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PHOTOINITIATED POLYMERIZATIONS BY ELECTRON TRANSFER 
REACTIONS 

SUMMARY 

Recently, photoinitiated polymerization has received revitalized interest as it 
congregates a wide range of economic and ecological anticipations.  It forms the 
basis of numerous applications in coatings, adhesives, inks, printing plates, optical 
waveguides and microelectronics due to its excellent advantages. It offers high rate 
of polymerization at ambient temperatures, low energy consumption, solvent-free 
polymerization, spatial and temporal control of initiation. Although 
photopolymerization can be initiated radically, cationically and anionically, much 
effort has been devoted to free radical and cationic systems mainly due to the 
availability of a wide range of photoinitiators and the great reactivity of monomers. 
The majority of industrial applications of photoinitiated polymerizations for various 
techniques deal with free-radical systems. However, there are some drawbacks 
associated with this type polymerization such as the inhibition effect of oxygen and 
post-cure limitations which may affect the properties of the final product. Therefore, 
photinitiated cationic polymerization holds considerable promises in the future, 
particularly as a means of overcoming these limitations. Numerous cationic 
photoinitiators are known and their photochemistry has been studied in detail. 
Among them, the onium-type photoinitiators play an important role due to their 
thermal stability, solubility in most of the cationically polymerizable monomers, and 
competence in generating reactive species upon photolysis. Because of the fact that 
besides Brønsted acids,  radical species are also produced, these salts can also be 
used as photoinitiators for free radical, and concurrent free radical and cationic 
polymerizations. The spectral sensitivity of photoinitiated cationic polymerizations 
may be extended to the near UV and visible range by using appropriate free radical 
sources and aromatic sensitizers. 

Conjugated polymers have attracted great interest due to their wide range of potential 
applications including light emitting diodes, batteries, electrochromic devices, 
sensors, electromagnetic shielding, and corrosion inhibition. Polythiophenes are one 
of the most extensively studied families of conjugated polymers because of their 
characteristic electronic and optical properties. Usually, polythiophenes are obtained 
by chemical or electrochemical polymerization processes, which provides films with 
different morphologies and consequently slightly different physical and chemical 
properties. Photopolymerization is considered to be useful candidate for the 
production of these materials in thin film forms and various strategies have been 
employed to polymerize thiophene and derivatives photochemically. 

The present work describes the use of electron transfer reactions in photoinitiated 
polymerization systems. Electron transfer reactions were succeeded using highly 
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conjugated thiophene derivatives together with onium salts and phenacyl salts 
together with a benzylsilane compound. 

The first part of the thesis states the use of highly conjugated thiophene derivatives 
for electron transfer photosensitization of onium salts (Figure 1). For this purpose, 
three different thiophene derivatives, namely 3,5-diphenyldithieno[3,2-b:2,3-
d]thiophene (DDT), 4,7-di(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-
yl)benzo[1,2,5]thiadiazole (DTDT) and 5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-
5-yl)-2,3-di(thiophen-2-yl) quinoxaline (DTDQ) were used as photosensitizers. The 
excited state emission characteristics of the compounds were investigated by means 
of fluorescence and phosphorescence spectroscopic measurements. The cationic 
polymerization of typical monomers, such as cyclohexene oxide (CHO), n-butyl 
vinyl ether (BVE), styrene (S) and N-vinylcarbazole (NVC) was initiated at room 
temperature at appropriate wavelengths in the presence of diphenyliodonium 
hexafluorophosphate (Ph2I+PF6

-). A feasible mechanism, as correlated with optical 
absorption and fluorescence spectroscopic measurements, free energy changes (ΔG) 
and proton scavenging studies, involves formation of exciplex by the absorption of 
light in the first step. Subsequent electron transfer from excited sensitizers to 
iodonium ion yields radical cations of the thiophene derivatives. The resulting strong 
Brønsted acid derived from this process catalyzes the cationic polymerization of 
variety of monomers. 

 

Figure 1 : Photosensitized cationic polymerization using highly 
conjugated thiopehene derivatives. 

In the second part of the thesis, electron transfer photosensitization of onium salts by 
using DDT was further extended to the preparation of a conjugated thiophene 
polymer (Figure 2). By virtue of the thiophene type radical cation formation and the 
crucial role of these species in the electropolymerization, the electron transfer 
reactions between photoexcited thiophene derivatives and onium salts have the 
potential of forming polymeric molecules. Thus, step-growth polymerization of DDT 
was achieved by coupling reactions of radical cations accompanied by proton 
release. The polymerization was accompanied with darkening of the solution and a 
new absorption band at 740-800 nm appeared indicating extended conjugation due to 
polymer formation. The obtained polymer was characterized by spectral methods (1H 
NMR and IR analysis), GPC and light scattering measurements. Thermal properties 
of PDDT was investigated by thermal gravimetric analysis (TGA). 
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Figure 2 : Photoinduced step-growth polymerization of DDT in the 
presence of Ph2I+PF6

−. 

Finally, electron transfer reactions were used in photoinitiated free radical 
polymerization. A new free radical photoinitiating systmem consisting of phenacyl 
salts and a benzylsilane compound has been designed (Figure 3). For this purpose, N-
phenacyl-N,N-dimethylanilinium hexafluoroantimonate (PDA+SbF6

−), N-
phenacylpyridinium hexafluoroantimonate (PPy+SbF6

−) and (4-
methoxybenzyl)trimethylsilane (MBTMS) were synthesized, and characterized by 1H 
NMR and UV spectroscopy. Methyl methacrylate (MMA), butyl acrylate (BA) and 
styrene (S) were efficiently polymerized by using this initiating system. A 
mechanism involving formation of an aminium salt and subsequent electron transfer 
from aminium salt to MBTMS is proposed. 

 

Figure 3 :  Photoinitiated free radical polymerization by using phenacyl 
salts in the presence of a benzylsilane compound. 
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ELEKTRON TRANSFER REAKSİYONLARI İLE BAŞLATILMIŞ 
FOTOPOLİMERİZASYONLAR 

ÖZET 

Son zamanlarda, fotobaşlatılmış polimerizasyon pek çok ekonomik ve ekolojik 
beklentiyi biraraya getirdiği için hayli ilgi çekmektedir. Fotobaşlatılmış 
polimerizasyon, sahip olduğu mükemmel avantajları dolayısı ile kaplama, mürekkep, 
baskı levhaları, optik frekans yönlendiricileri ve mikroelektronik gibi sayısız 
uygulamaların temelini oluşturmaktadır. Oda sıcaklığında yüksek polimerizasyon 
hızı, düşük enerji tüketimi, çözücüsüz ortamada polimerizasyon, uygulanacak yüzey 
alanı ve uygulama süresinin kontrol edilebilmesi gibi avantajlar sağlamaktadır. 
Fotopolimerizasyon radikalik, katyonik ve anyonik olarak başlatılabilse de çok 
sayıda fotobaşlatıcının ve yüksek reaktivitedeki monomerlerin bulunulabilirliği 
açısından serbest radikal ve katyonik sistemlere daha fazla ilgi duyulmaktadır. 
Genellikle endüstriyel uygulamalarda serbest radikal fotopolimerizasyon sistemleri 
kullanılmaktadır. Ancak, bu tip polimerizasyonların oksijenin yavaşlatma etkisi ve 
son ürünün özelliklerini etkileyebilen kürleşme sonrasındaki kısıtlamalar gibi bazı 
dezavantajları bulunmaktadır. Bu nedenle, fotobaşlatılmış katyonik polimerizasyon 
özellikle bu dezavantajların giderilmesi açısından gelecekte daha fazla yer alacağı 
düşünülmektedir. Bilinen pek çok katyonik fotobaşlatıcı mevcuttur ve fotokimyaları 
detaylı bir şekilde incelenmiştir. Bunlar arasında, onyum tipi fotobaşlatıcılar, ısısal 
kararlılıkları, katyonik olarak polimerleşebilen pek çok monomer içindeki 
çözünürlükleri ve fotoliz sonucunda reaktif türler oluşturma kabiliyetleri bakımından 
önemli bir role sahiptirler. Brønsted asitlerinin yanı sıra radikal türlerinin de 
meydana getiriliyor olmasından dolayı bu tuzlar serbest radikal fotobaşlatıcısı olarak 
ve eşzamanlı serbest radikal ve katyonik polimerizasyonlarında da 
kullanılabilmektedir. Fotobaşlatılmış katyonik polimerizasyonların spektral 
hassasiyetinin, uygun serbest radikal kaynakları ve aromatik uyarıcılar vasıtasıyla 
yakın UV ve görünür bölgeye genişletilmesi mümkündür.  

Konjuge polimerler ışık yayan diyotlar, piller, elektrokromik aletler, sensörler, 
elektromanyetik koruma ve korozyonu önleme gibi çeşitli uygulamalarda 
kullanıldıkları için önem arzetmektedir. Politiyofenler, karakteristik elektronik ve 
optik özelliklerinden dolayı konjuge polimerler arasında en yaygın çalışılan 
türlerinden biridir. Genellikle, politiyofenler farklı morfolojilerde filmlerin 
oluşmasını ve bunun sonucunda kısmen farklı fiziksel ve kimyasal özelliklerin 
oluşmasını sağlayan kimyasal ve elektrokimyasal polimerizasyon prosesleri ile elde 
edilmektedir. Fotopolimerizasyon bu malzemelerin ince film halinde üretilebilmesi 
açısından kullanışlı bir aday olarak görülmektedir ve tiyofen ve türevlerinin 
fotokimyasal olarak polimerleştirilmesinde çeşitli stratejiler uygulanmıştır. 

Bu çalışma elektron transfer reaksiyonlarının fotobaşlatılmış polimerizasyon 
sistemlerindeki kullanımını ele almaktadır. Elektron transfer reaksiyonları yüksek 
konjugasyona sahip tiyofen türevleri ile onyum tuzları varlığında ve fenaçil tuzları ile 
bir benzilsilan bileşiği varlığında gerçekleştirilmiştir. 
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Tezin ilk kısmı onyum tuzlarının elektron transfer fotouyarılmasında yüksek 
konjugasyona sahip tiyofen türevlerinin kullanımını anlatmaktadır (Şekil 1). Bu 
amaçla, üç farklı tiyofen türevi, 3,5-difenilditiyeno[3,2-b:2,3-d]tiyofen (DDT), 4,7-
di(2,3-dihidro-tiyeno[3,4-b][1,4]dioksin-5-il)benzo[1,2,5]tiyadiazol (DTDT) ve 5,8-
bis(2,3-dihidrotiyeno[3,4-b][1,4]dioksin-5-il)-2,3-di(tiyofen-2-il) kinoksalin (DTDQ) 
fotouyarıcı olarak kullanılmıştır. Bu bileşiklerin uyarulmış hal yayınım özellikleri 
floresans ve fosforesans spektroskopik ölçümleri vasıtasıyla incelenmiştir.  
Siklohekzen oksit (CHO), n-bütil vinil eter (BVE), stiren (S) ve N-vinilkarbazol 
(NVC) monomerlerinin katyonik polimerizasyonu oda sıcaklığında uygun 
dalgaboylarında difeniliyodonyum hekzaflorofosfat (Ph2I+PF6

-) varlığında 
başlatılmıştır. Optik absorpsiyon ve floresans spektroskopik ölçümleri, serbest enerji 
değişimleri (ΔG) ve proton yakalama çalışmaları ile ilişkendirilen olası mekanizma, 
ilk aşamada ışığın absorplanmasıyla ekzipleks oluşumunu içermektedir. Sonraki 
adımda uyarılmış moleküllerden iyodonyum iyonuna elektron transfer edilmesiyle 
tiyofen türevlerinin radikal katyonları oluşmaktadır. Bu proses sonucunda meydana 
gelen güçlü Brønsted asidi çeşitli monomerlerin katyonik polimerizasyonunu katalize 
etmektedir. 

 

Şekil 1 : Yüksek konjugasyona sahip tiyofen türevleri kullanılarak 
gerçekleştirilen fotouyarılmış katyonik polimerizasyon. 

Tezin ikinci kısmında, onyum tuzlarının DDT varlığındaki elektron transfer 
fotouyarılması daha da genişletilerek bir konjuge tiyofen polimeri sentezlenmeye 
çalışılmıştır (Şekil 2). Tiyofen tipi radikal katyon oluşumu ve bu türlerin 
elektropolimerizasyondaki önemi nedeniyle, fotouyarılmış tiyofen türevleri ve 
onyum tuzları arasında meydana gelen elektron transfer reaksiyonları polimerik 
molekülleri meydana getirmede potansiyel teşkil etmektedir. Bu nedenle, radikal 
katyonlarının proton vererek birleşmesi reaksiyonları sonucunda DDT’nin basamak 
polimerizasyonu gerçekleştirilmiştir. Polimerizasyonun gerçekleştiği çözeltinin 
koyulaşması ile gözlenmiş ve 740-800 nm arasında genişletilmiş konjugasyondan 
dolayı yeni bir absorpsiyon bandının ortaya çıkması polimerin oluşumunu 
doğrulamıştır. Elde edilen polimer, spektral yöntemlerle (1H NMR ve IR analizleri), 
GPC ve ışık saçınım ölçümleriyle karakterize edilmiştir. PDDT’nin ısısal özellikleri 
termal gravimetik analizler (TGA) vasıtasıyla incelenmiştir. 
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Şekil 2 : DDT’nin Ph2I+PF6
− varlığında fotobaşlatılmış basamak polimerizasyonu. 

Son olarak, elektron transfer reaksiyonları fotobaşlatılmış serbest radikal 
polimerizasyonunda kullanılmıştır. Fenaçil tuzlarını ve bir benzilsilan bileşiğini 
içeren yeni bir serbest radikal fotobaşlatıcı sistemi tasarlanmıştır (Şekil 3). Bu 
amaçla, N-fenaçil-N,N-dimetilanilinyum hekzafloroantimonat (PDA+SbF6

−), N-
fenaçilpiridinyum hekzafloroantimonat (PPy+SbF6

−) ve (4-
metoksibenzil)trimetilsilan (MBTMS) bileşikleri sentezlenerek, 1H NMR ve UV 
spektroskopisi ile karakterize edilmiştir. Metil metakrilat (MMA), bütil akrilat (BA) 
ve stiren (S) monomerleri bu başlatıcı sistemi kullanılarak etkili bir şekilde 
polimerleştirilmiştir. Bir aminyum tuzu oluşumunu ve sonrasında aminyum tuzundan 
MBTMS bileşiğine elektron transferini içeren bir mekanizma önerilmiştir. 

 

Şekil 3 : Bir  benzilsilan  bileşiği   varlığında  fenaçil  tuzları   kullanılarak   
gerçekleştirilen fotobaşlatılmış serbest radikal polimerizasyonu. 
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1. INTRODUCTION 

Photoinitiated polymerization is a powerful industrial process widely used in various 

applications including printing inks, adhesives, surface coating, optical waveguides, 

microelectronics and printing plates [1-3]. The advantages of photoinitiated 

polymerization over conventional thermal polymerization lie in the high rate of 

polymerization at ambient temperatures, lower energy cost, and solvent-free 

formulation, thus elimination of air and water pollution [4, 5]. Much effort has been 

devoted to free radical systems mainly due to the availability of a wide range of 

photoinitiators and the great reactivity of acrylate-based monomers [1, 6]. Despite the 

most popular industrial applications are based on the photoinitiated free radical 

photopolymerization there are some drawbacks associated with this type 

polymerization such as the inhibition effect of oxygen and post-cure limitations 

which may affect the properties of the final product. Photoinitiated cationic 

polymerization has now found many applications due to the availability of highly 

photosensitive and efficient cationic photoinitiators, which can be designed to be 

responsive to various UV wavelengths. Moreover, UV initiated cationic 

polymerization holds considerable promises in the future, particularly as a means of 

overcoming volatile emission, toxicity and molecular oxygen inhibition limitations 

[7]. 

Many cationic photoinitiators are known and their photochemistry has been studied 

in detail. Among them, the onium-type photoinitiators such as iodonium, sulfonium 

and alkoxypyridinium salts play an important role due to their thermal stability, 

solubility in most of the cationically polymerizable monomers, and efficiency in 

generating reactive species upon photolysis [8, 9].  Moreover, they possess high 

photolysis quantum yields and are efficient photoinitiators of cationic polymerization 

when irradiation is carried out using light in the short- to mid-wavelength UV 

regions (230-300 nm). 

A common strategy employed for improving the performance of onium salts 

particularly at long wavelengths, is based on the activation of these photoinitiators, 
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by light sensitive additives, which do not directly initiate the polymerization. One 

can adapt the initiating system to different wavelength of irradiation by three ways; 

(i) oxidation of free radicals by onium salts (also called as free radical promoted 

cationic polymerization) [10-12], (ii) electron transfer between photoexcited 

sensitizer and onium salt [13-15], and (iii) electron transfer in photoexcited charge 

transfer complexes of certain onium salts [16-18]. 

The free radical oxidation process is limited to the photoinitiators capable of forming 

electron-donating radicals. For instance, except structurally specially designed, long 

wavelength absorbing aclyphosphine oxide photoinitiators do not generate oxidizable 

radicals. Charge transfer complex activation is achieved only with alkoxy pyridinium 

type onium salts. Thus, electron-transfer photosensitization by using electron-rich 

polynuclear aromatic compounds such as anthracene, perylene, pyrene and 

phenothiazine appears to be an alternative efficient pathway to shift the absorption 

sensitivity to longer wavelengths [19]. Despite the many potential applications, these 

photosensitizers also have several serious disadvantages that limit their use. For 

example, they are generally expensive, toxic, and poorly soluble in most reactive 

monomers and polymer systems. Moreover, they are easily lost from thin film 

coatings during polymerization and have high vapor pressure at room temperatures. 

As a result, there is a continuing need for long-wavelength-active photosensitizers in 

order to overcome these limitations. 

Conjugated polymers, which consist alternating single and double bonds in their 

polymer backbone, have attracted great interest due to their wide range of potential 

applications including light emitting diodes, batteries, electrochromic devices, 

sensors, electromagnetic shielding, and corrosion inhibition [20]. They are described 

as extended conjugated systems containing delocalized π-electrons arising from their 

alternating structure of single and double bonds along polymer chains. Among these 

polymers, polythiophenes have a special place due to their electronic and optical 

properties and they are usually obtained by chemical or electrochemical 

polymerization processes. Photopolymerization can be referred as a potential 

candidate for the preparation of these materials in thin film forms. Several strategies 

have been employed to polymerize thiophene and derivatives photochemically [21-

25]. 
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In this thesis, three different strategies were described for the use of electron transfer 

reactions in photoinitiated polymerization systems. Highly conjugated thiophene 

derivatives were used for electron transfer photosensitization of onium salts in order 

to overcome the progressing need in this area [26, 27]. This strategy was also 

extended to the synthesis of conjugated thiophene polymers [28]. Finally, a two 

component free radical photoinitiating system by combination of cleavage and 

electron transfer reactions was described.  
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2. THEORETICAL PART 

2.1 Absorption of Light and Photophysical Processes 

2.1.1 Light 

Humankind has had a long and complicated journey towards understanding the true 

nature of light. The ancients stressed the importance of light for life. Pythagoras, 

Empedocles (490–430 BC) and Plato (427–347 BC) were among the Greek 

philosophers who believed that vision is initiated in the eyes in the process of 

reaching out to ‘touch’ or ‘feel’something and, in return, one can see. As a follower 

of Plato, Euclid of Alexandria still harboured the notion that light originated in the 

eyes but added that light travels in straight lines called rays. He provided a 

geometrical basis for the phenomena of sight. Aristotle (384–322 BC) did not believe 

in his teacher, Plato’s tactile theory. He argued that the process of seeing occurs 

when particles are emitted from the object. For him, the eyes are passive rather than 

actively linked with sunlight, as proposed by Plato. Whilst the Aristotelian account 

of light is more convincing than Plato’s, it fails to explain how a particle can enter 

the eyes. An important breakthrough in our understanding of the nature of light 

occurred through the work of the Arab mathematician and physicist, Ibn Al-Haytham 

(AD 965–1039). He faulted the tactile theory of light on the grounds that an 

extremely bright object can injure the eyes and said that light comes to the surface of 

the eye from the light of the visible object. A notable feature of Al-Haytham’s 

approach is the use of the scientific method, unlike the philosophical approach of the 

ancient Greeks [29]. 

