
7/8/2016

1

Module 06Exploring Additional Schema Design Concepts

Week 2 – Designing a Relational Data Warehouse Schema
Delivering a Relational Data Warehouse

Module Outline06 | Exploring Additional Schema Design Concepts

Topic
► Date Dimension
► Slowly Changing Dimensions
► Parent-Child Hierarchies
► Additional Schema Design Concepts
► Demo: Reviewing the AdventureWorksDW Design
► Lab: Designing a Relational Data Warehouse Schema



7/8/2016

2

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Module Outline06 | Exploring Additional Schema Design Concepts

Topic
► Date Dimension

Slowly Changing Dimensions
Parent-Child Hierarchies
Additional Schema Design Concepts
Demo: Reviewing the AdventureWorksDW Design
Lab: Designing a Relational Data Warehouse Schema



7/8/2016

3

Date Dimension
 The Date dimension is the most common dimension used in analysis
 Provides more efficient and flexible analysis over time, rather than using a date value in the fact table
 Conformed for consistent use across all fact tables
– And, ensures consistent date analysis when referenced by Self-Service BI solutions

 May be referenced multiple times by a single fact table
– Role playing: Order date, Due date, Ship date, etc.

Date Dimension
 Stores one row per date (i.e. day grain)
 Includes useful attributes to enable time period analysis
– For example, Year, Quarter, Month, Week, and Day
– Attributes are organized into hierarchies, such as calendar or fiscal, for navigation and summarization

(Continued)



7/8/2016

4

Date Dimension
 Single table design (never snowflake)
 Define a key integer using YYYYMMDD format (i.e. 20160622)
– The key values are human-readable
– This is reduces the likelihood of error when configuring partitions, which are typically time-based

 Some designs name this the Time dimension
– However, if there is need to store facts at hour/minute/second grain, then a separate table storing all possible periods within a day should be considered—name this the Time dimension

Recommended Practices

Date Dimension
 To enable Time Intelligence calculations in SSAS tabular models, the table must:
– Include a column of type Date
– Have no gaps between the first (min) and last (max) dates

Recommended Practices (Continued)



7/8/2016

5

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Module Outline06 | Exploring Additional Schema Design Concepts

Topic
Date Dimension

► Slowly Changing Dimensions
Parent-Child Hierarchies
Additional Schema Design Concepts
Demo: Reviewing the AdventureWorksDW Design
Lab: Designing a Relational Data Warehouse Schema



7/8/2016

6

Slowly Changing Dimensions
 Support a primary role of data warehouse to describe the past accurately
 Maintain historical context as new, or changed data, is loaded into dimension tables
 Implement changes by Slowly Changing Dimension (SCD) type:
– Type 1: Overwrite the existing dimension record
– Type 2: Insert a new ‘versioned’ dimension record
– Type 3: Track limited history with attributes

Slowly Changing Dimensions
 Existing record is updated
– History is not preserved
– Common form of Slowly Changing Dimension

Type 1

LastName change to Valdez-Smythe



7/8/2016

7

Slowly Changing Dimensions
 Existing record is ‘expired’ and new record inserted
– History is preserved
– Surrogate key is required
– Common form of Slowly Changing Dimension

Type 2

SalesTerritoryKey change to 10

Slowly Changing Dimensions
 Existing record is updated
– Limited history is preserved
– Implementations are uncommon

Type 3

SalesTerritoryKey change to 10



7/8/2016

8

Slowly Changing Dimensions
 Use SCD designs when dimension changes are slow, i.e. occasional and sporadic
– Minimize many implementations on a single table—especially Type 2
– Balance the need for historic accuracy vs. usability and efficiency

 If changes are frequent (i.e. rapidly changing dimension), consider:
– Type 2 implementations, especially for smaller tables (<~10 million)
– Storing numeric changes as measures in a fact table, i.e. volatile product prices

Recommended Practices

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.



7/8/2016

9

Module Outline06 | Exploring Additional Schema Design Concepts

Topic
Date Dimension
Slowly Changing Dimensions

► Parent-Child Hierarchies
Additional Schema Design Concepts
Demo: Reviewing the AdventureWorksDW Design
Lab: Designing a Relational Data Warehouse Schema

Parent-Child Hierarchies
 A dimension that defines a recursive relationship can be used to generate a parent-child hierarchy
 These hierarchies are usually ragged
– Leaf (bottom) members at varying depths

 Common business examples include:
– Organization charts
– General Ledger structures
– Bill of materials



7/8/2016

10

Parent-Child HierarchiesExample ► Organization Chart

BrianBrian

AmyAmy StephenStephen SyedSyed

ShuShu MichaelMichael JoséJoséJaeJae

PeterPeter

EmployeeKey ParentEmployeeKey Employee
277 277 Brian Welcker
290 277 Amy Alberts
272 277 Stephen Jiang
294 277 Syed Abbas
287 272 Shu Ito
281 272 Michael Blythe
288 272 José Saraiva
291 290 Jae Pak
299 281 Peter Myers

Parent-Child Hierarchies
 Parent-child hierarchies differ fundamentally from regular “fixed level” hierarchies
 For regular hierarchies:
– Members of a level (siblings) are of the same type (year, quarter, etc.)
– Facts are attached at a lower level, and aggregated (rolled up) to higher levels

Characteristics



7/8/2016

11

Parent-Child Hierarchies
 For parent-child hierarchies:
– Each member is of the same type
• For example, in an organization chart, every member is an employee
• As another example, in a bill of materials, each member is a product

– Facts can be attached at any level of the hierarchy, and so a member represents its own value rolled up with its descendants’ values

Characteristics (Continued)

Parent-Child Hierarchies
 Avoid implementing SCD Type 2 changes
– Consider what happens when a non-leaf member changes… all descendants must be versioned also!

