
7/8/2016

1

Module 08Improving Query Performance

Week 3 – Optimizing a Data Warehouse for Scale and Performance
Delivering a Relational Data Warehouse

Module Outline08 | Improving Query Performance

Topic
► Table Indexing
► Data Warehouse Indexing Strategies
► Demo: Optimizing Table Query Performance



7/8/2016

2

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Module Outline08 | Improving Query Performance

Topic
► Table Indexing

Data Warehouse Indexing Strategies
Demo: Optimizing Table Query Performance



7/8/2016

3

Table Indexing
Without table indexes, SQL Server will retrieve data by using a table scan
 Table scan: SQL Server reads all table pages
 Index: SQL Server uses index pages to find rows

Table Indexing
 Heap (no index)
 Clustered index
 Nonclustered index
 Columnstore index

Indexing Possibilities



7/8/2016

4

Table Indexing
 Indexes are commonly based on tree structures
– Top node is called the root node
– Bottom level nodes are called leaf nodes

Tree Structures

Data Pages
Table

Root Index Page
Index Pages

Leaf Nodes

Nodes

Table Indexing
 A table with no indexes is called a heap
– No specified order for pages within the table
– No specified order for data within each page

 Inserted or updated rows can be placed anywhere within the table
– Updates can result in rows moving to another page, and can leave forwarding pointers
– This can impact on query performance

Heaps



7/8/2016

5

Table Indexing
 A clustered index sorts and stores the data rows of the table in order of the clustering key
– Table pages are stored in a logical order
– Rows are stored in a logical order within table pages
– There can only be one clustered index per table
– Clustered indexes can be unique or non-unique

 A table is structured as either a heap or clustered index

Clustered Indexes

Table Indexing
 Limits on clustering keys:
– 16 columns
– 900 bytes

Clustered Indexes (Continued)



7/8/2016

6

Table Indexing
 Inserted rows must be placed into the correct logical position
– This may involve splitting pages of the table

 Updated rows can either remain in the same place if they still fit and if the clustering key value is still the same
 Deleted rows free up space by flagging the data as unused

Clustered Indexes ► Mechanics

Table Indexing
 Creating a clustered index on a view persists the data set that the query returns
 Creating indexes on computed columns avoids the need to calculate values at the time of execution
 Queries run faster because the data set—including aggregations, joins, and calculations—is stored

Clustered Indexes ► Data Persistence



7/8/2016

7

Table Indexing
 Queries related to the clustering key can seek
 Queries related to the clustering key can scan and avoid sorts

Clustered Indexes ► Querying

Table Indexing
 A nonclustered index can be created on a table, whether structured as a heap or clustered index
– They are also based on tree structures
– Leaf levels point to base table structure rather than containing data
– They can improve the performance of frequently used queries
– The impact on data modification performance needs to be considered

Nonclustered Indexes



7/8/2016

8

Table IndexingNonclustered Indexes ► On a Heap

Heap
Data Pages

Root Index PageNonclustered Index Pages
Leaf Nodes
Contain Row IDs

Table IndexingNonclustered Indexes ► On a Clustered Index

Clustering Key

Root Index Page
Index Pages
Leaf Nodes
Contain Keys

Clustered Index
Index Pages Containing Data

Root Index Page



7/8/2016

9

Table Indexing
 Covering indexes can greatly increase performance of queries
 Nonclustered indexes can use the INCLUDE clause
 The INCLUDE clause enables storage of selected data columns at the leaf level of a nonclustered index

Nonclustered Indexes ► Covering Indexes

Table Indexing
 A columnstore index resides in-memory, as compressed data in pages based on columns instead of rows
– Can achieve 10x data compression and up to 100x speed up in analytics query processing

Columnstore Indexes



7/8/2016

10

Table IndexingColumnstore Indexes ► Example

ProductID OrderDate Cost
310 20010701 2171.29
311 20010701 1912.15
312 20010702 2171.29
313 20010702 413.14data page1000

ProductID OrderDate Cost
314 20010701 333.42
315 20010701 1295.00
316 20010702 4233.14
317 20010702 641.22data page1001

Row Store
ProductID
310
311
312
313
314
315
316
317
318
319
320
321

data page2001

OrderDate
20010701
…
20010702
…
…
20010703
…
…
…
…
20010704
…

data page2000
data page2002

Cost
2171.29
1912.15
2171.29
413.14
333.42
1295.00
4233.14
641.22
24.95
64.32
1111.25