The classical theories of light began to emerge in the late 17th century with the work 

of the English scientist Isaac Newton (1624–1727). Newton hypothesized that light 

consisted of vast quantities of invisible particles thrown off from a luminous source. 

Ten years later Christian Huygens, a Dutch physicist, formulated the first clear 

statement of the wave theory—that light consisted of waves emanating from a 

luminous surface. But because Huygens could not explain all observable behaviors 

5 
 



of light with his theory, and because Newton’s authority as a scientist was so great, 

Newton’s corpuscular theory of light was widely accepted. Unfortunately, this 

retarded the development of the wave theory for the next one hundred years. 

Proponents of both the particle and wave theories believed that light required a 

medium through which it would travel, and since light travels across space in which 

there is no matter, then the whole of space must be filled with this medium, called 

“ether.” Huygens conceived of the ether as an elastic solid through which the waves 

were transmitted from the luminous source. We now know that “ether” is not 

necessary: light requires no medium through which to travel. Both Huygens and 

Newton were partially correct about the nature of light—light exhibits the 

characteristics of waves when traveling, and the characteristics of particles when 

interacting with a surface—and the wave-particle duality of light is now commonly 

accepted [29]. 

According to wave model, light behaves as a wave. Light waves are also called 

electromagnetic waves because they are made up of both electric (E) and magnetic 

(B) fields. Electromagnetic fields oscillate perpendicular to the direction of wave 

travel, and perpendicular to each other (Figure 2.1) [30]. Light waves are known as 

transverse waves as they oscillate in the direction traverse to the direction of wave 

travel. 

 

Figure 2.1 : Electromagnetic wave. 

Waves have two important characteristics, wavelength and frequency. Wavelength is 

described as the distance between corresponding points of two consecutive waves or 

the distance from crest to crest, and it is designated by Greek letter lambda (λ). The 
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fequency (ν) of electromagnetic wave is the number of waves passing from a given 

point in one second. Since all wavelengths travel at the speed of light, the 

relationship among speed c, frequency (ν), and wavelength (λ), can be stated as 

follows: 

c = λ⋅ν (2.1)

According to particle model, light is composed of photons, very small packets of 

energy. The frequency of the wave is proportional to the particle's energy. Because 

photons are emitted and absorbed by charged particles, they act as transporters 

of energy [30]. The energy per photon can be calculated from the Planck–Einstein 

equation: 

E = h⋅ν (2.2)

where E is the energy, h is Planck's constant, and ν is frequency. 

2.1.2 Electromagnetic spectrum 

The electromagnetic spectrum is a continuum of all electromagnetic waves arranged 

according to frequency and wavelength. The sun, earth, and other bodies radiate 

electromagnetic energy of varying wavelengths. Electromagnetic energy passes 

through space at the speed of light in the form of sinusoidal waves. 

Light is a particular type of electromagnetic radiation that can be seen and sensed by 

the human eye, but this energy exists at a wide range of wavelengths [31]. The 

micron is the basic unit for measuring the wavelength of electomagnetic waves. The 

spectrum of waves is divided into sections based on wavelength (Figure 2.2). The 

shortest waves are gamma rays, which have wavelengths of 10−6 microns or less. The 

longest waves are radio waves, which have wavelengths of many kilometers. The 

range of visible consists of the narrow portion of the spectrum, from 0.4 microns 

(blue) to 0.7 microns (red). 

Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than 

that of visible light, but longer than x-rays, in the range 10 nm to 400 nm. It is so 

named because the spectrum consists of electromagnetic waves with frequencies 

higher than those that humans identify as the colour violet. The UV spectrum is 
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divided into Vacuum UV (40-190 nm), Far UV (190-220 nm), UVC (220-290 nm), 

UVB (290-320), and UVA (320-400 nm). The sun is the primary natural source of 

UV radiation. 

 

Figure 2.2 : Electromagnetic spectrum. 

2.1.3 The Beer-Lambert law 

Experimentally, the absorption of light is recorded as a function of the wavelength or 

the wave number ν = λ−1
 by measuring the change in the intensity of a light beam 

passing through a sample of unit path length (1 cm) [32].  

For a homogeneous, isotropic medium containing an absorbing compound at 

concentration c (mol⋅L−1), the light absorption is described by equation (2.3), the 

Beer-Lambert law: 

A = log (I0/I) = ε⋅c⋅l (2.3) 

where I0 and I are the light intensities of the beams entering and leaving the 

absorbing medium, respectively. ε is the molar (decadic) absorption coefficient 

(commonly expressed in L⋅mol−1⋅cm−1), c is the concentration (in mol L−1) of 

absorbing species and l is the absorption path length (thickness of the absorbing 

medium) (in cm) [33]. 
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For a given substance, the molar absorption coefficient varies with the wavelength of 

the light used. A plot of ε (or log ε ) against wavelength (or wavenumber) is called 

the absorption spectrum of the substance. The principal use of absorption spectra 

from the photochemist’s point of view is that they provide information as to what 

wavelength (λmax) a compound has at its maximum value of the molar absorption 

coefficient (εmax). Thus, irradiation of the compound at λmax allows optimum 

photoexcitation of the compound to be carried out [34]. 

2.1.4 The Molecular orbital model 

Changes in the electronic structure of a molecule can be visualized with the aid of the 

molecular orbital (MO) model [32, 35]. Molecular orbitals are thought to be formed 

by the linear combination of the valence shell orbitals of the atoms linked together in 

the molecule. The combination of two single orbitals of two adjacent atoms results in 

two molecular orbitals, one of lower and the other of higher energy than before 

combination. The low-energy orbital, denoted as the bonding orbital, is occupied by 

a pair of electrons of antiparallel spin. The high energy molecular orbital is called an 

antibonding orbital. It is unoccupied in the ground state, but may be occupied by an 

electron upon electronic excitation of the molecule. 

There are different kinds of molecular orbitals: bonding σ and π orbitals, nonbonding 

n orbitals, and antibonding σ* and π* orbitals. σ and σ* orbitals are completely 

symmetrical about the internuclear axis, whereas π and π* orbitals are antisymmetric 

about a plane including the internuclear axis. n orbitals, which are located on 

heteroatoms such as oxygen, nitrogen, or phosphorus, are nonbonding and are of 

almost the same energy as in the case of the isolated atom. A pair of electrons 

occupying an n orbital is regarded as a lone pair on the atom. 

The simple MO model is based on several hypotheses. For example, σ and π orbitals 

are assumed not to interact. Moreover, molecules are described by localized orbitals 

each covering two nuclei only. Delocalized orbitals involving more than two nuclei 

are thought to exist only in the case of π-bonding in conjugated systems. When a 

molecule in its ground state absorbs a photon, an electron occupying a σ, π or n 

orbital is promoted to a higher-energy σ* or π* orbital. In principle, the following 

transitions are possible: σ→σ*, π→π*, n→π*, and n→σ* [32]. As can be seen in 

Figure 2.3, the orbital energy increases in the series of σ < π < n < π* < σ*. 
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Figure 2.3 : Molecular orbitals and electronic transitions induced by the 
absorption of a photon. 

According to the differences in the orbital energies, the electron transitions indicated 

in Figure 2.3 correspond to light absorption in different wavelength regions. This is 

illustrated in Table 2.1. 

Therefore, under conveniently available conditions (λ > 200 nm), photon absorption 

initiates transitions of n or π electrons rather than those of σ electrons. 

Table 2.1 :  The correspondence of electron transition and optical absorption. 

Electron transition Absorption region  
(nm) 

Extinction coefficient 
(L⋅mol−1⋅cm−1) 

σ→σ* 100-200 103 
n→σ* 150-250 102-103 
π→π* - 102-104 

Isolated π-bonds 180-250 - 
Conjugated π-bonds 220-IR - 

n→π* - 1-400 
Isolated groups 220-320 - 

Conjugated segments 250-IR - 

Molecular orbitals can be classified as occupied (doubly), singly occupied, and 

unoccupied [32]. The acronyms HOMO and LUMO denote the frontier orbitals, i.e. 

the Highest Occupied and the Lowest Unoccupied Molecular Orbital, respectively. 

SOMO denotes the Single Occupied Molecular Orbital (see Fig. 2.4). 
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Figure 2.4 : Classification of molecular orbitals with respect to electron 
occupancy. 

2.1.5 The Jablonski diagram 

The Jablonski diagram (Figure 2.5) is used for visualizing the possible photophysical 

processes for an excited molecule in solution: photon absorption, internal conversion, 

fluorescence, intersystem crossing, phosphorescence, delayed fluorescence and 

triplet–triplet transitions [33]. The singlet electronic states are denoted S0 

(fundamental electronic state), S1, S2, . . . and the triplet states, T1, T2, . . . . 

Vibrational levels are associated with each electronic state. It is important to note 

that absorption is very fast (≈ 10−15 s) with respect to all other processes. 

The vertical arrows corresponding to absorption start from the 0 (lowest) vibrational 

energy level of S0 because the majority of molecules are in this level at room 

temperature. Absorption of a photon can bring a molecule to one of the vibrational 

levels of S1; S2; . . .  

2.1.5.1 Internal conversion (IC) 

Internal conversion (IC) is a non-radiative transition between two electronic states of 

the same spin multiplicity. In solution, this process is followed by a vibrational 

relaxation towards the lowest vibrational level of the final electronic state. The 

excess vibrational energy can be indeed transferred to the solvent during collisions of 

the excited molecule with the surrounding solvent molecules. 

When a molecule is excited to an energy level higher than the lowest vibrational 

level of the first electronic state, vibrational relaxation (and internal conversion if the  
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singlet excited state is higher than S1) leads the excited molecule towards the 0 

vibrational level of the S1 singlet state with a time-scale of 10−13–10−11 s.  

 

Figure 2.5 : The Jablonski diagram. 

From S1, internal conversion to S0 is possible but is less efficient than conversion 

from S2 to S1, because of the much larger energy gap between S1 and S0. Therefore, 

internal conversion from S1 to S0 can compete with emission of photons 

(fluorescence) and intersystem crossing to the triplet state from which emission of 

photons (phosphorescence) can possibly be observed. 

2.1.5.2 Fluorescence 

Emission of photons accompanying the S1→S0 relaxation is called fluorescence. It 

should be emphasized that, apart from a few exceptions, fluorescence emission 

occurs from S1 and therefore its characteristics (except polarization) do not depend 

on the excitation wavelength (provided of course that only one species exists in the 

ground state). 

The 0–0 transition is usually the same for absorption and fluorescence. However, the 

fluorescence spectrum is located at higher wavelengths (lower energy) than the 

absorption spectrum because of the energy loss in the excited state due to vibrational 

relaxation (Figure 2.5). According to the Stokes Rule (an empirical observation pre 

dating the Jablonski diagram), the wavelength of a fluorescence emission should 

always be higher than that of absorption. However, in most cases, the absorption 

12 
 



spectrum partly overlaps the fluorescence spectrum, i.e. a fraction of light is emitted 

at shorter wavelengths than the absorbed light. Such an observation seems to be, at 

first sight, in contradiction to the principle of energy conservation. 

However, such an ‘energy defect’ is compensated for (as stated by Einstein for the 

first time) by the fact that at room temperature, a small fraction of molecules is in a 

vibrational level higher than level 0 in the ground state as well as in the excited state. 

At low temperature, this departure from the Stokes Law should disappear. In general, 

the differences between the vibrational levels are similar in the ground and excited 

states, so that the fluorescence spectrum often resembles the first absorption band 

(‘mirror image’ rule). The gap (expressed in wavenumbers) between the maximum 

of the first absorption band and the maximum of fluorescence is called the Stokes 

shift. 

It should be noted that emission of a photon is as fast as absorption of a photon (≈ 

10−15 s). However, excited molecules stay in the S1 state for a certain time (a few tens 

of picoseconds to a few hundreds of nanoseconds, depending on the type of molecule 

and the medium) before emitting a photon or undergoing other deexcitation 

processes (internal conversion, intersystem crossing). Thus, after excitation of a 

population of molecules by a very short pulse of light, the fluorescence intensity 

decreases exponentially with a characteristic time, reflecting the average lifetime of 

the molecules in the S1 excited state. Such an intensity decay is formally comparable 

with a radioactive decay that is also exponential, with a characteristic time, called the 

radioactive period, reflecting the average lifetime of a radioelement before 

disintegration. 

The emission of fluorescence photons just described is a spontaneous process. Under 

certain conditions, stimulated emission can occur (e.g. dye lasers). 

2.1.5.3 Intersystem crossing (ISC) 

Intersystem crossing is a non-radiative transition between two isoenergetic 

vibrational levels belonging to electronic states of different multiplicities. For 

example, an excited molecule in the 0 vibrational level of the S1 state can move to 

the isoenergetic vibrational level of the Tn triplet state; then vibrational relaxation 

brings it into the lowest vibrational level of T1. Intersystem crossing may be fast  
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enough (10−7–10−9 s) to compete with other pathways of de-excitation from S1 

(fluorescence and internal conversion S1→S0). 

Crossing between states of different multiplicity is in principle forbidden, but spin–

orbit coupling (i.e. coupling between the orbital magnetic moment and the spin 

magnetic moment) can be large enough to make it possible. The probability of 

intersystem crossing depends on the singlet and triplet states involved. If the 

transition S0→S1 is of n→π* type for instance, intersystem crossing is often efficient. 

It should also be noted that the presence of heavy atoms (i.e. whose atomic number is 

large, for example Br, Pb) increases spin–orbit coupling and thus favors intersystem 

crossing. 

2.1.5.4 Phosphorescence 

Because internal conversion and vibrational relaxation are very fast, 

phosphorescence corresponds to a transition from the thermally equilibrated lowest 

triplet state T1 into the ground state S0 and the phosphorescence spectrum is 

approximately a mirror image of the S0→T, absorption spectrum, which is spin 

forbidden and therefore difficult to observe because of the low intensity. Generally, 

the T1 state is energetically below the S1 state, and phosphorescence occurs at longer 

wavelengths than fluorescence. 

In solution at room temperature, non-radiative de-excitation from the triplet state T1, 

is predominant over radiative de-excitation called phosphorescence. In fact, the 

transition T1→S0 is forbidden (but it can be observed because of spin–orbit 

coupling), and the radiative rate constant is thus very low. During such a slow 

process, the numerous collisions with solvent molecules favor intersystem crossing 

and vibrational relaxation in S0. 

On the contrary, at low temperatures and/or in a rigid medium, phosphorescence can 

be observed. The lifetime of the triplet state may, under these conditions, be long 

enough to observe phosphorescence on a time-scale up to seconds, even minutes or 

more. 

The phosphorescence spectrum is located at wavelengths higher than the 

fluorescence spectrum because the energy of the lowest vibrational level of the triplet 

state T1 is lower than that of the singlet state S1. 
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2.1.5.5 Delayed fluorescence 

Thermally activated delayed fluorescence  

Reverse intersystem crossing T1→S1 can occur when the energy difference between 

S1 and T1 is small and when the lifetime of T1 is long enough. This results in 

emission with the same spectral distribution as normal fluorescence but with a much 

longer decay time constant because the molecules stay in the triplet state before 

emitting from S1. This fluorescence emission is thermally activated; consequently, its 

efficiency increases with increasing tempera-ture. It is also called delayed 

fluorescence of E-type because it was observed for the first time with eosin. It does 

not normally occur in aromatic hydrocarbons because of the relatively large 

difference in energy between S1 and T1. In contrast, delayed fluorescence is very 

efficient in fullerenes. 

Triplet–triplet annihilation  

In concentrated solutions, a collision between two molecules in the T1 state can 

provide enough energy to allow one of them to return to the S1 state. Such a triplet–

triplet annihilation thus leads to a delayed fluorescence emission (also called delayed 

fluorescence of P-type because it was observed for the first time with pyrene). The 

decay time constant of the delayed fluorescence process is half the lifetime of the 

triplet state in dilute solution, and the intensity has a characteristic quadratic 

dependence with excitation light intensity. 

2.1.5.6 Triplet-triplet transitions 

Once a molecule is excited and reaches triplet state T1, it can absorb another photon 

at a different wavelength because triplet–triplet transitions are spin allowed. These 

transitions can be observed provided that the population of molecules in the triplet 

state is large enough, which can be achieved by illumination with an intense pulse of 

light. 

2.1.6 Fluorescence quenching 

The intensity of fluorescence can be decreased by a wide variety of processes. Such 

decreases in intensity are called quenching [36]. Quenching can occur by different 

mechanisms. Collisional (dynamic) quenching occurs when the excited state 

fluorophore is deactivated upon contact with some other molecule in solution, which 
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is called the quencher. In this case, the fluorophore is returned to the ground state 

during a diffusive encounter with the quencher. The molecules are not chemically 

altered in the process. For collisional quenching, the decrease in intensity is 

described by the well-known Stern-Volmer equation [30, 36]: 

 
(2.4) 

In this expression K is the Stern-Volmer quenching constant, kq is the bimolecular 

quenching constant, τ0 is the unquenched lifetime, and [Q] is the quencher 

concentration. I0 and I are the steady-state fluorescence intensities in the absence and 

in the presence of quencher, respectively. Generally, the ratio I0/I is plotted against 

the quencher concentration (Stern-Volmer plot). If the variation is found to be linear, 

the slope gives the Stern-Volmer constant. Then, kq can be calculated if the excited 

state lifetime in the absence of quencher is known. 

A wide variety of molecules can act as collisional quenchers. Examples include 

oxygen, halogens, amines, and electron deficient molecules like acrylamide. The 

mechanism of quenching varies with fluorophore-quencher pair. Quenching by 

halogens and heavy atoms occurs due to spin-orbit coupling and intersystem crossing 

to the triplet state. 

Besides collisional quenching, fluorescence quenching can occur by several other 

processes. Fluorophores can form nonfluorescent complexes with quenchers. This 

process is referred as static quenching since it occurs in the ground state and does not 

rely on diffusion or molecular collisions. Quenching can also occur by a variety of 

trivial, i.e., nonmolecular mechanisms, such as attenuation of the incident light by the 

fluorophore itself or other absorbing species. 

