl 

structures occur on the polymer chain. Vinyl side groups make the polymer avaliable 

for branching or cross-linking (See Figure 2.8 ) [16,17].Vinyl tends to increase Tg of 

the polymer and this is an undesirable condition for rubbers. On the other hand, cis-

PB has lower Tg and higher cut-growth resistance compared to polymers with vinyl 

structure after curing[20]. As explained before PB rubbers are mostly used in tires 

and cis-PB rubberss are the most suitable materials for this purpose [19]. 

 

 
 
 
 
 
(2.9) 
 

Figure 2. 6 Polymerization of butadiene without catalyst 
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2.1.2.2 SBS Rubber 

SBS rubber is a block copolymer consists of butadiene and styrene units. SBS shows 

plastomer properties [20]. A plastomer is also known as thermoplastic elastomers 

which behaves like an elastomer without corss-links between the polymer chains 

[15]. Polystyrene and PB are not suitable polymer types for each other. That means, 

they do not constitute homogenous mixture [74]. Each polymer prefers to stay 

seperate phases (See Figure 2.9). Consequently, polystyrene blocks on the copolymer 

chain, form groups in order to stay together  [74]. An outcome of this behavoir of 

polystyrene, polymer network seems like cross-linked PB  by polystyrene groups 

(See Figure 2.10). When the SBS rubber is heated, polystyrene blocks split off and 

when it is cooled polystyrene blocks form groups again. This attitude of polymer 

makes it malleable [74]. 

 

Figure 2.10 Representation of SBS rubber under stress 

SBS rubber can be synthesized by living-anionic polymerization. This type of 

polymerization has only two steps (See Figure 2.11). 

 

1. Initiation 

2. Propagation           
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There would be no termination until all of the monomer has been consumed. 

Addition of monomer will let the polymerization continue. This is why it is called 

living polymerization.  

 

   (2.10) 

 

 

    (2.11)

Figure 2. 7 Various steps of anionic polymerization 

There are two types of initiators for living-anionic polymerization. 

1. Metal organic initiators :  Butyl lithium is the simplest example for this type 

of metal organic initiators. An example is shown below. 

 

 

(2.12) 

Figure 2. 8 An example of metal organic initiators 

2. Radical-Ionic initiators : Biphenyl and napthalene are the best initiators as 

radical-ionic initiator. (See Figure 2.13) 

 

 

(2.13) 

Figure 2. 9 An example of radical-ionic initiators 
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Interaction between Na metal and chosen aromatic hydrocarbon results in electron 

source species. And this specie will transfer the additional electron back to the any 

compound which has higher electron affinity than itself.  

After the initiation (the electron transfer ) species undergo dimerization to yield 

dianions and polymerization proceeds from these two ends.  

Synthesis of SBS rubber by living-anionic polymerization is shown in Figure 2.14. 

 

 

 

(2.14) 

 

 

 

 

(2.15) 
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 (2.16) 

 

 

 

 

 

(2.17) 

Figure 2. 10 Synthesis of SBS rubber 
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2.2 Benzoxazines 

One of the most significant artificially synthesized materials are polybenzoxazines. 

Thus, their popularity in scientific society results the researcher to incline on them 

every each day. This material can be described as a phenolic resin derivative, 

obtained from the reaction of a starting phenolic compound, formaldehyde and 

primary amines [28.29]. These polymers can be produced thermally. The proceeding 

reactions can be performed either in the presence or absence of initiators and 

catalysts. Basic reaction scheme can be demonstrated as follows [30]: 

 

 

(2.18) 

Figure 2. 11 Basic reaction Scheme for monomer synthesis and 
polybenzoxazine formation 

2.2.1 Features of Benzoxazines 

Thermally produced polymers have attracted more attention due to their typical 

characteristics [28, 29].As Ishida asserts; benzoxazine resins offer several very 

unusual properties few polymers are known to exhibit. First, they have expansion or 

near-zero shrinkage upon polymerization [75, 76]. Moreover, they provide low 

absorption of water and excellent dimensional stability because of a low shrinkage 

upon curing, which cannot be found in the traditional phenolic resins. Secondly, 

these materials possess very high char yield in spite of higher aliphatic content than 

traditional phenolic resins, much higher hydrophobicity than epoxies and phenolics 

in spite of high concentration of hydrophilic groups in the polymer chain structure 

[75, 76].As indicated above, polybenzoxazines’ heat resistance character is as a 

result of char formation and this formation can clearly be seen in the following chart 

(See Figure 2.16) [30]:  
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Figure 2. 12 Char Formation 

Moreover, their good anti-flammability characteristics can be clearly seen from the 

below illustration: 



 
 

15

 

Figure 2.13 Flammability of high performance polymers 

Thirdly, development of materials with high mechanical and physical properties at 

low conversion can be achieved by extremely rich molecular design flexibility.  