 The root member(s) should be either:
– NULL (if allowed)
– Or, define the parent key by using their key

Recommended Practices



7/8/2016

12

Parent-Child Hierarchies
 Develop SSAS multidimensional models
– There is native support to develop only one parent-child hierarchy per dimension
• Note: Aggregations for parent-child hierarchies cannot be pre-computed

– Advanced configurations can leverage the UnaryOperator property to control rollup behavior, and will require that values (+, -, ~) be stored in the dimension table

Recommended Practices (Continued)

Parent-Child Hierarchies
 If developing a SSAS tabular model, consider naturalizing the recursive relationship into fixed dimension columns (Level1, Level2, etc.)
– SSAS tabular models cannot express a recursive relationship as a hierarchy
– Data Analysis Expression (DAX) does include a set of PATH functions that can be used to naturalize the recursive relationship
– However, there is no native support for the unary operator, and the way a ragged hierarchy is expressed is often confusing to users (i.e. blanks are shown where no member actually exists)

Recommended Practices (Continued)



7/8/2016

13

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Module Outline06 | Exploring Additional Schema Design Concepts

Topic
Date Dimension
Slowly Changing Dimensions
Parent-Child Hierarchies

► Additional Schema Design Concepts
Demo: Reviewing the AdventureWorksDW Design
Lab: Designing a Relational Data Warehouse Schema



7/8/2016

14

Additional Schema Design Concepts
 Degenerate dimensions
 Junk dimensions
 Factless fact tables

Additional Schema Design Concepts
 A degenerate dimension is sourced directly from fact table columns
– It does not make sense to design a dimension that consists of a single attribute (e.g. order number)
– Common examples include order, invoice or tracking numbers

Degenerate Dimensions



7/8/2016

15

Additional Schema Design Concepts
 When there are at least several miscellaneous flag or text columns, especially with low cardinality, they can be grouped together into a “junk dimension”
– Results in a single dimension key value for each combination of values

Junk Dimensions

Additional Schema Design ConceptsJunk Dimensions ► Example

Status StateY StateZ
Open 1 A
Closed 2 A
Open 2 A
Open 1 A
Closed 1 B
Closed 1 A
…

Consider source data with these three columns (each with two possible values):
OrderFlagsKey Status StateY StateZ
1 Open 1 A
2 Open 1 B
3 Open 2 A
4 Open 2 B
5 Closed 1 A
6 Closed 1 B
7 Closed 2 A
8 Closed 2 B

The DimOrderFlags dimension is populated with one row per combination of junk column values
OrderFlagsKey
1
7
3
1
6
5
…

The OrderFlagsKeyvalue is assigned to each fact row



7/8/2016

16

Additional Schema Design Concepts
 A fact table does not always need facts to measure a process
– Some processes are measured only by counting events or activities

 A fact table with no measures is called a factless fact table
– What is stored is a combination of dimension key values

Factless Fact Tables

Additional Schema Design Concepts
 Count aggregations can measure the number of events
– For example, the number of calls received by a call center

 These tables can also capture details of conditions
– For example, the assignment of salespeople to territories for a month

Factless Fact Tables (Continued)



7/8/2016

17

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Module Outline06 | Exploring Additional Schema Design Concepts

Topic
Date Dimension
Slowly Changing Dimensions
Parent-Child Hierarchies
Additional Schema Design Concepts

► Demo: Reviewing the AdventureWorksDW Design
Lab: Designing a Relational Data Warehouse Schema



7/8/2016

18

Demo
Demo objectives:1. Explore the DimDate table
2. Explore the FactResellerSales table
3. Explore the FactInternetSalesReason table
4. Review the slowly changing dimension designs

Reviewing the AdventureWorksDW Design

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.



7/8/2016

19

Module Outline06 | Exploring Additional Schema Design Concepts

Topic
Date Dimension
Slowly Changing Dimensions
Parent-Child Hierarchies
Additional Schema Design Concepts
Demo: Reviewing the AdventureWorksDW Design

► Lab: Designing a Relational Data Warehouse Schema

Lab
Lab exercises:1. Provisioning an Azure VM
2. Setting Up the Azure VM
3. Exploring the AdventureWorks Databases

01 | Designing a Relational Data Warehouse Schema



7/8/2016

20

Lab
Tips:
 Be sure to read instructions carefully, especially when executing scripts
 There is a lab setup shortcut, and it can be used to reset and try again

01 | Designing a Relational Data Warehouse Schema

Lab
Reminder
When you have completed the lab, remember to stop your VM
You are charged when the VM status is Running, but you are not charged when the VM status is Stopped (Deallocated)

01 | Designing a Relational Data Warehouse Schema



7/8/2016

21

©2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.