2.2 Photopolymerization 

In recent years, photoinitiated polymerization has received revitalized interest as it 

congregates a wide range of economic and ecological anticipations. For more than 30 

years, photopolymerization has been the basis of numerous conventional applications 

in coatings, adhesives, inks, printing plates, optical waveguides, and microelectronics 

[1, 3, 37-39]. Some other less traditional but interesting applications, including 
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production of laser videodiscs, curing of acrylate dental fillings [40], and fabrication 

of 3D objects [41] are also available. Many studies involving various 

photopolymerization processes have been continuously conducted in biomaterials 

[42] for bones and tissue engineering, microchips, optical resins and recoding media, 

surface relief gratings, anisotropic materials, polymeric photo-optical control 

materials, clay and metal nanocomposites, photoresponsive polymers, liquid 

crystalline materials, interpenetrated networks, microlenses, multilayers, surface 

modification, block and graft copolymerization, two-photon polymerization, spatially 

controlled polymerizations, topochemical polymerization, solid-state polymerization, 

living/ controlled polymerization, interfacial polymerization, mechanistically 

different concurrent polymerizations, pulsed laser polymerization, polymerizations in 

microheterogenous media, and so forth. Interest has also grown in identifying the 

reactive species involved in the polymerization process by laser flash photolysis, 

time-resolved fluorescence and phosphorescence, and electron spin resonance 

spectroscopy as well as monitoring the polymerization itself by different methods 

including real time IR spectroscopy, in-line NIR reflection spectroscopy, differential 

scanning calorimetry, in situ dielectric analysis, and recently developed optical 

pyrometry [5]. 

Photopolymerization is typically a process that transforms a monomer into polymer 

by a chain reaction initiated by reactive species (free radicals or ions), which are 

generated from photosensitive compounds, namely photoinitiators and/or 

photosensitizers, by ultra violet-visible (UV-Vis) light irradiation [43]. The 

wavelength or range of wavelengths of the initiating source is determined by the 

reactive system including the monomer(s), the initiator(s), and any photosensitizers, 

pigments or dyes which may be present. An active center is produced when the 

initiator absorbs light and undergoes some type of decomposition, hydrogen 

abstraction, or electron transfer reaction. Upon generation of active centers, 

photopolymerizations propagate and terminate in the same manner as traditional (i.e. 

thermal) polymerizations. Although photopolymerization can be initiated radically, 

cationically and anionically, much effort has been devoted to free radical and 

cationic systems mainly due to the availability of a wide range of photoinitiators and 

the great reactivity of monomers. 
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2.2.1 Photoinitiated free radical polymerization 

Photoinitiated free radical polymerization is one of the most widely employed route 

in industrial applications because of its applicability to a wide range of formulations 

based on acrylates, unsaturated polyesters, and polyurethanes and the availability of 

photoinitiators having spectral sensitivity in the near-UV or visible range. 

 

 

(2.5a) 

 

 

(2.5b) 

 

 

(2.5c) 

 

 

 

 

(2.5d) 

It consists of four distinct steps:  

i) photoinitiation step involves absorption of light by a photosensitive compound or 

transfer of electronic excitation energy from a light absorbing sensitizer to the 

photosensitive compound. Homolytic bond rupture leads to the formation of a radical 

that reacts with one monomer unit.  

ii) propagation step involves repeated addition of monomer units to the chain radical 

produces the polymer backbone. 
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iii) chain transfer step involves termination of growing chains by hydrogen 

abstraction from various species (e.g., from solvent) and formation of new radicals 

capable of initiating other chain reactions. 

iv) termination step involves termination of chain radicals by disproportionation or 

recombination reactions. Termination can also occur by recombination or 

disproportionation with any other radical including primary radicals produced by the 

photoreaction. 

The role that light plays in photopolymerization is restricted to the very first step, 

namely the absorption and generation of initiating radicals. The reaction of these 

radicals with monomer, propagation, transfer and termination are purely thermal 

processes; they are not affected by light.  

In most cases of photoinduced polymerization, initiators are used to generate 

radicals. Photoinitiators are generally divided into two classes, Type I and Type II, 

according to the process by which initiating radicals are formed. 

2.2.1.1 Type I photoinitiators (unimolecular photoinitiator system) 

Photoinitiators termed unimolecular are so designated because the initiation system 

involves only one molecular species interacting with the light and producing free-

radical active centers. These substances undergo a homolytic bond cleavage upon 

absorption of light (reaction 2.6). The fragmentation that leads to the formation of 

radicals is, from the point of view of chemical kinetics, a unimolecular reaction 

(equation 2.7). 

 
(2.6)

 
(2.7)

The number of initiating radicals formed upon absorption of one photon is termed as 

quantum yield of radical formation (ΦR.) (equation 2.8).  
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(2.8) 

Theoretically, cleavage type photoinitiators should have a ΦR. value of two since two 

radicals are formed by the photochemical reaction. The values observed, however, 

are much lower because of various deactivation routes of the photoexcited initiator 

other than radical generation. These routes include physical deactivation such as 

fluorescence or non-radiative decay and energy transfer from the excited state to 

other, ground state molecules, a process referred to as quenching. The reactivity of 

photogenerated radicals with polymerizable monomers is also to be taken into 

consideration. In most initiating systems, only one in two radicals formed adds to 

monomer thus initiating polymerization. The other radical usually undergoes either 

combination or disproportionation. The initiation efficiency of photogenerated 

radicals (fP) can be calculated by the following formula:  

 

(2.9) 

The overall photoinitiation efficiency is expressed by the quantum yield of 

photoinitiation (ΦP) according to the following equation: 

 (2.10) 

Regarding the energy necessary, it has to be said that the excitation energy of the 

photoinitiator has to be higher than the dissociation energy of the bond to be 

ruptured. The bond dissociation energy, on the other hand, has to be high enough in 

order to ensure long term storage stability. 

Initiating radicals, formed by direct photofragmentation process (α or less common β 

cleavage) of Type I photoinitiators upon absorption of light, are capable of inducing 

polymerization. As illustrated in reaction 2.11, the photoinitiator forms an excited 

singlet state, which then undergoes rapid intersystem crossing to form a triplet state. 

In the triplet state, two  radicals (benzoyl and benzyl radicals) are generated by α-

cleavage fragmentation. The benzoyl radical is the major initiating species, while, in 

some cases, the benzyl radical may also contribute to the initiation. 
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(2.11)

The majority of Type  I photoinitiators are aromatic carbonyl compounds with 

appropriate substituents. Benzoin  ether derivatives,  benzil  ketals,  

hydroxylalkylphenones,  α-aminoketones  and  acylphosphine  oxides are the most 

efficient ones (Table 2.2) [44-47]. 

2.2.1.2 Type II photoinitiators (bimolecular photoinitiator systems) 

The excited states of certain compounds do not undergo Type I reactions because 

their excitation energy is not high enough for fragmentation (i.e., their excitation 

energy is lower than the bond dissociation energy). The excited molecule can, 

however, react with another component of the polymerization mixture (co-initiator 

(COI)) to produce initiating radicals (reaction 2.12). In this case, radical generation 

follows second-order kinetics (equation 2.13). 

 (2.12)

 

(2.13)

Typical Type II photoinitiators include aromatic carbonyls such as benzophenone and 

derivatives [48-51], thioxanthone and derivatives [52-56], benzyl [49], quinines [49], 

and organic dyes [57-62], whereas alcohols, ethers, amines, and thiols are used as 

hydrogen donors. Recently, thiol and carboxylic acid derivatives of thioxanthones 

have been reported to initiate photopolymerization without co-initiators as they 

contain functional groups with H-donating nature [63-65]. 
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Table 2.2 :  Structures of typical Type I radical photoinitiators. 

Photoinitiators Structure λmax (nm) 

 
Benzoin ethers 323 

Benzil ketals 365 

Acetophenones 
 340 

Benzyl oximes 335 

Acylphosphine Oxides 380 

Aminoalkyl phenones 
 320 

Alternative approach concerns the attachment of both chromophoric and hydrogen 

donating groups into polymer chains [66-80]. This way, the odor and toxicity 

problems observed with the conventional photoinitiators and amine hydrogen donors 

were overcome. A novel thioxanthone based photoinitiator have also been developed 

possesssing anthracene group that does not require an additional hydrogen donor for 

radical formation and initiates the polymerization of both acrylate and styrene 
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monomers in the presence of air [81]. In addition, TX-A possesses excellent optical 

absorption properties in the near-UV spectral region, ensuring efficient light 

absorption. Quite recently, thioxanthone-fluorene carboxylic acid (TX-FLCOOH) 

and its sodium salt (TX-FLCOONa) were synthesized as efficient photoinitiators in 

visible light [82]. In fact, photoinitiators with higher wavelength absorption 

characteristics are desired as they cost lower energy and are defined to be “green”. 

Typical photoinitiators for Type II system are listed in Table 2.3.  

Table 2.3 :  Structures of typical Type II photoinitiators. 

Photoinitiator Structure λmax (nm) 

Benzophenones 335 

Thioxanthones 390 

Coumarins 370 

Benzils 

 

340 

Camphorquinones 470 
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Radical generation by Type II initiating systems has two distinct pathways: 

Hydrogen abstraction from a suitable hydrogen donor 

Bimolecular hydrogen abstraction is limited to diaryl ketones [83]. The free radical 

generation process is the H-abstraction reaction of triplet photoinitiator from 

hydrogen donors (R-H) such as amines and alcohols. The radical derived from the 

donor can initiate the polymerization, whereas ketyl radicals stemming from 

aromatic carbonyl compound are usually not reactive toward vinyl monomers 

because of bulkiness, the delocalization of the unpaired electrons, or both. The 

overall process is depicted in the example of benzophenone in reaction 2.14.  

 

(2.14) 

 

Photoinduced electron transfer reactions and subsequent fragmentation  

Photoinduced electron transfer is a more general process, which is not limited to a 

certain class of compounds and is more important as an initiation reaction 

comprising the majority of bimolecular photoinitiating systems. The photoexcited 

compounds (sensitizer) can act as either an electron donor with the coinitiator as an 

electron acceptor or vice-versa. The radical ions obtained after the photoinduced 

electron transfer can generally undergo fragmentation to yield initiating radicals 

(2.15-2.17).   

 

(2.15) 

(2.16) 

(2.17) 

The electron transfer is thermodynamically allowed, if Gibbs Energy Change (ΔG) 

calculated by the Rehm-Weller equation (2.18) is negative [84].  
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   (2.18)

Electron transfer is often observed for aromatic ketone/amine pairs and always with 

dye/coinitiator systems. Dyes comprise a large fraction of visible light photoinitiators 

because their excited electronic states are more easily attained. Co-initiators, such as 

tertiary amines, iodonium salts, triazines, or hexaarylbisimidazoles, are required 

since dye photochemistry entails either a photo-reduction or photo-oxidation 

mechanism. Numerous dye families are available for selection of an appropriate 

visible initiation wavelength; examples of a thiazine dye (with an absorption peak 

around 675 nm), acridine dyes (with absorption peaks around 475nm), xanthene dyes 

(500–550 nm), fluorone dyes (450–550 nm), coumarin dyes (350–450 nm), cyanine 

dyes (400–750 nm), and carbazole dyes (400 nm) [85-88]. The oxidation or reduction 

of the dye is dependent on the co-initiator; for example, methylene blue can be 

photo-reduced by accepting an electron from an amine or photo-oxidized by 

transferring an electron to benzyltrimethyl stannane [86]. Either mechanism will 

result in the formation of a free-radical active center capable of initiating a growing 

polymer chain. 

2.2.1.3 Monomers 

Unsaturated monomers, which contain a carbon–carbon double bond (C=C), are used 

extensively in free radical photopolymerizations. The free-radical active center reacts 

with the monomer by opening the C=C bond and adding the molecule to the growing 

polymer chain. Most unsaturated monomers are able to undergo radical 

polymerization because free-radical species are neutral and do not require electron-

donating or electron-withdrawing substituents to delocalize the charge on the 

propagating center, as is the case with ionic polymerizations. Commercial 

consideration in formulation development is therefore given to the final properties of 

the polymer system, as well as the reactivity of the monomer. Acrylate and 

methacrylate monomers are by far most widely used in free-radical 

photopolymerization processes. These monomers have very high reaction rates, with 
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acrylates having an even faster reaction rate than their methacrylate counterparts 

[89]. This makes them especially amenable for high speed processing needed in the 

films and coatings industry.  

Multiacrylates increase the mechanical strength and solvent resistance of the ultimate 

polymer by forming cross-linked networks rather than linear polymer chains, 

whereas monoacrylates reduce the viscosity of the prepolymer mixture for ease of 

processing [2, 89]. One of the drawbacks of acrylate and methacrylate systems is 

their relatively large polymerization shrinkage. Shrinkage is caused by the formation 

of covalent bonds between monomer molecules. When a covalent bond is formed 

between two monomer molecules, the distance between them is approximately half 

as much as that between two molecules experiencing van der Waal’s forces in 

solution. This shrinkage causes stresses in the polymer parts, which can affect their 

ultimate performance, especially in applications such as stereo lithography, dentistry, 

and coatings. One way to overcome this disadvantage is to develop oligomeric 

acrylates. These oligomers contain 1 to 12 repeat units formed through step-growth 

polymerization; the ends are then capped with two or more (meth) acrylate functional 

groups. 

Diallyldiglycolcarbonate has been used for many years in optical components such as 

lenses [90]. Acrylamide is used in stereo lithography and to prepare holographic 

materials [91-93]. N-vinylpyrrolidinone is copolymerized with acrylates and 

methacrylates for cosmetic and biomedical applications [94]. Norbornene is 

copolymerized with thiols for optical fiber coatings [95]. 

2.2.2  Photoinitiated cationic polymerization 

Although the most popular industrial applications are based on the photo-initiated 

free radical polymerization, there are some drawbacks associated with this type of 

polymerization, such as the inhibition effect of oxygen and post-cure limitations, 

which may affect the properties of the final product. Several advantages of the 

photoinitiated cationic polymerization over the photoinitiated free radical 

polymerization have been reported [4, 96, 97]. Cationic photopolymerization 

overcomes volatile emissions, limitations due to molecular oxygen inhibition, 

toxicity, and problems associated to high viscosity. Furthermore, once initiated, 

cationically polymerizable monomers such as vinyl ethers and epoxides undergo 
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dark-polymerization in which they slowly polymerize without radiation [43]. 

There are two possible pathways for the initiation of photoinduced cationic 

polymerization; direct photolysis and indirect photolysis. 

2.2.2.1 Direct photolysis 

In direct photolysis, initiating species are generated upon irradiation of a 

photosensitive compound, namely photoinitiator (PI), at appropriate wavelengths. PI 

absorbs incident light and undergoes decomposition leading to production of 

initiating species. Active species, radical cation (R+.) and/or protonic acid react with 

cationic polymerizable monomers (M), and yield polymer (2.19-2.21). Most 

photoinitiators, used in cationic photopolymerization mainly absorbs light between 

225 to 350 nm. For practical applications, however, they are expected to absorb light 

at quite longer wavelengths. Several attempts have been described to overcome this 

problem. 

 

(2.19)

(2.20)

(2.21)

Photoinduced cationic polymerization can be initiated by a number of agents 

including Lewis and Brønsted acids, carbonium ions and onium salts. A key feature 

of cationic polymerization is the use of acids possessing anions of very low 

nucleophilicity, which do not terminate the polymerization process. Therefore, most 

cationic photoinitiators are based on salts of non-nucleophilic anions such as BF4
−, 

PF6
−, AsF6

− and SbF6
−. Generally, molecular weights and percentage conversion 

increase in the order of BF4
−< PF6

−< AsF6
−< SbF6

−. 

Cationic photoinitiators are generally divided into two classes, ionic and non-ionic 

photoinitiators. These classes consist of structurally related compounds which 

undergo similar photochemical reactions. 

1) Ionic cationic photoinitiators: Onium salts and organometallic salts 

2) Non-ionic cationic photoinitiators: Organosilanes, latent sulphonic acids and 

miscellaneous non-ionic compounds 
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Among these photoinitiators, onium salts will be discussed as the present thesis 

involves the use of them in the experimental section. 

Onium salts 

Onium salts are the most widely used cationic photoinitiators. They contain 

chromophopric groups as the light sensitive body with heteroatoms as cationic 

centers in the structure. As counterions, mostly inorganic metal complex anions are 

used [8]. Each of these componenets has specific function and can be varied 

independently depending on the purposed application. The cation of an onium salt is 

the light absorbing portion of the compound and its structure determines the 

wavelength sensitivity and quantum yield of the initiator. In addition, the character of 

the cation also has an influence on the excited state chemistry and whether or not the 

onium salt can undergo photosensitization with a photosensitizer. The character of 

the anion can be widely varied to tune the strength of the acid that is generated. It is 

known that there is a correlation between the Hammett acid strength (Ho) of various 

acids and their effective use in several reactions (Figure 2.6) [98, 99]. 

 

Figure 2.6 : Relationship between Hammett acid strength (Ho) and the 
catalysis of various types of reactions. 
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In recent years, onium salts with highly nucleophilic counterions such as Cl−, Br− and 

I− have also been used in conjuction with Lewis acids [100-103]. Different types of 

onium salts are shown in Figure 2.7. 

 

Figure 2.7 : Types of onium salt photoinitiators. 

So far, the most frequently used onium salts are diaryliodonium [9, 104], 

triarylsulfonium [105, 106], alkoxypyridinium [107, 108] and phenacyl [109-117] 

salts with non-nucleophillic counter ion that mainly absorb the light in the region 

between 225 and 350 nm for photoinitiated cationic polymerization. 

Diaryliodonium salts 

Diaryliodonium salts are the most frequently used halonium salts as they are easy to 

obtain and quite reactive [104, 118, 119]. The nucleophillic halogen counter-ion must 

be replaced by a non-nucleophillic anion in order to prevent the termination of 

cationic polymerization.  

As they generally have low spectral sensitivity, an electrophillic substitution reaction 

can be applied on the aromatic rings to posses electron donating species which can 

move absorption bands to lower energies. Alternatively, some special additives can 

be used to carry out polymerization at longer wavelengths. 

Photolysis of diaryliodonium salts take place either through homolytic or heterolytic 

cleavage of the halogen-aryl bond to form species which react with a hydrogen donor 

compound to yield a Brønsted acid that initiates polymerization (reactions 2.22-

2.24). 
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Notably, the electron donating substituents on the aromatic structures not only shifts 

absorption bands to longer wavelengths, but also favors photolysis of diaryliodonium 

salts to afford higher polymerization rates. 

 

(2.22) 

 

(2.23) 

 

(2.24) 

Triarylsulphonium salts 

Triaryl sulphonium salts (TAS) are generally produced by the method of Pitt: [120] a 

Friedel–Crafts condensation of aromatic hydrocarbons with sulphur dichloride, 

followed by chlorination and further condensation. Various alkylaryl sulphonium 

salts may be synthesized by an alkylation of mercaptobenzene [121]. 

The photolysis mechanism is similar with the diaryliodonium salts. When irradiated 

in appropriate wavelengths, TAS’s undergo either a homolytic or a heterolytic 

cleavage followed by a proton release after some additional steps which are 

summarized in (reactions 2.25-2.29). 
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(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

In some special cases, a Brønsted acid does not need to be the only initiating species. 

If heterolytical cleavage of one of the alkyl groups results with a stable carbocation, 

polymerization can possibly be initiated by this intermediate structure (2.30). 

 
(2.30)

Recently, novel sulfonium type initiators, which can initiate polymerization either 

upon irradiation or thermal treatment have been developed [122]. In addition, these 

photoinitiators are shown to be functional for both cationic and radical 

polymerization. This dual activity is particularly important in hybrid curing systems 

for coatings and adhesions. Dialkyl-4-hydroxyphenylsulphonium salts with 

absorption maxima in the middle UV region have also been reported [123-125]. 