From the thermal history of this compound suggests that, the polymerization of 

benzoxazine monomers occurs through heterocyclic ring opening at high 

temperatures in the absence of a catalyst and without generating any by-products 

[76]. DCS analysis of benzoxazine which shows the exotherm of ring opening 

reactions is shown in Figure 2.18 [37]. Consequently, benzoxazine monomers are 

able to polymerize by ring –opening mechanisms due to heat, presence of catalysts or 

when exposed to UV light [76]. 
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Figure 2. 14 DCS analysis of benzoxazine 

2.2.2 Significance of Benzoxazines 

Polybenzoxazines can construct these superior properties, in various applications 

where a high – performance material is needed. Furthermore, it can be said that their 

significance increases due to their ease in preparation [76].It can therefore be 

generalized that benzoxazine-based polymeric systems possess distinguishable 

superiorities, which can be categorized as follows: monomer synthesis, 

polymerizability, structural variations offered by the polymerization method, and 

high performance properties of the resulting polymers [32]. Besides this, it is 

suggested that their   high - performance   properties as   thermosetting resins can 

further be improved by tightening their network structure [32]. Moreover additional 

properties for specific applications such as processability, flame retardancy, and 

mechanical strength can be introduced in several ways. For example, the thermal and 

mechanical properties of polybenzoxazines can be improved by blending with a 

polymer or clay [76].Maleimide-based benzoxazine polymers exhibit better thermal 

stability and high char yield which gives good flame retardancy [76-78].Similarly, 

chemical modification of novolac resins with benzoxazine rings, or the grafting of 

various phosphorous compounds to benzoxazine-modified resins, gives rise to non-

flammable coatings. And also, benzoxazine monomers with additional polymerizable  
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acetylene functional groups form highly thermally stable cross-linked networks [76]. 

In another example ortho-, meta-, and para-phenylnitrile-functionalized benzoxazines 

have been polymerized at different compositions with phthalonitrile functionalized 

monomers yielding copolymers with high thermal stability and easy processability.   

2.2.3 Necessities for Modification of Benzoxazines 

Monobenzoxazine and polybenzoxazines compounds have significant application as 

high-performance materials in semiconductor fabrication industry. As indicated 

previously, this is due to their high heat resistance, superior electrical properties, low 

penetration of water, no gas evaporation, low dielectric constant and lastly no 

shrinkage on cure. On the other hand, these materials’ processability is limited 

because of high viscosity and their tendency to be brittle [75].Consequently, lack of 

flexibility leads them to not to be used in electronic devices where elasticity is 

required. In order to create new molecular designs, which are appropriate for 

electronic devices usages, curable compositions containing at least one 

monobenzoxazine or polybenzoxazine are needed [77].  

2.2.4 Suitable Benzoxazine Compounds for Modification 

The previous work suggests that the suitable benzoxazine compounds include those 

of formula [75-78] (See Figure 2.19, 2.20). Notice that R1 may be aliphatic and 

aromatic or both and may contain heteroatoms like, oxygen, nitrogen, sulfur, 

phosphorous, or halogen. 

Moreover, according to the same research, in addition to the below presented 

compounds, benzoxazines in the polymeric form may be synthesized [75-77]. The 

curable composition that contains the benzoxazine function has the w/w ratio within 

the range of 1 % or more to 99 %. We have previously reported on several synthetic 

strategies to combine benzoxazine structures with conventional polymers, namely 

polystyrene, poly (ε-caprolactone), poly (methyl methacrylate) and poly (propylene 

oxide).    
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Figure 2. 15 Suitable benzoxazine compounds for modification 
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Figure 2. 16 Benzoxazine compounds for modification 

The polymers contained one or two benzoxazine functionalities per chain and 

thermal ring-opening copolymerization of these macromonomers with low molar 

mass benzoxazines yielded cross-linked polybenzoxazines [76]. In these cases, the 

polymers are linked to the network structure as dangling chains. However, the 

incorporation benzoxazines as a thermally reactive group into the backbone or side-

chains of conventional polymers has scarcely been investigated. 