Column Store

Table Indexing
 Columnstore indexes are most suitable for:
– Databases that have star or snowflake schemas
– Tables that have large numbers of rows
– Tables that contain data that responds well to compression

 Two types:
– Clustered
– Nonclustered

Columnstore Indexes (Continued)



7/8/2016

11

Table Indexing
 Clustered columnstore indexes:
– Include all columns in the table
– The only index on the table
– Updatable

 Nonclustered columnstore indexes:
– Include some or all columns in the table
– Can be combined with other indexes
– Read-only

Columnstore Indexes ► Types

Table Indexing
 Carefully consider how the table will be queried
 Good candidates for clustering keys:
– Short (integers preferred)
– Static
– Increasing (not necessarily monotonically)
– Unique

 Always specify indexes as unique if the data they contain is unique

Recommended Practices



7/8/2016

12

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Module Outline08 | Improving Query Performance

Topic
Table Indexing

► Data Warehouse Indexing Strategies
Demo: Optimizing Table Query Performance



7/8/2016

13

Data Warehouse Indexing Strategies
ETL Processing
 Bulk inserts
 Lookups and some updates

 Large fact tables
 Star joins to dimension tables

Data Model Processing
 Mostly table/index scans

Report Processing
 Predictable queries
 Many rows with range-based query filters

Self-Service BI
 Potentially unpredictable queries

ETL

Data Models

Reports

User Queries

Data Warehouse Indexing Strategies
 ETL processing
– Staging
– Data warehouse loading

 Data model processing
 Reporting
 Self-service BI, including ad hoc analysis

Workloads



7/8/2016

14

Data Warehouse Indexing Strategies
 ETL loads need to be fast, and minimize impact on source systems
 Consider:
– Creating non-indexed (heaps) staging tables

Workloads ► ETL Processing

Data Warehouse Indexing Strategies
 Different consideration should be given to dimension and fact table index designs

Workloads ► Data Warehouse Loading



7/8/2016

15

Data Warehouse Indexing Strategies
 Consider:
– Creating a clustered index on the surrogate key for each dimension table
– Creating a nonclustered index on the business key(s) to support surrogate key lookups during loads
• If Type 2 changes are supported, combine an appropriate change tracking column

– Creating nonclustered indexes on other frequently searched dimension columns
 Avoid partitioning dimension tables

Workloads ► Data Warehouse Loading ► Dimension Tables

Data Warehouse Indexing Strategies
 Consider:
– Creating a clustered index on the date key of the fact table
– Creating nonclustered indexes for each foreign key
– If possible create columnstore indexes

 For periodic or accumulative snapshot tables, consider a clustering key on the date key and also an appropriate dimension key

Workloads ► Data Warehouse Loading ► Fact Tables



7/8/2016

16

Data Warehouse Indexing Strategies
 For partitioned table:
– Align the cluster key with the partition key
– Ensure nonclustered indexes are aligned

Workloads ► Data Warehouse Loading ► Fact Tables (Continued)

Data Warehouse Indexing Strategies
 Analysis Services data models can be developed to process and cache data, or passthrough
 Cache storage:
– Multidimensional models (cubes): MOLAP
– Tabular models: xVelocity (or Vertipaq)

 Passthrough:
– Cubes: ROLAP
– Tabular models: DirectQuery

Workloads ► Data Model Processing



7/8/2016

17

Data Warehouse Indexing Strategies
 Cached data models:
– Large data models are usually partitioned and processed by date ranges
– A clustered index on a date key of a fact table will optimize the data processing fact retrieval

Workloads ► Data Model Processing ► Caching

Data Warehouse Indexing Strategies
 Passthrough data models:
– Clustered columnstore indexes provide excellent performance

Workloads ► Data Model Processing ► Passthrough



7/8/2016

18

Data Warehouse Indexing Strategies
 Reporting, including self-service BI, workloads will require an understanding of queries and frequencies
 Consider:
– Columnstore indexes for fact tables
– Non-clustered indexes, and also covering indexes, for dimension keys

Workloads ► Reporting

Data Warehouse Indexing Strategies
 Indexes need to be maintained
– Post-ETL
– Scheduled maintenance

 Indexes should also be periodically reviewed

Index Maintenance



7/8/2016

19

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Module Outline08 | Improving Query Performance

Topic
Table Indexing
Data Warehouse Indexing Strategies

► Demo: Optimizing Table Query Performance



7/8/2016

20

Demo
Demo objectives:1. Configure table data compression
2. Create table indexes

Optimizing Table Query Performance

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.