Being poorly soluble in common monomers used in photocationic curing, these 

sulfonium compounds attract little attention. However, derivating the structure with 

possessing different alkyl groups, improved solubility characteristics can be 

achieved. 
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N-Alkoxy pyridinium salts 

N-Alkoxy Pyridinium salts are obtained with relatively high yields by a reaction of 

pyridine N-oxides with a triethyloxonium salt in methylene chloride or chloroform 

[107]. Quinolinium salts can also be prepared from the corresponding N-oxides [126]. 

In both cases, an anion exchange is not necessary since the triethyl oxonium salt is 

available with non-nucleophilic counter anions. The spectral response of these salts 

is in 260-310 nm range [107]. 

When irradiated in suitable wavelengths, these salts readily initiate polymerization of 

appropriate monomers according to the following mechanism as exemplified for the 

case of N-ethoxy–2-methylpyridinium hexafluorophosphate (EMP+ PF6
-) in reactions 

2.31 and 2.32. 

 

(2.31) 

 

(2.32) 

Notably, some reactive monomers like isobutylvinylether and N-vinylcarbazol are 

observed to polymerize even in dark when used in conjuction with N-ethoxy-4 

cyanopyridinium (EPP) and N-ethoxyisoquinolinium (EIQ) salts. An electron 

transfer from the monomer to these initiators can be proposed as an explanation for 

the observed reactivity in the absence of light (2.33). 

 

 

(2.33) 

Phenacyl salts 

Onium salts, namely sulfonium, phosphonium, ammonium, and pyridinium salts 

containing phenacyl group are photoinitiators appropriate for the polymerization of 

monomers such as oxiranes and vinyl ethers, which are not polymerizable by a free- 

 

32 
 



radical mechanism [114]. The initiation is accomplished by direct or indirect 

(sensitized) photolysis of the salts.  

Commonly, phenacyl-based onium salts are synthesized by the reaction of phenacyl 

halides with the corresponding heteroatom nucleophiles followed by anion exchange 

with potassium or sodium salts with non-nucleophlic counteranions such as, SbF6
−, 

PF6
−, AsF6

−, etc. Bromides were used as the halides to afford the salts with the 

improved yields. 

A new simplified method for the synthesis of phenacylsulfonium salts was reported 

by Crivello and Kong [109]. The method involves a one-pot reaction of phenacyl 

bromides or their aryl counter parts with the appropriate dialkyl sulfides in the 

presence of an alkali metal salt with desired anion (reaction 2.34). 

 
(2.34)

This simple one-pot reaction was also used for the synthesis of the other phenacyl 

onium salts. Accordingly, phenacyl bromide was reacted with N,N-dimethyl aniline, 

triphenylphosphine, and pyridine to yield the respective salts [116]. In this approach, 

the precipitation of insoluble NaBr or KBr depending on the initial salt strongly 

shifts the two simultaneous equilibrium reactions toward the desired final product. 

The light-absorbing chromophore in phenacyl-type onium salts is the phenyl ketone 

group. Therefore, most of the primary reactions occur through the excitation of this 

group. However, depending on the heteroatom in the salt structure, the 

photodecomposition may differ. In the case of phenacylsulfonium, the photolysis in 

the absence of monomers is essentially reversible and, the ylides rapidly react with 

the protonic acid to afford the starting salt. 

The detailed mechanistic studies revealed that intramolecular hydrogen abstraction of 

photoexcited salt from the carbon atoms neighboring sulfur atom is followed by 

internal electron transfer. Subsequent deprotonation gives a sulfur ylide and a 

protonic acid, which in the presence of monomer initiates the polymerization as 

illustrated in Figure 2.8. 
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Figure 2.8 : Photoinitiated cationic polymerization mechanism by 
using phenacyl sulphonium salts. 

Interestingly, phenacyl-type onium salts other than sulfonium salts undergo 

irreversible photolysis leading to fragmentation of the photoinitiator (Figure 2.9) 

[111, 127]. Electronically excited salt may undergo heterolytic cleavage (b) resulting 

in the formation of phenacylium cations. It is also feasible that homolytic cleavage 

(a) followed by the intermolecular electron transfer (a′) essentially yields the same 

species. 

Photoinitiated free-radical and zwitterionic polymerizations by using phenacyl-type 

salts are also possible [116]. Although phenacyl onium salts that contain counter 

anions with low nucleophilicity, are efficient and convenient compounds to generate 

Lewis bases photochemically, they suffer from the drawback of the termination of 

the anionic species by the photofragments formed from these compounds. The 

phenacylium cations stabilized with non-nucleophilic counteranions can react with 

the initiating and propagating centers. For this reason, for potential application of 

these salts as photoinitiators for anionic polymerization it is necessary to equip them 

with counteranions with higher nucleophilicity. 
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Figure 2.9 : Photolysis of phenacyl anilinium salt. 

Electronically excited salt undergoes heterolytic cleavage resulting in the formation 

of phenacylium cations and an alternative pathway in which homolytic cleavage 

followed by electron transfer essentially yields the same species. Notably, 

phenacylium cation is converted to covalently bonded inert compound as a result of 

the combination of the cation with thiocarbamate anion and free Lewis base, 

dimethylaniline is liberated in reaction 2.35. 

 
(2.35)

If the polymerization mechanism involves only free radical species, the 

polymerization would be completely inhibited by a radical scavenger. Accordingly, 

if the polymerization is initiated via a zwitterionic mechanism, sample containing 

protonation agent would yield no polymer. It is therefore most probable that both 

radical and zwitterionic mechanisms are responsible for the initiation. Phenacyl 

radicals induce freeradical polymerization while dimethylaniline initiates 

zwitterionic polymerization according to the following reactions 2.36 and 2.37. 
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(2.36) 

 

 

(2.37) 

2.2.2.2 Indirect photolysis 

Without absorption of the incident photon energy, photochemical processes cannot 

occur. Medium- and high-pressure mercury lamps that are frequently used as light 

sources provide emissions at 313 and 366 nm. If daylight is to be used for curing a 

coating formula, light absorption at wavelengths longer than 400 nm is highly 

desired. Rather than introducing  electron-donating  substituents to the structure as 

mentioned before, some electron-rich compounds such as trimethoxybenzene or 

hexamethylbenzene can be added to polymerization mixture to form charge transfer 

complexes (CTCs) with initiators in the electronic ground state that have absorptions 

at longer wavelengths. Moreover, some special additives can be used in conjunction 

with photoinitiators to carry out polymerization at longer wavelengths. Notably, in 

general, the additives are the light absorbing species here. Provided the systems thus 

obtained do initiate cationic polymerizations, the initiation can be explained through 

one of the following mechanisms: 

Sensitization by Classical Energy Transfer 

This mechanism involves the electronic excitation of the ground state of the 

sensitizer, a molecule possessing a suitable absorption spectrum, to its excited state. 

Energy may be transferred from the excited sensitizer (S*) to the onium salt (I) by 

either resonance excitation or exchange energy transfer (2.38-2.39). Depending on 

the two components involved, the energy transfer may proceed either in the excited 

singlet or in the triplet state. 
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(2.38)

(2.39)

In consequence of the transfer process, the sensitizer returns to its ground state and 

excited onium salt species (I*) are formed. The further reactions may also differ from 

those, taking place when the onium salt is excited by direct absorption of light. This 

conclusion has been drawn on the bases of product analyses [128-130]. An obvious 

explanation for this difference is the spin multiplicity: in the below discussed 

sensitized excitations triplet states of the onium salts are populated. In contrast to 

this, through direct irradiation of the onium salt, electrons are excited primary to the 

singlet state. A sufficient energy transfer requires the excitation energy of the 

sensitizer E*(S) to be at least as large as the excitation energy of the photoinitiator 

E*(I). The photopolymerization with most onium salts can be sensitized by 

commonly used photosensitizers, such as acetophenone or naphthalene. However, in 

many cases this reaction does not proceed via energy transfer, since most onium salts 

are capable of oxidizing these sensitizers in an exciplex formed between sensitizer 

and onium salt. 

Diphenyl iodonium salts are shown to take action of energy transfer with suitable 

additives like m-trifluoromethyl acetophenone [131]. However, energy transfer using 

TAS salts are shown to be impossible because of unfavorable thermodynamic 

conditions. Energy transfer sensitization did not turn out to be technically useful, 

although being a possible pathway in starting the decomposition of onium salts. The 

reason is that the high triplet energies required allow only the use of sensitizers 

absorbing at wavelengths below 350 nm. Other multicomponent initiating systems 

(vide infra) show a more practical spectral response. 

Free Radical Promoted Cationic Polymerization 

Many radicals can be oxidized by onium salts leading to generation of cations which 

are considered as initiating species for cationic polymerization. Two types of free 

radical induced initiation are available: oxidation of radicals and addition 

fragmentation reactions. 

Among these reactions, oxidation of radicals is the most flexible route, since free 

radical photoinitiators with a wide range of absorption characteristics are available. 
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Many photochemically formed radicals can be oxidized by onium salts. The cations 

thus generated are used as initiating species for cationic polymerization according to 

the following reactions [10, 11]: 

 

(2.40) 

(2.41) 

(2.42) 

The cations thus generated are used as initiating species for cationic polymerization. 

This so-called free radical promoted cationic polymerization is an elegant and fairly 

flexible type of sensitized cationic polymerization. Free radicals may be produced 

not only by photochemically but also thermally or by irradiating the system with 

high-energy rays. The photochemical generation of radicals can be applied even at 

low temperatures. Being photolyzed with high quantum yields, benzoin derivatives 

are so far the most effective photoinitiators for the free radical promoted cationic 

polymerization [108]. The other suitable free radical promoters include benzyl ketals 

[108], benzaldehyde [132], acylphosphine oxides [133, 134], azo compounds [108], 

benzophenone and certain dyes in conjunction with hydrogen donors [135], 

manganese decacarbonyl in the presence of alkyl halides [136], substituted vinyl 

halides [137], polysilanes [138, 139] and acylgermane based photoinitiators [140]. 

Recently, Crivello reported efficient three component visible sensitive photoinitiator 

systems for cationic ring opening polymerization of epoxides and related monomers 

[141, 142]. The photoinitiator systems consists of camphorquinone or titanium-

complex free radical photoinitiator in combination with a benzyl alcohol to generate 

free radicals by the absorption of visible light. The electron transfer reactions of 

resulting radicals with iodonium salt present in the system essentially leads to the 

formation of Brønsted acid capable of catalyzing the ring-opening polymerization of 

epoxy substrates. Although a broad range of spectral flexibility can be achieved, the 

free radical oxidation is limited to the photoinitiators capable of forming electron 

donor radicals. For instance, except structurally specially designed, long wavelength 

absorbing acylphosphine oxide photoinitiators do not generate oxidizable radicals. 

The use of addition fragmentation reactions in photoinduced cationic polymerization 

is another distinguished approach and it has been subject of recent investigations 
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[143-153]. Addition fragmentation reactions are indeed a very versatile method to 

adjust the spectral response of the polymerization mixture with the aid of free radical 

photoinitiators, since they are not based on easily oxidizable radicals. The allylic 

salts have so far been applied for addition fragmentation type initiations. 

The advantage of allylic salts that can undergo addition fragmentation reactions 

derives from the fact that virtually all sorts of thermal and light-sensitive radical 

initiators may be utilized for cationic polymerization, which enables an adaptation to  

most initiation conditions. In contrast to radical promoted cationic polymerization 

based on the oxidation of radicals, one is not limited to oxidizable radicals. 

The mechanism of the addition fragmentation type initiation is depicted on the 

example of ethyl-α-(tetrahydrothiophenium methyl) acrylate hexafluoroantimonate 

(ETM+SbF6
−) (2.39-2.40) [143]. 

 

(2.43)

(2.44)

The first step consists in the photogeneration of free radicals (reaction 2.43). 

Virtually any photolabile compound undergoing homolytic bond cleavage may be 

used as a radical source. The radicals add to the double bond of the allylonium salt 

thus producing a radical in β-position to the heteroatom of the onium salt cation. 

Consequently, the molecule undergoes fragmentation yielding initiating cations 

(reaction 2.44). 

Sensitization via Exciplexes 

The use of photosensitizers is critical to the success of cationic photopolymerizations 

in many applications in which photopolymerizations are employed as it accelerates 

the rates of reactions and requires less energy as they provide polymerizations in 

longer wavelengths [154-161]. 

Electron-rich polynuclear aromatic compounds such as anthracene, perylene, pyrene 

and phenothiazine, are suitable as photosensitizers as they give redox reactions with 
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onium salts through exciplex to finally yield the initiating species for photo-induced 

cationic polymerizations [162]. The mechanism of a polymerization followed via 

exciplex formation through the excited sensitizer with the ground state onium salt is 

illustrated by reactions 2.45a-g. 

 

(2.45a) 

(2.45b) 

(2.45c) 

(2.45d) 

(2.45e) 

(2.45f) 

(2.45g) 

First, photosensitizer absorbs the light to give the corresponding excited species 

[PS]* (2.45a). An excited state complex (exciplex) is formed as an intermediate 

between onium salt and excited photosensitizer (2.45b). In the following step, one-

electron is transferred from the sensitizer to the onium salt (2.45c).  Unstable 

diaryliodine radical decomposes rapidly and makes the process irreversible by 

preventing back electron transfer (2.45d). The radical cations formed by reaction 

2.45c would be capable of initiating cationic polymerization (2.45e) since direct 

initiation by the species formed from polynuclear aromatic compounds is a well 

known process and, because of the non-nucleophilicity of PF6
- ions, cationic chain 

propagation would not be prevented. Principally, polymerization could also be 

initiated by the Brønsted acids formed via hydrogen abstraction (reaction 2.45f) or 

coupling reactions (reaction 2.45g). 

A good photosensitizer, therefore, is not only a molecule that readily absorbs light 

energy, but also one that readily transfers it to another molecule. Some compounds 

are capable of forming such transfer complexes in the ground state, but many more 

form exiplexes in the excited state. Others can form complexes between a compound 

in the ground state and another one in the excited state. Such complexes are called 

excimers or excited dimers. The difference between the excited state of a dimer and 
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an exiplex is that the dimmers possess binding energy in the ground state, while 

exiplexes lack any binding energy in the ground state [163]. 

According to the Rehm-Weller equation [84] (2.46) electron transfer from the excited 

sensitizer to onium salt is feasible if the change in free energy (ΔG) is negative. 

Based on the oxidation potential (E1/2
ox) and active excitation energy (E*) of the 

photosensitizer (PS) and the reduction potential (E1/2
red) of the initiator (PI), the free 

energy change (ΔG) for the photoinduced electron transfer process is estimated. The 

calculation of ΔG is applied in order to predict whether or not an oxidation would 

take place. 

 
(2.46)

The oxidation potentials and absorption characteristics of sensitizers used most 

frequently in conjunction with onium salts are summarized in Table 2.4. 

Despite the many potential applications, photosensitizers also have several serious 

drawbacks that limit their use. For example, they are generally expensive, toxic, and 

poorly soluble in most reactive monomers and polymer systems. Moreover, they are 

easily lost from thin film coatings during polymerization and have high vapor 

pressure at room temperatures. Therefore, there is a progressing need for long-

wavelength-active photosensitizers in order to overcome these limitations. 

One way to obtain non-toxic polymers through sensitization is to copolymerize 

compounds, which can behave either as a photosensitizer or as a monomer with 

different monomers. Another way is to polymerize these monomeric photosensitizers 

and afterwards subject them to sensitize the polymerization of convenient monomers. 

In both ways non-toxic and odorless polymers can be obtained after polymerization 

[164-167]. 

Ground state charge-transfer complexes (CTCs) 

Although it is not considered to be a general method for the indirect initiation, certain 

salts can undergo decomposition upon irradiation in their appropriate charge transfer 

complexes (CTC). For example, pyridinium salts are capable of forming ground state 

CTCs with electron-rich donors such as methyl- and methoxysubstituted benzene 

[16]. Notably, these complexes absorb at relatively high wavelengths, where the 

components are virtually transparent. For example, the complex formed between N-
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ethoxy-4-cyano pyridinium hexafluorophosphate and 1,2,4-trimethoxybenzene 

possesses an absorption maximum at 420 nm. 

Table 2.4 :  Structures, oxidation potentials, triplet or singlet excitation energies 
and absorption characteristics of some common photosensitizers. 

Photosensitizer E1/2
ox (PS) 
(V) 

E* (PS) 
(kJ⋅mol−1) 

λmax (nm) (εmax 
(mol−1⋅cm−1)) 

 

2.7 290 (ET) 252 (17600) 
333 (148) 
342 (140) 

 

2.9 308 (ET) 242 (12600) 
279 (1050) 
318 (60) 

 

1.7 277 (ET) 219 (15200) 
255 (44200) 
298 (3510) 

 

1.1 319 (ES) 252 (220000) 
356 (8500) 
374 (8500) 

 

0.9 277 (ES) 252 (53000) 
435 (39500) 

 

0.6 239 (ET) 254 (61000) 
318 (4680) 

The following mechanism shows the action of a CTC as photoinitiator (reactions 

2.47-2.49). Since polymerization takes place even in the presence of a proton 

scavenger like 2,6-di-tert-butylpyridine an initiation through Brønsted acid formation 

can totally be excluded. 
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(2.47)

(2.48)

(2.49)

2.2.2.3 Monomers 

The types of general monomers which may undergo photo-initiated cationic 

polymerization are vinyl and alkoxy vinyl monomers, heterocyclic monomers 

involving sulphur, oxygen, nitrogen atoms in their rings. Cationically polymerizable 

monomers and their corresponding polymers [168] are summarized in Figure 2.10. In 

UV-curing applications, difunctional epoxide and alkyl vinyl ether monomers are 

usually employed. 

Although wide variety of monomers is available, demands from many industrial 

applications promote design of new monomers with high polymerization rate and 

improved features. For this reason, several works in recent decades have been 

conducted to development of new monomers, especially epoxides, with high 

reactivity. Furthermore, some works have been subjected to synthesis of monomers 

carrying functional groups allowing for design of the special polymer since nature of 

the monomers affects the physical and mechanical properties of the resulted polymer.  

Newly developed monomers containing a wide variety of functional groups may lead 

to a high monomer conversion, acceleration in polymerization as well as production 

of polymers with improved properties.  
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Figure 2.10 : Photoinitiated cationic polymerization of various monomers. 

2.3 Conjugated Polymers 

Conjugated polymers have attracted great interest [20] due to their wide range of 

potential applications including light emitting diodes [169], batteries [170], 

electrochromic devices [171], sensors [172], electromagnetic shielding [173], and 

corrosion inhibition [174]. In 1977, MacDiarmid, Shirakawa, and Heeger 

demonstrated that chemical doping of polyacetylene with oxidizing agents (e.g., I2, 

FeCl3, and AsF5) results in increased electronic conductivity by several orders of 

magnitude [175-177]. They were awarded the 2000 Nobel Prize in Chemistry for this 

work. Since then, electronically conducting and semiconducting materials based on 

conjugated polymers have become the subject of multidisciplinary research. 

Conjugated polymers possess excellent properties such as non-linear optical 

behaviour, electronic conductivity, photoluminescence, electroluminescence, 

thermochromism, electrochromism, and exceptional mechanical properties [20, 178-

182]. Typical conjugated polymers include polyacetylene (PA), poly(p-phenylene) 

(PPP), polythiophene (PT), poly(p-phenylene vinylene) (PPV), polypyrole (PPy), 

polyfluorene (PF), polycarbazole (PCz), poly(ethylene dioxythiophene) (PEDOT) 

and poly(p-phenylene ethynylene) (PPE) (Figure 2.11). 
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Figure 2.11 : Structures of typical conjugated polymers. 