2.2.5 Formation of Curable Resins 

The benzoxazines are preferably blended by the curable resins which have vinyl 

ethers, vinyl silanes, resins containing vinyl or allyl functionality, thiol–enes, or 

resins including cinnamyl or styrenic functionality, fumurates, maleates, acrylates 

maleimides, and cyanat esters [75] (See Figure 2.21, 2.22).  
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Figure 2. 17 Hybride Resins Including Both Epoxy and Cinnamyl or Styrenic 
Functionality 

 

 

Figure 2. 18 Hybride Resins Including Both Epoxy and Cinnamyl or Styrenic 
Functionality 

2.2.6  Rubber Modified Benzoxazines  

Main problem of thermosets is being brittle. Modifying thermosets with rubber is a 

way of managing the problem [76, 79, 80]. Cavitations of rubber species may be a 

reason for rigit structure but it is not the only reason for it [81, 82]. Reasons for 

brittleness differ from particle size, particle size distribution to matrix-to-particle 

adhesion [76, 86-84] .The effect of cavitations of rubber is not only a reason for strict 

structure, but also it has an impact on plastic deformation of the network [76]. The 

mechanism of the deformation by rubber species can be divided into two; (i) shear 

yielding of matrix between the neighboring rubber particles and (ii) plastic void 

growth of the matrix surrounding the particle [83, 85]. According to properties of 

liquid rubbers like low viscosity and polarity, which is mostly preferred for 

modification of epoxy, resins can be used to soften the benzoxazine structure [81, 82, 

84]. 
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2.3 Click Reactions 

The reaction that gives opportunity to attach ligands onto polymers for modification 

is called click reaction and it is also known as Sharpless ‘click’ reaction [26, 27]. 

This modification process provides; a) often quantitative yields, b) a high tolerance 

of functional groups c) an insensitivity of the reaction to solvents and d) reaction at 

various types of interfaces such as solid/liquid, liquid/liquid, or even solid/solid 

interfaces [27,73]. Click reactions are preferable reactions for modification because 

of moderate reaction conditions, high yields, short periods of reaction times and high 

selectivity [50, 63, 62]. There is a wide range of application field of this reaction, 

which varies with the sort of polymers [64]. Click reactions enabled the C-C bond 

formation in a quantitative yield without side reactions and requirement for 

additional purification steps.  Click reactions are particularly important in preparative 

methods, in which high conversion of functional groups is desirable [51-53]. 

Numerous applications of click chemistry in polymer science as well as molecular 

biology and nanoelectronics have recently been reviewed [27, 26, 50]. 

Click reactions are derivatives of Huisgen 1, 3 dipolar cyloaddition reactions and 

occurs between terminal acetylenes and azides by metal catalyst at room temperature 

(See Figure 2.23) [26, 44, 45].Ru, Ni, Pt, Pd and especially Cu (I) species can be 

used as catalyst for click reactions [61-63]. As stated by several authors, these metals 

speed up the reactions [62, 63]. 

 

 

 

(2.19) 

Figure 2. 19 Azide/alkyne-type click reactions 
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2.3.1 Suitable Compounds for Click Reactions 

Exceptions of self-reactive reagents and materials that can produce stable complexes 

with Cu (I), all functional groups are suitable for click reactions [58-60]. The figure 

shows the compounds, which are not suitable for, azide/alkyne-type click reactions 

because of the Huisgen 1, 3 dipolar cyloaddition side reactions [55-57]. 

 

Figure 2. 20 Unsuitable compounds for azide/alkyne type click reaction 

 

2.3.2 Mechanism of Click Reactions 

As it mentioned before click reactions occurs between terminal acetylenes and azide 

by metal catalyst. The mechanism of click reactions first explained by Meldal and 

co-workers and Sharpless and co-workers [38, 58, 59]. Multifarious catalytic systems 

are present to affect the 1, 3-dipolar cycloaddition process. Cu (I) salts can be 

directly used or Cu (I) species can be obtained from the reduction of Cu (II) by 

sodium ascorbarte or metallic copper in catalytic systems [12, 58, 59].The 

mechanism of click reactions, shown below, depends on the Cu-acetylide formation 

[58, 59]. 
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Figure 2. 21 Mechanism of click reaction 