2.3.1 Structure of conjugated polymers 

Conjugated polymers are organic macromolecules, which consist alternating single 

and double bonds in their polymer backbone. They are described as extended 

conjugated systems containing delocalized π-electrons arising from their alternating 

structure of single and double bonds along polymer chains [20]. The unique electric 

and optical properties of conjugated polymers are attributed to the overlap of p-

orbitals and delocalized π-electrons. For example, strong absorption of light in the 

visible region is one of the special features of molecules containing conjugated 

repeating units, which is due to the lower energy required by the π-electrons to 

promote them to the excited state, since they are less tightly bound to the carbon 

nuclei. The degeneration of the molecular orbital of double bonds gives a HOMO 

band and a LUMO band, as an analogue to the valence band and the conduction band 

in inorganic semiconductors. The energy difference between these two bands is 

called the band gap. 
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Figure 2.12 shows the band structures of insulators, semiconductors and conductors.  

 

Figure 2.12 : Band structures of insulator, semiconductor and conductor. 

Conductors (metals) are materials that possess partially filled bands, and this 

characteristic is the key factor leading to the conductive nature of this class of materials. 

Semiconductors, on the other hand, have filled (valence bands) and unfilled (conduction 

bands) bands that are separated by a range of forbidden energies (known as the ‘band 

gap’). The conduction band can be populated, at the expense of the valance band, by 

exciting electrons (thermally and/or photochemically) across this band gap. Insulators 

possess a band structure similar to semiconductors except here the band gap is much 

larger and inaccessible under the environmental conditions employed. 

Conjugated polymers are considered as insulators or sometimes as semiconductors in 

their neutral state. Charge injection (doping) into a conjugated polymeric system 

leads to wide varieties of semiconductors and conductors. Doping introduces charge 

carriers into the polymer, thus every repeating unit can essentially be an active redox 

site. Therefore, conjugated polymers can be doped with an oxidant (p-type) or with a 

reductant (n-type). In the oxidative doping two new states are produced within the 

energy gap between the valence and the conduction bands, and the presence of these 

bands gives rise to new low-energy transitions in the doped material. On the other 

hand, in the reductive doping electrons are injected into the conduction band and 

these electrons serve as the charge carriers. Upon doping the charge carriers are 

allowed to move along the shared intramolecular π bonds. The charge carrier 

delocalization along the polymer backbone increases the effective conjugation length 

of the polymer and extends into a three dimensional system through inter-chain 
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charge transfer. After doping, the electrical conductivity through mobility of either 

holes or electrons increases dramatically and the doped conjugated polymers behave 

as conductors. 

2.3.2 Synthesis of conjugated polymers 

Various conjugated polymers are usually prepared by chemical or electrochemical 

processes [20, 183, 184], which provide films with different morphologies, and 

consequently slightly different physical and chemical properties. 

The most common procedures used for the preparation of conjugated polymers are 

electrochemical polymerization, chemical oxidative coupling polymerization, 

organometallic coupling processes and photochemical polymerization. 

2.3.2.1 Electrochemical polymerization 

Electrochemical preparation of conjugated polymers was firstly described by Diaz in 

1981 [185]. The polymerization proceeds via coupling of two radical cations, formed 

by oxidation of the monomer, to produce a dihydrodimer dication which leads to a 

dimer after loss of two protons and rearomatization (reactions 2.50-2.51) [178]. 

 

(2.50)

(2.51)

In this coupling process the formation of the dihydro dimer is the key driving force. 

The dimer has lower oxidation potential than the monomer and, consequently it is 

readily oxidized to lead to further couplings.  

Electrochemical polymerization involves short reaction times, small amounts of 

monomers, and yields polymers in their oxidized state in the form of electrode 

supported, stable films, which possess favorable opto-electronic properties. 

However, the polymer obtained by electrochemical polymerization possesses a 

regioirregular structure [186-188]. This method is useful for the preparation of 

conducting polymer films for electronic devices such as electro-analytical sensors 

composed of a receptor for a particular compound anchored on a conducting polymer 
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film. On the other hand, electropolymerization is not regarded as a method suitable 

for the large-scale production of conducting polymers [183]. 

2.3.2.2 Chemical oxidative coupling polymerization 

The oxidative chemical polymerization can be carried out with different oxidizing 

agents. The most commonly used oxidants for the synthesis of conjugated polymers 

are Lewis acid catalysts such as FeCl3, MoCl3 and RuCl3. This method was 

developed by Yoshino and co-workers to synthesize poly(9,9-dialkylfluorene)s 

(PAFs) and poly(3-alkylthiophene)s (PATs) [189, 190]. In this method the monomer 

is dissolved in chloroform or other appropriate solvents and oxidatively polymerized 

with FeCl3. Ferric chloride oxidizes the 3-alkylthiophene monomer to produce 

radical cations in the 2 and 5- positions of the thiophene which then couple to form a 

polymer. The cycle of three consecutive steps (e.g., loss of electron, coupling of 

radical cations, and deprotonation) is repeated to yield regiorandom-PATs with 

relatively high molecular weights and broad polydispersities. Polymers obtained by 

the oxidative polymerization exhibit a regiorandom structure (reactions 2.52-2.53). 

 

(2.52) 

 

(2.53) 

2.3.2.3 Organometallic coupling 

Nickel, palladium, zinc, boron and tin-catalyzed cross-coupling of an organometallic 

compound with organohalides is a well known method. Suzuki, Yamamoto, Kumada 

and Heck coupling reactions are frequently used to prepare conjugated polymers. 

Suzuki coupling 

Suzuki coupling (Suzuki-Miyaura coupling), first published in 1979 by Suzuki, is an 

organic reaction of an aryl- or vinyl-boronic acid with an aryl- or vinyl-halide 

catalyzed by palladium(0) complex [191-194].  
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Recent catalyst and method developments have broadened the possible applications 

enormously, so that the scope of the reaction is not restricted to aryls, but also 

includes alkyls, alkenyls, and alkynyls. The reaction relies on a palladium catalyst 

such as tetrakis(triphenylphosphine)palladium(0) to effect part of the transformation. 

The palladium catalyst is 4-coordinate, and usually involves phosphine ligands. 

Potassium trifluoroborates and organoboranes or boronate esters may be used in 

place of boronic acids. Some pseudohalides such as triflates may also be used as 

coupling partners. 

The mechanism of the Suzuki reaction viewed from the perspective of the palladium 

catalyst, is shown in Figure 2.13. The first step is the oxidative addition of palladium 

to the halide (2) to form the organo-palladium species (3). Reaction with base gives 

intermediate (4), which via transmetallation with the boronate complex (6) forms the 

organopalladium species (8). Reductive elimination of the desired product (9) 

restores the original palladium catalyst (1). 

 

Figure 2.13 : The mechanism of Suzuki coupling reaction. 

The versatility of the reaction originates from the mild reaction conditions and 

accessibility of the reagents. Moreover, it is not influenced by the presence of water, 

is highly tolerant to a wide variety of functional groups and proceeds region- and 

stereoselectivity. Non-toxicity and easy removal of the inorganic by-products makes 

the reaction attractive for laboratories and industrial applications [195]. 
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The catalyst tetrakis(triphenylphosphine)palladium is the most common, but also 

otherhomogeneous catalysts as well as immobilized or heterogeneous 

palladiumcompounds have been used.   

Yamamoto coupling 

Yamamoto coupling, which was developed by using the polycondensation of 

dihaloaromatic compounds, is a convenient and efficient approach for the synthesis 

of conjugated polymers [196]. The polymerization is considered to proceed through 

oxidative addition, disproportionation and reductive elimination steps by using 

nickel(0) complexes (reactions) (Figure 2.14) [197]. 

 

Figure 2.14 : The mechanism of Yamamoto coupling reaction. 

The first step is oxidative addition of C-X to Ni(0)Lm. The second step is 

disproportionation. In the final step, diorganonickel (II) complexes NiR2Lm undergo 

reductive coupling (or reductive elimination) reactions to give R-R. The coordination 

of molecules, such as aromatic compounds, leading to the backdonation from the 

central metal facilitates the reductive elimination of R-R. It is possible to isolate the 

complexes (1) and (2) as well as a complex of the type Lm(XNi-Ar-Ni(X)Lm when 

the Ni-C bond is highly stabilized [198]. 

A relatively large amount of Ni(0) complex (stoichiometric amount) is used in this 

reaction, since the Ni(0) complex works as a reagent instead of a catalyst. The Ni(0) 
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complex reagent is oxidized and then reduced during the reaction, but does not return 

to the Ni(0) state, so it loses the reactivity after the reaction. In addition, the Ni(0) 

complex is extremely sensitive to ambient air and moisture, so the reaction has to be 

prepared under a strictly inert atmosphere. 

The molecular weight of the conjugated polymers prepared by Yamamoto coupling 

seems to be dependant on the solubility and crystallinity of the polymers [198]. There 

is a trend that crystalline polymers have a lower molecular weight whereas less 

crystalline species (especially those with an alkyl chain) propagate to form a higher 

molecular weight polymer. 

Kumada coupling 

Kumada Coupling (Corriu-Kumada) coupling is the first Pd or Ni catalyzed cross 

coupling reaction between an alkyl or aryl Grignard reagent and an aryl or vinyl 

halocarbon [199]. The coupling of Grignard reagents with alkyl, vinyl or aryl halides 

under Ni-catalysis provides an economic transformation, but the reaction is limited to 

halide partners that do not react with organomagnesium compounds.  

The main steps in the mechanism for Ni(0) or Pd(0) catalysts are oxidative addition 

of the organohalide, transmetallation of the Grignard, and reductive elimination, as 

illustrated in Figure 2.15. The advantage of this reaction is the direct coupling of 

Grignard reagents, which avoids additional reaction steps such as the conversion of 

Grignard reagents to zinc compounds for the starting materials in the Negishi 

Coupling. 

Heck coupling 

Heck coupling is an efficient approach used for coupling of aryl or alkenyl halides 

with an alkene or terminal alkyne [200]. Reaction steps involve oxidative addition, 

insertion and β-hydride elimination (reactions 2.54-2.56). The product is an alkene. 

As the by-product a stong acid is liberated, a base must be present in the reaction 

mixture for scavenging. The success of the reaction is dependent on each step 

involved. Electron withdrawing groups attached to halides increase the rate of 

oxidative addition. With Pd(II) salts, it is believed that they are transformed to Pd(0) 

by redox processes. The insertion is stereospecific and syn. 
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Figure 2.15 : The mechanism of Kumada coupling reaction. 

 

(2.54) 

 

(2.55) 

 

(2.56) 

With alkenes bearing electron withdrawing groups, the rate of insertion increases. 

Sterical hindrance of alkene is also important at insertion step. β-hydride elimination 

is also syn, but in the case of acyclic alkenes, due to the free rotation, a stable trans 

alkene is obtained. Generally, polar solvents are used for the reaction. By 

intramolecular Heck reactions, ring systems are obtained with good efficiencies and 

free of limitations such as sterical hindrances, and also syn stereochemistry of both 

insertion and elimination steps are kept. 
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2.3.2.4 Photochemical polymerization 

Photopolymerization is considered to be useful candidate for the production of these 

materials in thin film forms. Various strategies have been employed to polymerize 

thiophene and derivatives photochemically [21-25, 201]. For example, Davis and co-

workers [21] photopolymerized acetic acid derivative of thiophene in aqueous 

solution catalyzed by potassium dichromate. It was suggested that the polymerization 

proceeds via charge transfer reaction of complex between thiophene derivative and 

Cr(V) in the excited state (2.57-2.58). 

 

(2.57)

(2.58)

Another successful approach that has been employed is the photolysis of 

dithienothiophene derivatives and oligothiophenes in the presence of electron 

acceptors such as dinitrobenzene and carbon tetrachloride [22-24]. In this case, the 

polymerization intermediate radical cation of the monomer was efficiently generated 

by the photoinduced electron transfer from the excited thiophene derivative to the 

electron acceptor. Recently, thiophene eas polymerized photochemically by using 

onium salts such as diaryliodonium and triarylsulfonium salts [25, 201]. Although 

these salts are known to be photoinitiators for UV induced cationic polymerizations 

[168], they were also found to be effective in facilitating the polymerization of 

thiophene.  Detailed investigations involving laser flash photolysis and EPR studies 

revealed that the polymerization mechanism involves electron transfer from 

photochemically generated phenyliodinium radical cations to thiophene (2.59-2.62). 
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(2.59) 

 

(2.60) 

 

(2.61) 

 

(2.62) 

2.3.3 Polythiophenes 

Polythiophenes are of great interest due to their relatively small band gaps, 

environmental stability, and good processibility [178]. One major disadvantage of 

these compounds is their low solubility in most organic solvents, which may be 

attributed to strong intermolecular π-π interactions. Moreover, there are also some 

other special features such as fast nonlinear optical (NLO) response, excellent 

crystallinity, and better mechanical properties, which polythiophenes usually does 

not afford. These features could be achieved by structural modification approaches 

such as attachment of pendant side chains to polythiophene backbone, annulations of 

thiophene ring, introduction of conjugated spacers, synthesis of regioregular 

polythiophene derivatives, synthesis of thiophene based copolymers and thiophene 

based metallopolymers [178]. 

Structural modification of polythiophenes has a great importance, since they possess 

so many unique properties for possible wide range of applications. There are two 

important reasons for functionalization of polythiophenes: i) improving electrical 

properties in order to obtain low band gap polythiophene derivatives with good 

conductivity and ii) improving physical properties in order to obtain processable 

polythiophene derivatives with long term stability [202]. 

During the past two decades, tremendous efforts were put into searching for low 

band gap polythiophene derivatives due to their practical advantages over other 

higher band gap materials. Easy doping with possible intrinsic metallic conductivity, 
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improved photoconductivities for solar cell application, large nonlinear optical 

coefficients, and possible transparent materials in doped states are the reasons for the 

significance of low band-gap conducting polymers [202]. 

Polymers based on dithienothiophenes have lower band gaps compared to 

polythiophene analogues, due to their additional fused ring. These polymers were 

first synthesized electrochemically [203, 204], and later it was found that they are 

very attractive polymers with high doping levels, high columbic efficiencies and 

excellent cycling abilities for battery applications [205]. Various photochemical 

strategies have also been employed to synthesize polydithienothiophenes [21-24]. 
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3. EXPERIMENTAL WORK 

3.1 Materials and Chemicals 

3.1.1 Monomers 

Styrene (St, 99%, Aldrich): 

It was passed through a basic alumina column to remove the inhibitor before use. 

Cyclohexene oxide (CHO, 98%, Aldrich): 

It was distilled over CaH2 under reduced pressure before use. 

n-Butyl vinyl ether (BVE, >97%, Fluka): 

It was distilled over CaH2 under reduced pressure before use. 

N-Vinylcarbazole (NVC, 98%, Aldrich): 

It was crystallized from ethanol before use. 

Methyl methacrylate (MMA, 99%, Aldrich): 

It was passed through a basic alumina column to remove the inhibitor before use. 

Butyl acrylate (BA, ≥99%, Aldrich): 

It was passed through a basic alumina column to remove the inhibitor before use. 

3,4-Epoxycyclohexyl-3′,4′-epoxycyclohexene carboxylate (EEC, Ciba Specialty 

Chemicals, CY-179): 

It was used as received. 

1,3-Bis(3,4-epoxycyclohexylethyl)tetramethyl disiloxane (EPOX, Ivoclar): 

It was used as received. 
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3.1.2 Solvents 

Dichloromethane (J.T. Baker): 

It was dried with calcium chloride and distilled over P2O5. It was stored over 

molecular sieves for use as a solvent in the photopolymerization experiments. 

Methanol (Technical): 

It was used for the precipitation of polymers without further purification. 

Ethanol (Riedel-de Haёn): 

It was used for the crystallization of a monomer without further purification. 

Toluene (99.9%, Sigma-Aldrich): 

It was dried with calcium chloride and distilled over sodium wire. 

Tetrahydrofuran (THF, 99.8%, J.T.Baker):  

(a) It was used as eluent for chromatography as received (High Performance Liquid 

Chromatography Grade). 

(b) For use in the chemical reactions, it was dried and distilled over 

benzophenone/sodium. 

n-Hexane (95%, Aldrich): 

It was used without further purification. 

Diethyl ether (J.T. Baker): 

It was dried with calcium chloride and distilled over sodium wire. 

Acetonitrile (98%, Aldrich): 

It was used without further purification. 

Acetone (99%, Carlo Erba): 

It was used without further purification. 
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3.1.3 Other chemicals  

Diphenyliodonium hexafluorophosphate (Ph2I+PF6
−, 98%, Alfa Aesar): 

It was used without further purification. 

Anthracene (99%, Acros):  

It was used without further purification. 

Sodium hydroxide (NaOH, Riedel-de Haёn): 

It was used as received. 

Calcium chloride (CaCl2, J. T. Baker): 

It was used as received. 

Calcium hydride (CaH2, Acros): 

It was used as received. 

Thiophene (Aldrich): 

It was distilled under reduced presure before use. 

n-Butyl lithium (nBuLi, Acros): 

It was used as received. 

Bromine (Br2, Acros): 

It was used as received. 

2-Bromo-1-phenylethanone (Aldrich): 

It was used without further purification. 

Phosphorus pentasulfide (P4S10, Aldrich): 

It was used without further purification. 

3,4-(Ethylenedioxy)thiophene (Bayer): 

It was used without further purification. 
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Tributylstannyl chloride (Aldrich): 

It was used as received. 

o-Phenylenediamine (Acros): 

It was used without further purification. 

Triethylamine (Acros): 

It was used as received. 

Thionyl chloride (≥ 99 %, Aldrich): 

It was used as received. 

Magnesium sulfate (MgSO4, 97 %, Acros): 

It was used as received. 

Hydrogen bromide (HBr, ≥ 99 %, Aldrich): 

It was used as received. 

Sodium bisulfite (NaHSO3, Acros): 

It was used as received. 

Sodium borohydride (NaBH4, Aldrich): 

It was used as received. 

Bis(triphenylphosphine)palladium(II) dichloride (PdCl2(PPh3)2, Aldrich): 

It was used as received. 

2,2′-thenil (Aldrich, 98%): 

It was used without further purification. 

2,6-Di-tert-butyl-4-methylpyridine (DBMP, 98%, Aldrich): 

It was used as received. 
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Sodium hexafluoroantimonate (NaSbF6, 98%, Acros): 

It was used as received. 

2-Bromoacetophenone (98%, Acros): 

It was used as received. 

Pyridine (99.5%, Acros): 

It was used as received. 

Magensium (99.9+%, turnings, Acros): 

It was used as received. 

Chlorotrimethylsilane (98%, Acros): 

It was used as received. 

3.2 Equipment  

3.2.1 Photoreactor 

A Rayonet type photoreactor equipped with 16 Philips 8W / O6 lamps emitting light 

nominally at 350 nm was used. 

3.2.2 Light sources 

(a) AMCO monochromatic light source 

An AMCO monochromatic light source equipped with an Osram XBO 75 W xenon 

lamp was used. 

(b) Bluephase light source 

A Bluephase light source emmiting light at 430-490 nm was used. 

(c) Polilight PL400 Forensic Plus 

A Polilight light source emmitting light at 350, 415, 430, 450, LP530, 490, 505, 515, 

530, 550, 560, LP560, 570, 590, 620, 650, white, half white and bank was used.  