Terminal alkynes and Cu (I) particles produce a π-complex (Cu-acetylide) to lower 

pKa value of the terminal alkynes that allow attack onto C-H bond [63-65].In 

addition, 1-5 equivalents of base have positive influences on the formation of the 

copper (I)-acetylide. THF, diethyl ether, DMF, DMSO or halogenated solvents are 

applicable for click reactions. And also, water/alcohol or water/toluene systems can 

give excellent results [65-67]. 
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3. EXPERIMENTAL WORK 

3.1 Materials and Chemicals 

3.1.1 Polymers 

Polybutadiene (PB) 

PB is kindly provided by Dr. Jergio Corona Galvan. It was used as recieved. 

3.1.2 Solvents 

Methanol (Technical) 

Methanol was used for the precipitation of polymers without further purification. 

Chloroform (Sigma) 

Chloroform was used without further purification. 

Tetrahydrofuran (THF) (J.T.Baker) 

Predried over magnesium sulfate followed by sodium wire and then distilled from 

sodium wire and benzophenone immediately before use.  

N,N-dimethylformamid (DMF) (Merck) 

Predried over magnesium sulfate followed by sodium wire. 

Carbon tetrachloride (J.T.Baker) 

Carbon tetrachloride was used as solvent for PBR and SBS without further 

purification. 

Ethanol  (Aldrich) 

Ethanol was used as recieved. 

1,4-Dioxane  (Sigma-Aldrich) 

1,4 dioxane was used as recieved. 
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Diethylether (Sigma-Aldrich) 

Diethylether was used as recieved.  

3.1.3 Other Chemicals and Reagents 

Sodium Azide (Carlo-erba) 

It was used as received. 

Acetic anhydride (Sigma-Aldrich) 

Acetic anhydride was used as recieved. 

HCl  (Sigma-Aldrich) 

HCl was used as recieved. 

Sodium hydroxide (Sigma-Aldrich) 

Sodium hydroxide was used as recieved. 

Anhydrous magnesium sulfate (Sigma-Aldrich) 

Anhydrous magnesium sulfate was used as received. 

Phenol (Sigma-Aldrich) 

Phenol was used as received. 

Paraformaldehyde (Sigma-Aldrich) 

Paraformaldehyde was used as received. 

p-Aminophenol (Acros Organics) 

p-Aminophenol was used as received. 

Propargyl bromide  (Fluka) 

Propargyl bromide was used as received. 

Brom (Merck) 

It was used as received. 

2,2-Bipyridine (bpy) (Aldrich) 

It was used as received. 

Copper (I) Bromide (CuBr) (Aldrich) 
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It was used as received. 

3.2 Equipments 

3.2.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 

1H-NMR analyses were recorded on a Bruker 250 MHz NMR Spectrometer. 

3.2.2 Infrared Spectrophotometer (IR) 

IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR Spectrometer. 

3.2.3 Gel Permeation Chromatography (GPC) 

Gel permeation chromatography (GPC) analyses were performed with a set up 

consisting of a Waters 410 Differential Refractometer, a Waters 515 HPLC Pump 

and an apparatus equipped with three Waters ultrastyragel columns (HR series 4, 3, 

2 narrow bore), with THF as the eluent at a flow rate of 0.3 mL/min. Molecular 

weights were calculated on the basis of a calibration curve recorded with 

monodisperse polystyrene standards.  

3.2.4. Thermal Gravimetric Analysis (TGA) 

Thermal gravimetric analysis (TGA) was performed on Perkin–Elmer Diamond 

TA/TGA with a heating rate of 10 ºC min under nitrogen flow. 

3.2.5 Differential Scanning Calorimetry (DSC) 
Differential scanning Calorimetry (DSC) was performed on Perkin–Elmer Diamond 

 DSC with a heating rate of 10 °C min under nitrogen flow. 

3.3 Preparation Methods 

3.3.1 Preparation of N-(4-hydroxphenyl) acetamide   

A suspension of p-aminophenol (15.3 g, 140 mmol) in water (50 ml) was taken into 

a 250 mL flask. Acetic anhydride (14.2 ml, 150 mmol) was added to this solution. 

The mixture was heated at 60 oC with vigorous stirring until formation of clear 

solution. After about 20 minutes, the solution cooled to ambient temperature and the 

crude product was filtered and washed with deionized water. Crude solid was 

recrystallized from water to yield white crystals. (Yield: 80 %, mp: 169 ºC) 
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3.3.2 Preparation of   N-(4-(prop-2-ynyloxy) phenyl) acetamide 

In a 250 mL flask, of N-(4-hydroxphenyl)acetamide (8.1 g, 50 mmol) was dissolved 

in 100 mL of 0.4 N NaOH. The mixture was heated at 70 °C until a clear solution 

was formed. To this solution, tetrabutylammonium bromide (1.6 g, 5 mmol,) was 

added as a phase transfer catalyst. A solution of propargyl bromide (6.5 g 55, mmol) 

in 50 mL of toluene was added portion wise to the solution. The mixture was kept 

stirring at 70 °C for 24 h. Then it was cooled to afford solid. In addition, the toluene 

layer was separated and washed repeatedly with water. Evaporating toluene afforded 

extra solid. The crude product was dissolved in 1,4-dioxane and precipitated in 

water (ca. 200 mL) , then filtered, and washed repeatedly with copious amount of 

water. (Yield: 94 %) 

3.3.3 Preparation of p-propargyloxy aniline 

In a 250 ml flask, N-(4-(prop-2-ynyloxy)phenyl)acetamide ( 8,5 g, 45 mmol )  was 

dissolved in  ethyl alcohol (70 ml) and HCl (36%, 70 ml) was added. The mixture 

was stirred at 90 oC for 3 h. After neutralizing with aqueous sodium hydroxide, the 

solution was extracted with chloroform, and the organic layer was dried over 

anhydrous MgSO4. Evaporation of chloroform gave a yellowish brown viscous 

product. The crude product was purified by distillation under reduced pressure (bp: 

95 °C, 10 mmHg) to afford a colorless and highly viscous liquid, which crystallized 

into yellowish white crystals after a while in the flask (Yield: 75 %, mp: 49-50 °C). 

3.3.4 Preperation of 3-(4-(prop-2-ynyloxy)phenyl)-3,4-dihydro-2H-benzo[e][1,3] 

oxazine 

In a 250 mL flask, paraformaldehyde (1.9 g, 63 mmol)  in 100 mL of dioxane was 

cooled by ice bath. To this solution,  p-propargyloxy aniline (34 mmol, 5 g)  in 25 

mL of dioxane was added portion-wise. The solution was kept stirring for 15 min 

below 5 °C. Thereafter, a solution of phenol (3.3 g, 35 mmol,) in 25 mL of dioxane 

was added. The solution was refluxed at 110 °C for 6 h. Removal of the solvent in a 

rotary evaporator gave a viscous residue  that was dissolved in 100 mL of 

diethylether and washed several times with 1 N sodium hydroxide solution and 

finally with distilled water. Then, the ether solution was dried with anhydrous 

sodium sulfate, followed by evaporation of ether under vacuum to afford pale 

yellow viscous fluid. (Yield: 60 %) 
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3.3.5 Synthesis of Polybutadiene Bromine (PB-Br) 

In a 100 mL flask, polybutadiene dissolved in 20 mL of carbontetrachloride was 

cooled by ice bath. To this solution, 5-6 drop of brom (Br2) was added.  After about 

2-3 hours, the precipitation was filtered. The product (See Figure 3.1) was dissolved 

in chloroform and precipitated into methanol (400mL), filtered and dried under 

vacuum. 

3.3.6 Synthesis of PB-N3 Coploymer  

Polybutadienebromine was dissolved in N,N-dimethylformamid (DMF), NaN3 (2 

times excess to the mole of bromine of  polybutadiene) was added. The resulting 

solutuion was allowed to stir at 25°C overnight and precipitated into methanol/water 

mixture (1/1 by volume). 