3.2.3 Nuclear magnetic resonance spectroscopy (NMR) 

(a) 1H NMR measurements were recorded in CDCl3 with Si(CH3)4 as internal 

standard, using a Bruker AC250 (250.133 MHz) instrument.  
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(b) 1H NMR and 13C NMR measurements were recorded in CDCl3 with Si(CH3)4 as 

internal standard, using Bruker Spectrospin Avance DPX-400 (400 MHz) 

spectrometer. 

3.2.4  Infrared spectrophotometer (FT-IR) 

FT-IR spectra were recorded on a Perkin Elmer FTIR Spectrum One B spectrometer. 

3.2.5 UV-Visible spectrophotometer 

UV-Visible spectra were recorded on a Shimadzu UV-1601 UV-visible 

spectrophotometer. 

3.2.6 Gel permeation chromatography (GPC) 

(a) Gel permeation chromatography (GPC) analyses were performed with a set up 

consisting of a Waters 410 Differential Refractometer, a Waters 515 HPLC Pump 

and an apparatus equipped with three Waters ultrastyragel columns (HR series 4, 3, 2 

narrow bore), with THF as the eluent at a flow rate 0.3 mL/min. Molecular weights 

were calculated on the basis of a calibration curve recorded with mono disperse 

polystyrene standards. 

(b) Gel permeation chromatography (GPC) measurements were obtained from a 

Viscotek GPCmax Autosampler system consisting of a pump, a Viscotek UV 

detector and Viscotek a differential refractive index (RI) detector. Three ViscoGEL 

GPC columns (G2000HHR, G3000HHR and G4000HHR), (7.8 mm internal diameter, 

300 mm length) were used in series. The effective molecular weight ranges were 

456–42800, 1050–107000, and 10200–2890000, respectively. THF was used as an 

eluent at flow rate of 1.0 mL min-1 at 30°C.  Both detectors were calibrated with PS 

standards having narrow molecular weight distribution. Data were analyzed using 

Viscotek OmniSEC Omni-01 software.  Molecular weights were calculated with the 

aid of polystyrene standards. 

(c) The GPC set-up (TD-GPC) with an Agilent 1200 model isocratic pump, four 

Waters Styragel columns (guard, HR 5E, HR 4, HR 3, and HR 2), and a Viscotek 

TDA 302 triple detector (RI, dual laser light scattering (LS) (λ = 670 nm, 90° and 7°) 

and a differential pressure viscometer was conducted to measure the absolute 

molecular weights in THF with a flow rate of 0.5 mL/min at 35 °C. All three 
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detectors were calibrated with a PS standard having narrow molecular weight 

distribution (Mn = 115,000 g/mol, Mw/Mn = 1.02, [ƞ] = 0.519 dL/g at 35 °C in THF, 

dn/dc = 0.185 mL/g) provided by Viscotek company. Data were collected by using 

Omni-Sec version 4.5 software from Viscotek Company.  

3.2.7 Thermal gravimetric analyzer (TGA) 

Thermal gravimetric analysis were performed on Perkin–Elmer Diamond TA/TGA 

with a heating rate of 10 ºC min under nitrogen flow. 

3.2.8 Fluorescence spectrophotometer 

Fluorescence and phosphorescence measurements were performed on a Jobin Yvon-

Horiba Fluoromax-P spectrophotometer. 

3.3 Preparation Methods 

3,5-Diphenyldithieno[3,2-b:2′,3′-d]thiophene (DDT) was kindly synthesized by Ali 

S. Gundogan from Ozturk group. Its synthesis procedure is given below. 

3.3.1 Synthesis of 3,5-diphenyldithieno[3,2-b:2′,3′-d]thiophene (DDT) 

Dithieno[3,2-b;2′,3′-d]thiophene, having phenyl groups (at 3- and 5-positions for 

further delocalization) was synthesized, employing a recently developed 1,8-diketone 

ring closure reaction. This method opens up a way to form dithienothiophenes via a 

one-pot two ringclosure reaction of α-dithioketones at the 3- and 4-positions of the 

thiophene ring. The synthesis of the target molecule required four steps starting with 

tetrabromination of thiophene with Br2, which gave 95% of tetrabromothiophene. 

Selective removal of the bromines at the 2- and 5-positions was carried out using Zn 

to yield 85% of 3,4-dibromothiophene, to which α-thioketones at the 3- and 4-

positions were introduced via a one-pot, three step reaction; (i) lithiation with nBuLi 

at −78 °C, (ii) addition of sulfur and (iii) introduction of α-thioketones by adding α-

bromoketones to the mixture. The yield of the product was found as 55%. The 

crucial dual ring closure was achieved by treatment of the diketone with P4S10 in 

boiling anhydrous toluene, which took nearly 3 h to complete. Yield of 43% was 

obtained for the final compound (Scheme 1) [17,18]. (mp 130-132 °C). Anal. Calcd 

for C20H12S3: C 68.96, H 3.44 found: C 68.99, H 3.38; FABMS m/e 348 (M+); 1H 
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NMR (200 MHz, CDCl3) δ 7.81 (d, J = 7.4 Hz, 4H, Ph), 7.42 (m, 8H, 

Ph+thiophene); 13C NMR (50.32 MHz, CDCl3) δ 135.9, 134.5, 131.3, 129.0, 128.4, 

127.5, 126.6, 121.3. 

 

 

 

 

 

 

(3.1) 

5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-yl)quinoxaline 

(DTDQ) and 4,7-di(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-

benzo[1,2,5]thiadiazole (DTDT) were kindly synthesized by Asuman Durmus and 

Gorkem E. Gunbas from Toppare group. Their synthesis procedures are given below. 

3.3.2 Synthesis of tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)stannane 

(1) 

A 2.0 g (14 mmol) sample of 3,4-(ethylenedioxy)thiophene in 150 mL of dry THF 

was treated dropwise with 10 mL (16.2 mmol) of 1.6 M n-butyl lithium at −78 °C 

under argon. After the solution was stirred for 0.5 h and warmed to −40 °C, 5.95 g 

(18.8 mmol) of tributylstannyl chloride was added to the solution, and the new 

solution was warmed to room temperature. The solvent was removed by rotary 

evaporation after the solution was stirred for 8 h. The residue was dissolved in 

hexanes and filtered. The filtrate was dried in vacuum to afford 6.0 g of (1) as a 

yellow liquid. The compound was used for the next reaction as obtained, with no 

further purifications. 1H NMR (250 MHz, CDCl3): δ ppm 6.56 (s, 1H); 4.16 (s, 4H); 

1.61-1.49 (m, 6H); 1.39-1.22 (m, 6H); 1.09 (t, 9H); 0.90 (q, 6H). 13C NMR (125 
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MHz, CDCl3) ): δ ppm 147.88, 142.65, 109.08, 105.99, 64.86, 64.80, 29.08, 27.40, 

13.79, 10.71. MS: (M + H)+ found 431, calcd for C18H32O2SSn 430.11. 

 

 

(3.2)

3.3.3 Synthesis of 4,7-dibromobenzo[1,2,5]thiadiazole (3) 

4,7-Dibromobenzo[1,2,5]thiadiazole (3) was synthesized as described previously 

[29]. It was synthesized by a two-step procedure. First, benzothiadiazole (2) was 

synthesized and in the second step, it was converted to 4,7-

dibromobenzo[1,2,5]thiadiazole (3) according to the procedures given below: 

 

 

(3.3)

To a 1000 mL flask were added commercial o-phenylenediamine (10.00 g, 92.47 

mmol), 300 mL of CH2Cl2 and triethylamine (37.44 g, 369.98 mmol). The solution 

was stirred until total dissolution of the diamine. Thionyl chloride was added 

dropwise very slowly and the mixture refluxed for 4 h. The solvent was removed in a 

rotatory evaporator and 700 mL of water added. Concentrated HCl was added to a 

final pH of 2. The desired compound was purified by direct steam distillation 

following addition of water to the mixture. The steam distilled mixture was extracted 

three times with 200 mL of CH2Cl2, dried over MgSO4 and filtered. The solvent was 

removed, affording pure compound (2) in 93% yield (11.71 g, 85.99 mmol). (mp 

43.6–44.4 °C). 1H NMR (CDCl3): δ ppm 7.99 (dd, 2H, J= 3.3, 4.6 Hz); 7.57 (dd, 2H, 

J= 3.1, 6.8 Hz). 13C NMR (CDCl3): δ ppm 154.6; 129.1; 122.4. FT-IR (KBr, cm−1): 

1659, 1433, 1264, 1104, 747.  

To a 500 mL two-necked round bottom flask were added benzothiadiazole (2) (10.00 

g, 73.44 mmol) and 150 mL of HBr (47%). A solution containing Br2 (35.21 g, 

220.32 mmol) in 100 mL of HBr was added dropwise very slowly (slow addition is 
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essential!). If necessary, an additional 100 mL of HBr can be added to the solution. 

After total addition of the Br2, the solution was refluxed for 6 h. Precipitation of an 

orange solid was noted. The mixture was allowed to cool to room temperature and 

sufficient saturated solution of NaHSO3 added to consume completely any excess 

Br2. The mixture was filtered under vacuum and washed exhaustively with water. 

The solid was then washed once with cold Et2O and dried under vacuum for ca. 20 h, 

affording the desired dibrominated product (3) in 95% yield (20.51 g, 69.77 mmol). 

(mp 187–188 °C). 1H NMR (CDCl3/DMSO-d6—two drops): δ ppm 7.73 (s, 2H). 13C 

NMR (CDCl3/DMSO- d6—two drops): δ ppm 152.6; 132.1; 113.6. 

3.3.4 Synthesis of 5,8-dibromo-2,3-di(thiophen-2-yl)quinoxaline (5) 

5,8-Dibromo-2,3-di(thiophen-2-yl)quinoxaline was synthesized as described 

previously [29]. It was synthesized by a two-step procedure. First, 3,6-dibromo-1,2-

phenylenediamine (4) was synthesized. In the second step, it was converted to 5,8-

dibromo-2,3-di(thiophen-2-yl)quinoxaline (5) by the condensation reaction of (4) and 

2,2′-thenil according to the procedure given below: 

 

 

 

(3.4) 

To a suspension of (3) (5.0 g, 17 mmol) in ethanol (170 ml), NaBH4 (11.4 g, 300 

mmol) was added portionwise at 0 °C, and the mixture was stirred for 20 h at r.t. 

After evaporation in vacuo, H2O (100 ml) was added, and the mixture was extracted 

with Et2O. The organic phase was washed with saturated aqueous NaCl solution and 

dried (Na2SO4). Evaporation in vacuo gave (4) (3.9 g, 87%). White solid. (mp 94−95 

°C). 1H NMR (400 MHz, CDCl3): δ ppm 3.91 (s, 4 H), 6.81 (s, 2 H). 13C NMR (100 

MHz, CDCl3): δ ppm 151.4, 131.1, 117.6.  

A solution of (4) (1.0 g, 3.8 mmol) and 2,2′-thenil (0.84 g, 3.8 mmol) in ethanol (40 

ml) was heated to reflux for 1 h, then cooled to 0 °C. The formed precipitate was 

isolated by filtration and washed with ethanol to afford (5) (1.16 g, 70%). White 

solid. (mp 221−222 °C). 1H NMR (400 MHz, CDCl3): δ ppm 7.01 (t, 2H), 7.41 (d, 2 
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H), 7.49 (d, 2 H), 7.76 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ ppm 127.81, 131.56, 

132.86, 132.98, 134.73, 136.79, 141.67 and 145.83. 

3.3.5 Synthesis of 5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-

di(thiophen-2-yl)quinoxaline (DTDQ) 

5,8-Dibromo-2,3-di(thiophen-2-yl)quinoxaline (5) (200 mg, 0.440 mmol) and 

tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)stannane (948 mg, 2.2 mmol) were 

dissolved in dry tetrahydrofuran (THF, 80 mL), the solution was purged with argon 

for 30 min, and PdCl2(PPh3)2 (60 mg, 0.85 mmol) was added at room temperature 

under argon atmosphere. The mixture was stirred at 100 °C under argon atmosphere 

for 15 h, cooled, and concentrated on the rotary evaporator. The residue was 

subjected to column chromatography (CH2Cl2/Hexane: 3/1) to afford an orange solid 

(148 mg, yield 58%). 1H NMR (400 MHz, CDCl3) δ 4.22 (m, 4 H), 4.28 (m, 4H), 6.5 

(s, 2 H), 6.95 (t, J = 3.97 Hz 2 H), 7.40 (d, J = 3.57 Hz, 2 H) 7.44 (d, J = 4.8, 2 H), 

8.46 (s, 2 H); 13C NMR (100 MHz, CDCl3) δ 63.35, 63.94, 102.05, 112.04, 126.34, 

127.34, 127.48, 128.21, 128.80, 135.56, 139.27, 140.38, 140.68, 142.89. MS: m/e 

574 (M+). 

 

 

 

(3.5)

3.3.6 Synthesis of 4,7-di(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-

benzo[1,2,5]thiadiazole (DTDT) 

4,7-dibromobenzo[1,2,5]thiadiazole (3) (382 mg, 1.3 mmol) and tributyl-(2,3-

dihydrothieno[3,4-b][1,4]dioxin-5-yl)stannane (1) (4192.5 mg, 9.75 mmol) were 

dissolved in dry THF (100 ml), the solution was purged with argon for 15 min. and 

PdCl2(PPh3)2 (178 mg, 0.254 mmol) was added at room temperature under argon 

atmosphere. The mixture was stirred at 100 °C under argon atmosphere for 15 hours, 

cooled, and concentrated on the rotary evaporator. The residue was washed 

consequently with brine, water, and hexanes and subjected to column 

chromatography (CH2Cl2/Hexane: 3/1) to afford dark red solid (59% yield). (m.p. > 
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260 °C). 1H NMR (400 MHz, CDCl3): δ 4.19-4.49 (m, 8H, ethylene); 6.56 (s, 2H, 

EDOT), 8.39 (s, 2H, H6); 13C APT NMR (400 MHz, CDCl3): 64.35, 64.99, 101.95, 

113.69, 123.65, 126.61, 140.24, 140.63, 152.32. EI/MS (70 eV): m/z 416 (100) [M+], 

332 (21), 319 (55). HRMS (ESI) Calculated for C28H13N2O4S3 (M+H+): m/z 417.004. 

Found: m/z 417.0032. 

 

 

(3.6) 

3.3.7 Synthesis of N-phenacyl-N,N-dimethylanilinium hexafluoroantimonate 

(PDA+SbF6
−) 

Into a 100 mL round bottom flask equipped with a magnetic stirrer and a reflux 

condenser were placed 1.5 g (7.54 × 10−3 mol) 2-bromoacetophenone, 0.914 g (7.54 

× 10−3 mol) N,N-dimethylaniline, 1.951 g (7.54 × 10−3 mol) NaSbF6 and 50 mL of 

acetone. The reaction mixture was brought to reflux and held at this temperature for 

15 min. The dark pink solution was filtered to remove NaBr, which was formed 

during the reaction. Then the solvent was removed on a rotary evaporator, leaving N-

phenacyl-N,N-dimethylanilinium hexafluoroantimonate (PDA+SbF6
−) as a tan solid. 

The product was recrystallized twice from ethanol solution. The salt was washed 

with water and dried at vacuum, mp. 122°C, yield 50%. 1H NMR (250 MHz, 

DMSO): δ 8-7.5 (m, 10H), 6.10 (s, 2H), 3.75 (s, 6H). UV: λmax = 255 nm, ε255 = 

21615 mol−1⋅cm−1. 

 

(3.7) 

3.3.8 Synthesis of N-phenacylpyridinium hexafluoroantimonate (PPy+SbF6
−) 

Into a 50 mL round bottom flask equipped with a magnetic stirrer and a reflux 

condenser were placed 0.5 g (2.5 × 10−3 mol) 2-bromoacetophenone, 0.2 mL (2.5 × 

10−3 mol) pyridine and 25 mL of acetonitrile. The reaction mixture was stirred and 
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held at room temperature for 5 h. White solid particles were obtained at the end. 

Then, acetonitrile was evaporated and the residue was dissolved in water. The 

aqueous solution was washed with petroleum ether.  Finally, 0.65 g (2.5 × 10−3 mol) 

NaSbF6 was added to aqueous part in one portion. White precipitates were obtained 

and dried at vacuum, mp. 195°C, yield 45%. 1H NMR (250 MHz, CD3CN): δ 9.2-7.6 

(m, 10H, C6H5), 6.46 (s, 2H, N+-CH2). UV: λmax = 248, 438 nm, ε248 = 12680, ε248 = 

7263 mol−1⋅cm−1. 

 
(3.8)

3.3.9 Synthesis of (4-methoxybenzyl)trimethylsilane (MBTMS) 

Into a flame-dried 250 mL three-neck, round bottom flask equipped with a magnetic 

stirrer, a reflux condenser, N2 inlet and 50 mL addition funnel were placed 1.94 g (8 

× 10−2 mol) dry magnesium turnings, 60 mL dry tetrahydrofuran (THF) and 10.12 

mL (8 × 10−2 mol) chlorotrimethylsilane. 4-Methoxybenzyl chloride (10 mL, 7.4 × 

10−2 mol) in dry THF (40 mL) was added slowly, at a rate to maintain gentle reflux. 

After addition was complete, the mixture was heated under reflux for 2 h, cooled, 

and poured into 100 mL of cold water. Pentane (90 mL) was added, and pentane 

layer was washed three times with cold water (50 mL) and once with saturated NaCl 

solution (50 mL). The resulting solution was dried with MgSO4 and then rotary 

evaporated to yield the crude product, bp. 73-78°C, yield 85%. 1H NMR (250 MHz, 

CDCl3): δ 7.0-6.7 (m, 4H), 3.78 (s, 3H), 2.0 (s, 2H), 0.0 (s, 9H). 

 

(3.9)

3.3.10 General procedure for photosensitized cationic polymerization 

Monomer either in bulk form or in solution with dichloromethane (CH2Cl2), 

photosensitizer (DDT, DTDT, DTDQ or ), and co-initiator (Ph2I+PF6
−) were put into 

a Pyrex tube, degassed with nitrogen, and irradiated at room temperature in a 

69 
 



photoreactor (Rayonet) equipped with 16 lamps and emitting light nominally at 350 

nm. A cupric sulfate aqueous solution was used as the photofilter in order to avoid 

the absorption of onium salt. At the end of irradiation, the content of the tube was 

dissolved in CH2Cl2 followed by precipitation in 10-fold excess methanol. Finally, 

the solid polymer was collected by filtration and dried overnight at reduced pressure. 

Conversions were determined gravimetrically. 

3.3.11 General procedure for photoinitiated free radical polymerization by 

combination of cleavage and electron tarnsfer reactions 

Monomer in solution with acetonitrile (CH3CN), phenacyl salt (PDA+SbF6
− or 

PPy+SbF6
−) and (4-methoxybenzyl)trimethylsilane (MBTMS) were put into a pyrex 

tube, degassed with nitrogen, and irradiated at room temperature in a photoreactor 

(Rayonet) equipped with 16 lamps and emitting light at λ> 300 nm. At the end of 

irradiation, the content of the tube was precipitated in 10-fold excess methanol. 

Finally, the solid polymer was collected by filtration and dried overnight at reduced 

pressure. Conversions were determined gravimetrically. 

3.3.12 Fluorescence quenching studies 

The fluorescence quenching studies were performed with solutions containing a 

constant concentration of DDT, DTDT or DTDQ (1 × 10−5 mol⋅L−1) and varying 

amounts of Ph2
+PF6

−. 2-Methyltetrahydrofuran was used as solvent. The variation of 

the fluorescence emission intensity was investigated by the increasing concentration 

of Ph2
+PF6

−. 