3.3.7 Synthesis of Polybutadiene Containing Benzoxazine Side Groups (PB-

Benzoxazine) 

In a flask, PB-N3 (0.30 g), 3-(4-(prop-2-ynyloxy)phenyl)-3,4-dihydro-2H-

benzo[e][1,3]oxzaine (0,4 g 1.5 mmol), copper(I)bromide (0,5, 3mmol), 2,2-

bipyridine (0,9g, 7mmol), and dry THF (10mL) was added. The flask was capped 

with a septum and purged with dry nitrogen for 10 minutes. The mixture was stirred 

overnight at ambient temperature. Copper salts were filtered and functionalized 

polymer was precipitated in methanol (200mL), filtered and dried under vacuum. 
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4. RESULTS and DISCUSSION 

In this study, we tried to incorporate benzoxazine moieties into PB rubber by using 

“Click reaction”. The synthetic strategy followed involves several steps. First 

benzoxazine monomer with suitable click functionality was synthesized. The other 

click component was formed on the rubber molecule. The final click step yields the 

desired rubber with curable benzoxazine functionalities. The various steps of the 

procedure will be described below. 

4.1 Synthesis and Characterization of Propargylbenzoxazine 

In this study, propargylbenzoxazine was selected as thermally reactive click 

component, which was prepared according to the modified procedure described by 

Agag and Takeichi [41]. The chemical structure of propargylbenzoxazine was 

confirmed by both FT-IR and 1H-NMR.   

 

Figure 4. 1 FT-IR spectrum of propargylbenzoxazine 
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The characteristic absorptions of benzoxazine structure appeared at 1236 cm-1 

(asymmetric stretching of C-O-C), 924 and 1493 cm-1 (trisubstituted benzene ring). 

The Click functionality, propargyl group was evidenced by characteristic bands of H-

C≡ and -C≡C- appeared at 3290 and 2121 cm-1, respectively (See Figure 4.1). The 
1H-NMR spectrum of propargylbenzoxazine showed a triplet at 2.5 ppm and a 

doublet at 4.5 ppm which are assigned to H-C≡ and CH2 (See Figure 4.2). Also, N-

CH2-O and N-CH2-Ar protons of oxazine ring are detectable at 5.3 and 4.6 ppms. 

 

 

  Figure 4. 2 1H-NMR spectrum of propargylbenzoxazine 

4.2 Synthesis and Characterization of Azide Functional PB 

For the synthesis of parent azide functionalized PB (PB-N3), approximately 10% of 

double bonds were brominated with Br2 in carbontetrachloride then bromo groups 

converted to azido groups by using NaN3( Sodium Azide) in DMF (See Figure 4.3). 

Functionalization was kept deliberately at low level so as to preserve PB properties. 
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(4.1) 

Figure 4. 3 Bromination and azidation steps of PB 

The structure of PB-N3 was further supported by the observation of the azide 

stretching band at 2094 cm-1 in the FT-IR spectrum of PB-N3 presented in Figure 

4.4b. 

Figure 4. 4 a) FT-IR spectrum of PB-benzoxazine, b) FT-IR spectrum of PB- azide. 

4.3 Synthesis and Characterization of Benzoxazine Functional PB 

For the click reaction, the PB-N3 was dissolved in THF and reacted with propargyl 

benzoxazine in the presence of CuBr/bipyridine ligand at room temperature (See 

Figure 4.5). After removing the catalyst by filtration, the polymer was precipitated 

and dried under vacuum. As far as the ultimate use of the resulting polymer (PB-
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Benzoxazine) in thermal curing is concerned, two points were important; the extent 

of conversion of the side azido moieties to triazoles and the effect of click reaction 

on the stability of benzoxazine ring. 

 

 

 

(4.2) 

Figure 4. 5 Synthesis of PB-benzoxazine 

The fist issue was monitored by 1H NMR spectroscopy by observing the appearance 

of the new methylene protons adjacent to the triazole ring at 5.1 ppm (triazole-CH2-

OPh) and the triazole proton (N-CH=C-) at 7.6 ppm  (Figure 4.6). Moreover, the 

band corresponding to -N3 group at 2094 cm-1 completely disappeared (Figure 4.4a). 

Thus, the side group click reaction was efficient, as evidenced by near-quantitative 

functionalization. Besides, the presence of signals at 5.3 and 4.5 ppm in 1H-NMR 

spectra corresponding to N-CH2-O and N-CH2-Ar clearly indicate the retention of 

the benzoxazine ring during the click reaction.  
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Figure 4. 6 a) 1H-NMR spectra of propargylbenzoxazine and b) 1H-NMR spectra of 
PB-benzoxazine 

4.3.1 Thermally Activated Curing of PB-Benzoxazine 

The thermally activated curing behavior of resulting polymer was examined by DSC. 

Figure 4.8 shows the DSC profile for benzoxazine containing PB. The side-chain 

benzoxazine groups are expected to undergo thermally activated intramolecular ring 

opening reaction to yield insoluble PB network as depicted in Figure 4.7. 
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(4.3) 

Figure 4. 7 Cross-linking of PB-benzoxazine 

 

Figure 4. 8 DSC thermogram of PB-benzoxazine 
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The thermogram, shown in Figure 4.8 revealed two exotherms with maximums 

around 161 and 199°C at the fist run. According to literature, depending on the 

substituents, the benzoxazine ring opens at the temperature range between 200-250 
oC. Hence, the exotherm at 199 °C corresponds to the ring opening polymerization of 

benzoxazine moiety and cross-linking of the polymer. The second exotherm at 161°C 

may be due to a transformation of 1, 2, 3-triazole ring. In fact, there is limited 

information in the literature about the thermal stability of the 1, 2, 3-triazole ring, 

formed via click chemistry, at elevated temperatures.  Interestingly, DSC 

thermograms of several model compounds possessing triazole ring including those 

prepared from polystyrene have also exhibited similar exotherm. The possibility of 

the decomposition of the triazole ring by the evolution of nitrogen was disregarded as 

it would have exhibited an endotherm. Also, there is no meaningful weight loss 

observed around 161 oC due to the nitrogen evolution in thermal gravimetric analysis 

(TGA) of the polymer. The second DSC run did not show any exotherm indicating 

highly densed network formation and completion of ring opening. Furthermore, it 

should be noted that thermally treated polymer was not soluble in all common 

solvents.  

Thermal stability of the thermally cured PB was investigated by TGA and compared 

with commercial PB and cured mono-functional benzoxazine (PP-a, See Figure 4.9). 

The TGA curves are presented in Figure 4.7 and weight loss behaviors of the species 

are tabulated at Table 4.1.  

O

N Δ
OH

N
n

P-a PP-a  

 

(4.4) 

Figure 4. 9 Polymerization of mono-funtional benzoxazine 
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Table  4.1 TGA analysis of cured PB-benzoxazine with PP-a and PB 

Polymer T5%
a
 

(ºC) 

T10%
b

 

(°C) 

Tmax.
c 

(ºC) 

Yc
d at 500°C 

(%) 

PB 363 411 449 0 

PB-benzoxazine (cured) 234 267 309 43 

PP-a 297 347 452 50 

 aT5%: The temperature for which the weight loss is 5%                
 bT10%: The temperature for which the weight loss is 10% 
 cTmax.: Maximum weight loss temperature. 
 dYc: Char yields                        
 
 

 

 

Figure 4. 10 a)TGA thermogram of PB, b) TGA thermogram of PB-benzoxazine 

c) TGA thermogram of PP-a 

According to data obtained from TGA studies. It clear that the char yield of the 

thermally cured PB is enhanced far too much compared to commercial PB. Another 
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noticeable feature is that the degradation of the thermally cured PB is not similar to 

the degradation profile of PP-a.  

Molecular weight averages of PB, PB-Br, PB- N3 and PB-benzoxazine are shown 

below (See Table 4.2). 

Table  4.2 TGA analysis of cured PB-benzoxazine with PP-a and PB 

 
 

 

 

 

 

 

 

 

 

 
Mn: Number of Average Molecular Weight 

Mw: Molecular Weight 
PD: Polydispersity 
 
In summary, a simple click reaction route to side-chain benzoxazine functional PB is 

described. This route has the unique feature of being quantitative and at the same 

time preserving the benzoxazine ring structure. The benzoxazine groups have been 

shown to readily undergo thermal ring-opening reaction in the absence of added 

catalyst to form cross-linked polymer networks. The polymers cured in this way, has 

much more char yield than commercial PB. It is anticipated that this new family of 

thermally curable polymers can be used as intermediates for the design of more 

complex macromolecular systems such as interpenetrating networks, nano-particles 

via intramolecular chain collapse, and high performance thermo-set polymers when 

used in conjunction with low molar mass benzoxazines. Further studies in this line 

are now in progress. 

 
 
 
 
 

 

Polymer 

 

Mn 

 

 

Mw 

 

PD 

PB 9251 10980 1,186 

PB-Br 17551 19039 1,085 

PB- N3 15468 15594 1,008 

PB-Benzoxazine 15622 18169 1,163 
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