3.3.13 Photopolymerization of DDT 

Photopolymerization was carried out under nitrogen atmosphere. Prior to irradiation, 

the appropriate solution of dithienothiophene (0.040 g, 1.15 × 10−4 mol) containing 

predetermined amounts of onium salt (0.098 g, 2.30 × 10−4 mol) and 

dichloromethane as the solvent (5 mL) were placed in a pyrex tube and irradiated in a 

Rayonet merry-go-round type photoreactor equipped with 16 lamps emitting light 

nominally at λ= 350 nm and a cooling system. At the end of irradiation, the dark 

solution was poured into methanol. The precipitate was isolated by filtration and 

dried for 24 hours in vacuum oven at 25°C (Mn,GPC= 1147, Mw/Mn= 1.76).  
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4.  RESULTS AND DISCUSSION 

The main objective of this thesis is to describe the use of electron transfer reactions 

in photoinitiated polymerization systems. The first strategy followed throughout the 

thesis was electron transfer photosensitization by using highly conjugated thiophene 

derivatives. Afterwards this strategy was extended to the synthesis of conjugated 

thiophene polymers. In the final strategy, a novel free radical photoinitiating system 

by combination of cleavage and electron transfer reactions was suggested.  

4.1 Electron Transfer Sensitization by Using Highly Conjugated Thiophene 

Derivatives for Onium Salt Photoinitiated Cationic Polymerization 

The long wavelength initiating systems for cationic polymerization received 

drastically increased attention in the past several years. The existing strategies are 

based on the activation of the most prominent cationic photoinitiators, namely onium 

salts, by light sensitive additives, which do not directly initiate the polymerization. 

Electron transfer photosensitization by using electron-rich polynuclear aromatic 

compounds such as anthracene, perylene, pyrene and phenothiazine appears to be an 

alternative efficient pathway to shift the absorption sensitivity to longer wavelengths. 

As it will be shown below, highly conjugated thiophene derivatives in conjunction 

with iodonium salt can also be used as new and efficient visible light cationic 

photoinitor systems. 

4.1.1 Electron transfer photosensitization using 3,5-diphenyldithieno[3,2-b:2,3-

d]thiophene (DDT) 

As it is shown in Figure 4.1, 3,5-diphenyldithieno[3,2-b:2,3-d]thiophene (DDT) 

possesses three fused thiophene rings, the orientations of which vary depending on 

the location of the sulphur atom of the peripheral thiophene. As DDT is rich in 

sulfur, with three S atoms, it is an electron rich compound, which makes it a good 

electron donor. 
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Figure 4.1 : Structure of 3,5-diphenyldithieno[3,2-b:2,3-d]thiophene (DDT). 

In the ground state, DDT strongly absorbs light between 350 and 450 nm where 

onium salts are transparent (Figure 4.2). Moreover, it has the advantage of being 

highly soluble in various monomers and solvents. 

 

Figure 4.2 : Optical absorption spectra of DDT (a) and Ph2I+PF6
− (b) in CH2Cl2. 

For the potential use of DDT as a photosensitizer, the excited state emission 

characteristics were investigated by means of fluorescence and phosphorescence 

spectroscopic measurements. Figure 4.3 depicts the normalized fluorescence 

excitation and emission spectra of DDT in CH2Cl2 at room temperature. It is clear 

that a nearly mirror-image like relation exists between absorption and emission of 

dithienothiophene compound. 
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Figure 4.3 : Normalized excitation (a) and emission (b) fluorescence spectra of 
DDT in CH2Cl2 at room temperature and emission phosphorescence 
spectra (c) at 77 K. 

It was found that in the presence of diphenyl iodonium salt, the fluorescence of DDT 

is markedly quenched. In Figure 4.4, a typical Stern-Volmer plot is shown for the 

fluorescence quenching of DDT as a function of the concentration of the 

diphenyliodonium salt. The linear correlation shown in the plot is strong confirming 

evidence for the reaction of excited state of DDT with the iodonium salt. 

The polymerization of cyclohexene oxide (CHO), n-butyl vinyl ether (BVE), styrene 

(S) and N-vinyl carbazole (NVC) were examined. Typical results are presented in 

Table 4.1. As can be seen, all monomers were readily polymerized upon irradiation 

at room temperature at λ> 350 nm either in bulk or CH2Cl2 solutions with DDT in 

the presence of iodonium salt. For comparison, polymerization sensitized with a 

typical polynuclear aromatic hydrocarbon, anthracene was also included (Table 4.1, 

Run 4). It should be noted that the two components of the initiating system are 

indispensable for the polymerization to occur; either no polymer or negligible 

amount of polymer is formed in the absence of DDT or iodonium salt at the 

irradiation wavelength. Notably, vinyl monomers with strong electron donating 

groups, BVE and NVC polymerized much more readily. 
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Figure 4.4 : Stern-Volmer plot of the quenching of DDT (1 × 10−5 mol⋅L−1) by 
Ph2I+PF6

− in CH2Cl2 (excitation wavelength = 350 nm). I0 = 
fluorescence intensity of DDT, I = fluorescence intensity in 
thepresence of Ph2I+PF6

−. 

Table 4.1 : Photoinitiateda cationic polymerization of various monomers in the 
presence of DDT and Ph2I+PF6

− at room temperature for 30 min at λ 
>350 nm. 

Run Mb 
(mol⋅L−1) 

[PS]b 
(mol⋅L−1) 

[On]b 
(mol⋅L−1) 

Conversion
(%) 

Mn
f Mw/ Mn

f 

1 CHO(9.88) 1 × 10−2 1 × 10−2 58 4450 1.97 
2 CHO(9.88) - 1 × 10−2 <1 - - 
3 CHO(9.88) 1 × 10−2 - <1 - - 
4 CHO(9.88) 1 × 10−2 1 × 10−2 53e 3450 2.56 
5 BVE(3.84)c 0.5 × 10−2 0.5 × 10−2 66 14510 1.87 
6 S (4.35)c 0.5 × 10−2 0.5 × 10−2 5 3700 2.26 

   7e NVC(1.03)c 0.5 × 10−2 0.5 × 10−2 98 1970 2.47 
 

a An interference filter (aqueous cupric sulfate solution) was used in all experiments. 
b M: monomer, PS: photosensitizer, On: onium salt, CHO: cyclohexene oxide, BVE: n-butyl vinyl   
   ether, St: styrene, NVC: N-vinyl carbazole 
c In CH2Cl2 solution. 
d Anthrecene is used instead of DDT. 
e Small portions of high molecular weight (Mn= 98000, PDI= 1.8) polymer was obtained. 
f Determined from GPC measurements. 
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Even more convincing evidence for the sensitizing effect of DDT on cationic 

polymerization induced by iodonium salt was obtained from the cross-linking 

monomer 1,2-epoxyethyl-3,4-epoxycyclohexane (EEC). Photopolymerizations of the 

bis-epoxide containing 5 × 10−3 M Ph2I+PF6
− were carried out. In the absence of 

DDT control experiments failed to produce a gel. In contrast, addition of 5 × 10−3 M 

DDT produced complete gelation after irradiation for 24 min at λ >350 nm at room 

temperature.  Interestingly, anthracene did not function to promote the 

polymerization under identical experimental conditions. 

According to the Rehm-Weller equation (4.1) (Coulombic energy neglected) electron 

transfer from the excited sensitizer to onium salt is feasible if the change in free 

energy (ΔG) is negative. Based on the oxidation potential (Eox) and active excitation 

energy (E*) of the photosensitizer (PS) and the reduction potential (Ered) of the 

initiator (PI), the free energy change (ΔG) for the photoinduced electron transfer 

process was estimated [84].  

 (4.1)

Table 4.2 summarizes the ΔGS and ΔGT values of the free energy changes for the 

electron transfer from the singlet and triplet excited states, respectively, of the 

photosensitizer to the ground-state iodonium salt.  Eox for DDT was previously 

determined by cyclic voltammetry and found to be 0.88 V [206]. The singlet 

excitation energy ES
* and triplet excitation energy ET

* have been calculated by using 

the Planck–Einstein equation (4.2): 

 
(4.2)

where h is Planck's constant (6.62 × 10−34 J⋅s), c is speed of light (3 × 108 m⋅s−1), and 

λ is 346 (the maximum wavelength of excitation fluorescence spectrum) and 449 nm 

(the maximum wavelength of emission phosphorescence spectrum) for ES
* and ET

*, 

respectively. 
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Table 4.2 : Free energy changes (ΔGS or ΔGT) for the electron transfer from either 
singlet or triplet excited states of DDT to the initiator. 

Ered
 a 

(V) vs. SCE 
ES

* 
(kcal⋅mol−1) 

ET
* 

(kcal⋅mol−1) 
ΔGS 

(kcal⋅mol−1)
ΔGT 

(kcal⋅mol−1) 
-0.20 82.6 63.7 -57.8 -38.8 

a Referance [161] 

Although the electron transfer in both the singlet and triplet excited states of the 

dithienothiophene derivative is thermodynamically favorable, relatively low 

conversion of styrene polymerization indicates that triplet state also involves in the 

electron transfer process. Styrene is known to be strong triplet quencher and reacts 

with triplet excited states with a high rate constant [3]. 

A mechanism based on electron transfer concerning the reaction of excited DDT 

with iodonium ion is described in reactions 4.3a-f. DDT radical cations formed by 

reaction 4.3c would be capable of initiating cationic polymerization and, because of 

the non-nucleophilicity of PF6
− ions, cationic chain propagation would not be 

prevented. Principally, polymerization could also be initiated by the protons formed 

via hydrogen abstraction (4.3e) or coupling reactions (4.3f). It was previously 

presented evidences for such reactions of thiophene radical cations with the aid of 

laser flash photolysis studies [25, 201].  

It is clear that DDT is an efficient electron-transfer photosensitizer for iodonium salt 

and, cyclic ethers and vinyl monomers can efficiently be polymerized at wavelengths 

of λ> 350 nm with the aid of dithienothiophene compound.  

4.1.2 Electron transfer photosensitization using 4,7-di(2,3-dihydro-thieno[3,4-

b][1,4]dioxin-5-yl)benzo[1,2,5]thiadiazole (DTDT) and 5,8-bis(2,3-

dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-yl) quinoxaline (DTDQ) 

Figure 4.5 shows the structures of DTDT and DTDQ. These highly conjugated 

compounds are the building blocks of first green colour electrochromic polymers 

with  exceptional  switching  properties  and  remarkable  stability.  The  polymers, 

obtained from the corresponding monomers, DTDT and DTDQ by 

electropolymerization, exhibited two simultaneous absorption bands in the red and 

blue regions of the visible spectrum where these bands should be controlled with the 

same applied potential. The approach is based on the incorporation of both electron 
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donor, 3,4-ethylenedioxythiophene (EDOT) and acceptor, thiadiazole and 

quinoxaline groups, for DTDT and DTDQ, respectively into monomer and 

consequently polymer structure. 

 

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

 

(4.3f)

 

 

Figure 4.6 shows the absorption spectra of highly conjugated thiophene derivatives 

and diphenyliodonium salt.  The thiophene compounds, DTDT and DTDQ, absorb 

strongly above 400 nm presumably due to the extended conjugation of the thiophene 

groups through the central phenyl ring that makes them particularly useful for visible 

light applications. 
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Figure 4.5 : Structures of (a) 4,7-di(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-
yl)benzo[1,2,5]thiadiazole (DTDT) and (b) 5,8-bis(2,3-
dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-yl) 
quinoxaline (DTDQ). 

 

Figure 4.6 : UV spectra of 3.5 × 10−3 mol⋅L−1 Ph2I+PF6
− (a), 3.5 × 10−3 mol⋅L−1 

4,7-di(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-
yl)benzo[1,2,5]thiadiazole (DTDT) (b) and 3.5 × 10−3 mol⋅L−1 5,8-
bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-yl) 
quinoxaline (DTDQ) (c) in CH2Cl2. 

For the potential use of DTDT and DTDQ, as photosensitizers, the excited state 

emission characteristics were investigated by means of fluorescence and 

phosphorescence spectroscopic measurements. Figure 4.7 depicts the normalized 

fluorescence excitation and emission spectra of DTDT and DTDQ, in CH2Cl2 at 
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room temperature. It is clear that structureless emissions were detected and a nearly 

mirror-image like relation exists between absorption and emission of both 

compounds. Both compounds did not exhibit phosphorescence emission at 77 K 

indicating rather low intersystem crossing efficiency between singlet and triplet 

excited states. 

 

Figure 4.7 : Normalized excitation fluorescence spectra of DTDQ (a) and DTDT 
(b), and normalized emission spectra of DTDQ (a’) and DTDT (b’) in 
CH2Cl2 at room temperature. 

In the presence of diphenyl iodonium salt, the fluorescence of the sensitizers is 

markedly quenched. Figure 4.8 shows a typical Stern-Volmer plot for the 

fluorescence quenching of DTDT and DTDQ, as a function of the concentration of 

the diphenyliodonium salt. The linear correlation shown in the plot strongly confirms 

the reaction of excited states of both DTDT and DTDQ, with the iodonium salt. 
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Figure 4.8 : Stern-Volmer plot for the fluorescence quenching of 5,8-bis(2,3-
dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-
yl)quinoxaline (DTDQ) (1 × 10−5 mol⋅L−1) ( ) and 4,7-di(2,3-
dihydro-thieno[3,4-b][1,4]dioxin-5-yl)benzo[1,2,5]thiadiazole 
(DTDT) (1 × 10−5 mol⋅L−1) ( ) by Ph2I+PF6

- in CH2Cl2 (I0= 
fluorescence intensity of DTDT or DTDQ, I= fluorescence intensity 
in the presence of Ph2I+PF6

−). 

In our studies the photopolymerization were performed under irradiation at 480 nm 

e.g. at the wavelength where the light emission is well matched with absorption of 

sensitizers and iodonium salt is transparent. In Figure 4.9, the conversion of a typical 

epoxy monomer, cyclohexene oxide (CHO) into poly(cyclohexene oxide) is plotted 

versus time. As can be seen, the polymerization started without induction period and 

increased almost linearly with time. 

The visible light photoinitiated polymerization of some representative monomers, 

namely n-butyl vinyl ether (BVE) and N-vinyl carbazole (NVC) with the thiophene 

derivatives in the presence of iodonium salt was also studied. As can be seen from 

Table 4.3, BVE and NVC were polymerized more effectively due to their strong 

electron donating nature. DTDT exhibited slightly better initiator efficiency for the 

polymerization of BVE than that of DTDQ which correlates well with their oxidation 

potentials (vide infra). 
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Figure 4.9 : Time-conversion plot for photoinduced polymerization of CHO in the 
presence of 0.03% 5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-
2,3-di(thiophen-2-yl)quinoxaline (DTDQ) and 0.06% Ph2I+PF6

− 

(room temperature, λ= 480 nm). 

It is also interesting to note that the thiophene derivatives activate cationic 

polymerization more efficiently than the well-known visible light photosensitizer, 

camphorquinone even in the presence of a hydrogen donor such as benzyl alcohol. 

Although at reduced rate, polymerization also proceeds in the presence of air 

indicating oxygen inhibition observed with the aromatic carbonyl sensitizers is not an 

important process. Notably, irradiations with increased light intensity resulted in 

much faster polymerizations. 

As for the all polynuclear aromatic compounds, electron transfer from the excited 

sensitizer to onium salt is feasible if the change in free energy (ΔG) is negative. 

Based on the oxidation potential (Eox) and active excitation energy (E*) of the 

photosensitizer (PS) and the reduction potential (Ered) of the initiator (PI), the free 

energy change (ΔG) for the photoinduced electron transfer process was estimated 

according to equation 4.1. 
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Table 4.3 : Photosensitized cationic polymerizationa of various monomers in the 
presence of DTDT, DTDQ, CQ and Ph2I+PF6

− in CH2Cl2 at room 
temperature (λ= 480 nm). 

Mb 
(mol⋅L−1) 

PSc 
 

Rp × 104  
(mol⋅L−1⋅s−1) 

Conversion  
(%) 

Mn 
(g⋅mol−1)

Mw/Mn 

CHO (5.6) DTDT  2.02  26 10300 1.6 
CHO (5.6) DTDQ  1.96 25 11900 1.5 
BVE (5.3) DTDQ  4.75 78 51700 2.1 
NVC (2.9) DTDQ  3.17 80 23000 2.6 
NVC (2.9)  DTDT  2.84  71 29500 3.2 
CHO (5.6)d DTDT 56.0 59 5570 1.6 

CHO (5.6)d, e DTDT 40.0 49 6060 1.7 
CHO (5.6)d CQ 23.0 28 3510 1.5 

CHO (5.6)d, f CQ 32.0 38 1620 1.3 
 

a Light intensity = 0.045 mW⋅cm−2, polymerization time= 2 h, [Ph2I+PF6
−]= 3.4 × 10−3 mol⋅L−1 

b M: monomer, CHO: cyclohexene oxide, BVE: n-butyl vinyl ether, NVC: N-vinyl carbazole 
c PS: photosensitizer, CQ: camphorquinone, [PS]= 1.7 × 10−3 mol⋅L−1 
d Light intensity = 25 mW⋅cm−2, polymerization time= 10 min  
e The polymerization was performed in aerated media. 
f  In the presence of benzyl alcohol as hydrogen donor.  

Table 4.4 summarizes the ΔGS values of the free energy changes for the electron 

transfer from the singlet states of the photosensitizers to the ground-state iodonium 

salt.  Eox and ES
* for DTDT and DTDQ were determined by cyclic voltammetry [207, 

208] and fluorescence measurements, respectively. The free energy change  (ΔGT ) 

for the electron transfer from the triplet states could not be estimated as 

phophoroscence studies of both sensitizer at 77 K failed to give any emission and the 

possibility of the initiation from triplet state was discarded. As can be seen from 

Table 4.4, electron transfer in singlet excited state of both thiophene compounds is 

thermodynamically favorable. 

Table 4.4 : Free energy changes (ΔGS) for the electron transfer from singlet excited 
states of DTDT and DTDQ to Ph2I+PF6

−. 

Photosensitizer Eox 

(kcal⋅mol−1) 
E* 

(kcal⋅mol−1) 
ΔGS 

(kcal⋅mol−1) 
DTDT 0.95 48.00 -21.48 
DTDQ 0.70 47.13 -26.38 

 
Ered = - 0.20 (V) vs. SCE 
DTDT: 4,7-di(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)benzo[1,2,5]thiadiazole 
DTDQ:  5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-yl)quinoxaline 
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A mechanism based on electron transfer concerning the reaction of excited DTDT 

with iodonium ion is described in reactions. The same mechanism may also be 

postulated for the other thiophene derivative DTDQ. 

 

 

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

 

(4.4f)

The radical cations formed by reaction 4.4c would be capable of initiating cationic 

polymerization since direct initiation by the species formed from polynuclear 

aromatic compounds is a well known process [112, 209-211] and, because of the 

non-nucleophilicity of PF6
- ions, cationic chain propagation would not be prevented. 

Principally, polymerization could also be initiated by the Brønsted acids formed via 

hydrogen abstraction (4.4e) or coupling reactions (4.4f). Of particular importance is 

to evaluate if the Brønsted acids formed from the above reactions are the actual 

initiating species. Thus, photopolymerization experiments with CHO in the presence 

of a strong proton scavenger, 2,6-di-tert-butyl-4-methylpyridine (DBMP) were 

performed. It was observed that polymerization of CHO was totally inhibited when 
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DBMP was present in the system (Table 4.5). Such inhibition indicates that protons 

generated according to reactions 4.4e and 4.4f play important role regarding the 

initiation of cationic polymerization and direct initiation by the reaction of the radical 

cations with the monomer (4.4d) can be neglected. In order to gain more insight to 

the polymerization process, experiments were performed where either the thiophene 

compound or iodonium ion was omitted.  This omission of either of the two 

components failed to produce polymer, which is consistent with the proposed 

mechanism shown in reactions 4.4a-f. 

Table 4.5 : Photosensitized cationic polymerization of cyclohexene oxide (CHO)  
for 2 h at λ= 480 nm. 

CHOa DTDQb Ph2I+PF6
−c Conversion (%) 

+ + + 25 
+ - + - 
+ + - - 

   + d + + - 
 

a  [96] = 5.6 mol⋅L−1 
b  [DTDQ]= 1.7 × 10-3 mol⋅L−1 
c  [Ph2I+PF6

−]= 3.4 ×10-3 mol⋅L−1 
d  In the presence of 2,6-di-tert-butyl-4-methyl pyridine. 

Evidence for the practical value of the promoting effect of conjugated thiophene 

derivatives on cationic polymerization induced by onium salts was obtained from 

cross-linking monomer 1,3-bis(3,4epoxycyclohexylethyl)tetramethyl 

disiloxane (EPOX).  Bulk polymerizations of the bis-epoxide containing 3.4 × 10−3 

mol⋅L−1 Ph2I+PF6
− were carried out. In the absence of the thiophene derivatives 

photoirradiations from a Bluephase light source emmiting at 430-490 nm failed to 

produce a gel after 2 h irradiation. In contrast addition 1.7 × 10−3 mol⋅L−1 DTDQ 

produced complete gelation after 10 min irradiation at room temperature. 

4.2 Polythiophene Derivatives by Step-growth Polymerization via Photoinduced 

Electron Transfer Reactions 

As it was described above, DDT is an efficient electron-transfer photosensitizer for 

diaryliodonium salt initiated cationic polymerization. The proposed mechanism 

based on electron transfer concerning the reaction of excited DDT with iodonium ion 

was explained in detail (reactions 4.3a-f). Polymerizations were initiated either by 
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DDT radical cations or the protons formed via hydrogen abstraction or coupling 

reactions. By virtue of the thiophene type radical cation formation and the crusial 

role of these species in the electropolymerization, the described photoinduced 

process has the potential of forming polymeric molecules. Thus, step-growth 

polymerization of DDT was triggered by generating radical cations not by 

electrochemical means but by the decsribed photochemical process.  

 

Figure 4.10 : UV-Vis spectral change during irradiation of  3,5-
diphenyldithieno[3,2-b:2,3-d]thiophene (DDT) (1.9 x 10-3 mol L-1) 
in the presence of  Ph2I+PF6

- (3.8 x 10-3 mol L-1) in CH2Cl2 solution. 

Since the diphenyliodonium ion does not absorb at the irradiation wavelength, λ > 

350 nm, all the light is absorbed by DDT (Figure 4.2). Experimentally, DDT was 

polymerized quite effectively when the solution containing DDT and 
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diphenyliodonium hexafluorophosphate in CH2Cl2 was irradiated for about 30 min. 

As can be seen from Figure 4.10, the polymerization was accompanied with 

darkening of the solution and a new absorption band at 740-800 nm appeared 

indicating extended conjugation due to polymer formation. Similar absorption 

characteristics were observed with the polymers obtained by electrochemical means 

[206]. 

The GPC profile of the resulting PDDT suggests that only oligomers with different 

chain lengths were formed (Figure 4.11).  However, the molecular weight 

measurements with light scattering gave much higher value (Mw = 6 × 105 g⋅mol−1) 

(Figure 4.12). The low value obtained by GPC method may be due to the different 

hydrodynamic volume of the polymer compared to the polystyrene standards. The 

higher absorbtion at longer wavelengths compared to that found with other 

polythiophenes also confirms the formation of high molecular weight polymers. 

 

Figure 4.11 : The GPC profile of PDDT formed after irradiation of 3,5-
diphenyldithieno[3,2-b:2,3-d]thiophene (DDT) in the presence of 
Ph2I+PF6

−. 
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Figure 4.12 : Zimm plot for PDDT in THF. 

The structure of the polymer was confirmed by 1H NMR and IR analysis.  1H NMR 

spectra of DDT and the photolysis product are shown in Figure 4.13a and b, 

respectively. The broadening of the peaks together with the decrease of the peak at 

about 8.0 ppm in the spectrum (b), corresponding to thiophene protons at 2 position 

clearly indicates the PDDT formation. 

IR spectral analysis of the PDDT also revealed the proposed structure (Figure 4.14). 

As can be seen, the FT-IR spectrum of monomer exhibits most of the characteristic 

peaks at  1592, 1441, 1350 and 1257  cm-1 originating from C=C and C-C. 

Broadening of these peaks in the spectrum of PDDT indicates the formation of 

polymeric material. The band at 730 cm-1 corresponds to the monosubstituted 

benzene. The bands at 847 and 3100 cm-1 corresponding to C-H bending and 

streching of the thiophene ring, respectively, were much reduced in the spectrum of 

PDDT (Figure 4.14) indicating loss of those bonds due to polymerization. The 

shoulder at 1677 cm-1 and the intense band at 1070 cm-1 revealed the formation of 

polyconjugation. 

87 
 



 

Figure 4.13 : 1H NMR spectra of a) DDT and b) PDDT in d6-DMSO. 

The proposed mechanism involves the intermediate DDT radical cation formed by 

the electron transfer from the excited state DDT to the iodonium as described for the 

sensitization of cationic polymerization (reaction 4.3a-f). Such redox process 

between photoexcited DDT and ground state iodonium salt is thermodynamically 

favorable for both singlet and triplet excited states since the corresponding free 

energy changes (ΔG) were found to be -57.8 and -38.8 kcal mol-1, respectively. 

88 
 



 

Figure 4.14 : FT-IR spectra of a) DDT and b) PDDT. 

Although the participation of the triplet state in the redox process can not be 

discarded, the more favorable ΔG value and fluorescence quenching of DDT with 

iodonium ion indicates that electron transfer from singlet state to the salt contributes 

strongly to the generation of radical cation.  In the following step, a spin-pairing of 

two radical cations results in the formation of a dihydrodimer dication, which 

subsequently undergoes a loss of protons and rearomatization. The polymerization 

proceeds with the oxidation of the dimer, which undergoes further coupling reactions 

with the other radical cations formed in a similar manner as in electrochemical 

polymerization mechanism (Figure 4.15). 

Thermal stability of PDDT was investigated by thermal gravimetric analysis (TGA) 

under nitrogen exposure. TGA profiles of DDT and PDDT are shown in Figure 4.16. 

It is clear from the figure that the monomer decomposes at the temperatures above 

400°C. In contrast, the polymer decomposes only slightly (10%) even it is heated up 

to 600°C. The char yield at 800°C (70%) is higher than thiophene polymers [212]. 

This behaviour may be attributed to the constructive effect of extra phenyl and fused 

thiophene rings. The excellent thermal stability indicates that this 

polydithienothiophene derivative can be applied in a wide temperature scale. 

89 
 



 

Figure 4.15 : Polymerization of 3,5-diphenyldithieno[3,2-b:2,3-d]thiophene (DDT). 

 

Figure 4.16 : TGA thermograms of a) DDT and b) PDDT. 

4.3 Novel Free Radical Photoinitiating System by Combination of Cleavage and 

Electron Transfer Reactions 

Conventional free radical polymerization is often based on the thermal homolytic 

cleavage of covalent bonds. Recently, Yoshida and co-workers [213] introduced a 

new initiating system for free radical polymerization using electron transfer driven 

C-Si bond cleavage. As it is shown in Figure 4.17, in this binary system the initiation 

begins with single electron transfer from benzylsilane(stannane) to triarylaminium 
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salt to generate the corresponding radical cation. Benzyl radical is fromed by the 

selective C-Si (C-Sn) bond cleavage that is supported by nucleophilic attack on Si (or 

Sn) by the solvent. Benzyl radical, which may also be trapped by residual aminium 

salt [214, 215], initiates polymerization. 

Figure 4.17 : Free radical polymerization mechanism using electron transfer driven 
C-Si bond cleavage. 

It seemed appropriate to use the same strategy for photoinitiated radical 

polymerization by using phenacyl salts as radical cation sources. It is known that 

phenacyl anilinium and pyridinium salts undergo irreversible photolysis leading to 

complete fragmentation of the photoinitiator (Figure 2.9). Although electronically 

excited salt undergoes heterolytic and/or homolytic cleavage resulting eventually in 

the formation of phenacylium cations, aminium salt is the intermediate product in the 

homolytic cleavage. Based on the formation of such radical cations a new free 

radical photoinitiating system was designed. For this purpose, first two phenacyl 

salts, namely N-phenacyl-N,N-dimethylanilinium hexafluoroantimonate 

(PDA+SbF6
−) and N-phenacylpyridinium hexafluoroantimonate (PPy+SbF6

−) were 

synthesized according to the previously reported procedures [111-113]. A 

benzylsilane, namely (4-methoxybenzyl)trimethylsilane (MBTMS), was also 

synthesized as a second component of the initiating system. The structures of the 

components of the initiating system were confirmed by means of 1H NMR 

spectroscopy and the results were in accordance with previously reported data. 

Figure 4.18 shows the absorption spectra of phenacyl salts and MBTMS. The 

absorption spectra of both PDA+SbF6
− and PPy+SbF6

− exhibit n−π* absorption with a 

maximum at about 300 nm, characteristic of acetophenone derivatives. Differently, 

PPy+SbF6
− possesses an absorption in the visible region that is a characteristic of 
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pyridinium salts. The benzylsilane compound (MBTMS) exhibits an absorption with 

a maximum at about 300 nm. 

 

Figure 4.18 : Absorption spectra of a) PDA+SbF6
− (4.75 × 10−5 mol⋅L−1), b) PPy 

+ − −5 −1 −5 −1SbF6  (4.75 × 10  mol⋅L ) and c) MBTMS (9.5 × 10  mol⋅L ) in 
MeCN. 

The polymerization of methyl methacrylate (MMA) was examined. Typical results 

are presented in Table 4.6. As can be seen, MMA was polymerized efficiently in the 

presence of MBTMS and phenacyl salt (PDA+SbF6
− or PPy +SbF6

−) (Table 4.6, Run 

1 and 4). In order to gain more insight to the polymerization process, experiments 

were performed where either the benzylsilane compound or phenacyl salt was 

omitted. Either no polymer or negligible amount of polymer was formed in the 

absence of MBTMS or phenacyl salts, indicating that both of the two components of 

the initiating system are indispensable for the polymerization to occur. 
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Run Phenacyl saltb

 
MBTMSc 

 
Yield 
(%) 

Mn 
(g⋅mol−1) 

M /M  w n

1 PDA+SbF6
− + 18 3  7770 2.04 

2 PDA+ bF6S − - 0 - - 
3 - + 2 32550 2.05 
4 PPy+SbF6

− + 1 50260 2.20 
PPy+ F6

9 
5 Sb − - 0 - - 
6 - + 0.6 47660 2.12 

 

a L t intensity = 0.0  mW⋅cm−2, poly rization tim h 
b [Phenacyl salt] = 6.67 × 10−2 mol⋅L−1 

In Figures 4.19 and 4.20, the conversion of MMA is plotted versus time. As can be 

igh 45 me e= 2 

c [MBTMS] = 13 × 10−2 mol⋅L−1 

seen, the polymerization started without induction period and increased almost 

linearly with time. 

 

Figure 4.19 : Time-conversion plot for photoinduced polymerization of MMA by 
using PDA+SbF − (6.67 × 10−2 mol⋅L−1) and MBTMS (13.0 × 10−2 

Table 4.6 : Photoinitiated free radical polymerization of MMA in the presence of 
PDA+SbF − or PPy+SbF −, and MBTMS at room temperature.a 

6

mol⋅L−1) (room temperature, λ> 300 nm). 

6 6
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Figure 4.20 : Time-conversion plot for photoinduced polymerization of MMA by 
using PPy+SbF6

− (6.67 × 10−2 mol⋅L−1) and MBTMS (13.0 × 10−2 
mol⋅L−1) (room temperature, λ> 300 nm). 

The photoinitiated free radical polymerization of some representative monomers, 

namely butyl acrylate (BA) and styrene (S) with the phenacyl salts in the presence of 

MBTMS was also studied. As can be seen from Table 4.7, polymerization of BA also 

proceeded under the similar conditions and gave the poly(BA) in moderate yields 

(Table 4.7, Run 3 and 4). Interestingly, S was polymerized in low yields and the 

molecular weights of the polymers were smaller. Higher activity with more 

electrofilic (meth)acrylate monomers may be due to the possibility of zwitterionic 

polymerization through the weak bases pyridine and N,N-dimethylaniline formed 

concomitantly. 
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Table 4.7 : Photoinitiated free radical polymerization of various monomers in the 
presence of PDA+SbF6

− or PPy+SbF6
−, and MBTMS at room 

temperature.a 

Run Monomerb Phenacyl 
saltc 

Yield (%) Mn 
(g⋅mol−1) 

Mw/Mn 

1 MMA PDA+SbF6
− 18 3777 2.04 

2 MMA PPy+SbF6
− 19 50260 2.20 

3 BA PDA+SbF6
− 53 129340 2.02 

4 BA PPy+SbF6
− 20 138250 2.09 

5 S PDA+SbF6
− 3 2900 1.37 

6 S PPy+SbF6
− 4 4650 2.29 

 

a Light intensity = 0.045 mW⋅cm−2, polymerization time= 2 h, [MBTMS] = 13 × 10−2 mol⋅L−1 
b [MMA] = 6.2 mol⋅L−1, [BA] = 5.2 mol⋅L−1, [S] = 5.8 mol⋅L−1 
c [Phenacyl salt] = 6.67 × 10−2 mol⋅L−1 

The proposed mechanism based on electron transfer concerning the reaction of 

PDA+SbF6
− with MBTMS is described in Figure 4.21. The same mechanism may 

also be postulated for PPy+SbF6
− (Figure 4.22). The initiation reaction begins with 

homolytic cleavage of PDA+SbF6
− to generate aminium salt. The next step consists 

of single electron transfer from MBTMS to aminium salt to generate benzylsilane 

radical cation (a). The benzyl radical, which initiates the polymerization, is formed 

by the nucleophile-assisted C-Si bond cleavage of benzylsilane radical cation. The 

solvent (MeCN) is acting as the nucleophile. An electron transfer between aminium 

salt and phenacyl radical (b) should also be considered. However, higher reactivity of 

the radical cations with silane compounds reveals that the probability of such 

electron transfer is limited. 
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Figure 4.21 : Proposed mechanism for the photoinitiated radical polymerization by 
using PDA+SbF6

− in the presence of MBTMS. 
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Figure 4.22 : Proposed mechanism for the photoinitiated radical polymerization by 
using PPy+SbF6

− in the presence of MBTMS. 
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5. CONCLUSION 

In this thesis, possibility of electron transfer reactions to initiate polymerizations by  

photochemical means was described. Three different strategies were employed for 

extending absorptivity of the initiating systmes to longer wavelengths. 

The first strategy is composed of electron transfer photosensitization by using highly 

conjugated thiophene derivatives, namely 3,5-diphenyldithieno[3,2-b:2,3-

d]thiophene (DDT), 4,7-di(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-

yl)benzo[1,2,5]thiadiazole (DTDT) and 5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-

5-yl)-2,3-di(thiophen-2-yl) quinoxaline (DTDQ). For the potential use of these 

conjugated thiophene compounds as photosensitizers, the excited state emission 

characteristics were investigated by means of fluorescence and phosphorescence 

spectroscopic measurements. 

Several types of cationically polymerizable monofunctional monomers, such as 

cyclohexene oxide, n-butyl vinyl ether, styrene and N-vinylcarbazole, and 

bifunctional monomers such as 3,4-epoxycyclohexyl-3′,4′-epoxycyclohexene 

carboxylate and 1,3-bis(3,4epoxycyclohexylethyl)tetramethyl disiloxane (EPOX) 

were readily polymerized in bulk or dichloromethane solutions at appropriate 

wavelengths where the light emission is well matched with absorption of sensitizers 

and iodonium salt is transparent. Interestingly, thiophene derivatives activated 

cationic polymerization more efficiently than the well-known visible light 

photosensitizers, anthracene and camphorquinone. 

A mechanism based on electron transfer concerning the reaction of excited 

sensitizers with iodonium ion was proposed. Polymerizations achieved in the 

presence of a strong proton scavenger (2,6-di-tert-butyl-4-methylpyridine (DBMP)) 

revealed that the Brønsted acids formed via hydrogen abstraction or coupling 

reactions are the actual initiating species and direct initiation by the reaction of the 

radical cations with the monomer can be neglected. 
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The second strategy relies on the synthesis of conjugated thiophene polymers by 

photoinduced step-growth polymerization using onium salts. The process is based on 

the thiophene type radical cation formation explained in the first strategy and the 

crusial role of these species in the electropolymerization. Formation of the polymer 

was followed by UV-Vis spectroscopy and a new absorption band at 740-800 nm 

appeared indicating extended conjugation. The synthesized polymer was 

characterized by spectral methods (1H NMR and IR analysis), GPC and light 

scattering measurements. The excellent thermal stability obtained by thermal 

gravimetric analysis (TGA) indicated that PDDT can be applied in a wide 

temperature scale. 

The described method may be useful particularly when the polymers are desired to 

be coated on various surfaces such as glasses, since unless they function as 

electrodes where electropolymerizations typically occur. In contrast to 

electrochemical and chemical oxidation processes, the descibed photoinduced 

polymerization is simple and straightforward.  Because the protonic acid, formed 

during the polymerization, can induce the polymerization of cationically 

polymerizable monomers under appropriate conditions, the process is potentially 

useful for the in situ preparation of hybrid sytems consisting of epoxy networks and 

conjugated polymers. 

In the final strategy, a novel free radical photoinitiating system by combination of 

cleavage and electron transfer reactions was suggested. The initiating system is 

composed of two components, a phenacyl salt and a benzylsilane compound.  

N-Phenacyl-N,N-dimethylanilinium hexafluoroantimonate (PDA+SbF6
−), N-

phenacylpyridinium hexafluoroantimonate (PPy+SbF6
−) and (4-

methoxybenzyl)trimethylsilane (MBTMS) were synthesized, and characterized by 1H 

NMR and UV spectroscopy.  Several types of monomers such as methyl methacylate 

(MMA), butyl acrylate (BA) and styrene (S) were efficiently polymerized by using 

PDA+SbF6
− or PPy +SbF6

− in the presence of MBTMS. The control experiments 

showed that both of the two components of the initiating system are indispensable for 

the polymerization to occur. 

The postulated mechanism is based on the electron transfer reaction between 

phenacyl salt and MBTMS. The initiation is achieved by the bezyl radical, which is 
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formed by the nucleophile-assisted C-Si bond cleavage of benzylsilane radical 

cation. Although mechanistic details still remain to be evaluated it is clear that 

photoinitiated free radical polymerization of vinyl monomers can efficiently be 

realized with the aid of phenacyl salts and MBTMS. 
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