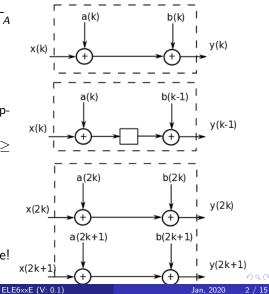
ELE617E Lectures

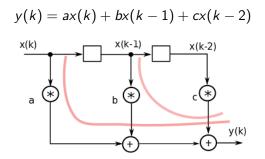
Prof. Dr. Müştak E. Yalçın

Istanbul Technical University

mustak.yalcin@itu.edu.tr

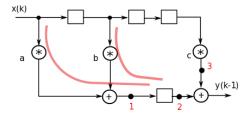

Pipelining and Parallel Processing

A datapath: $T_{\text{critical}} = 2T_A$ and $T_s = T_{clk} \ge 2T_A$


Pipelining processing: Introduce latches along the datapath.

 $T_{\text{critical}} = T_A \text{ and } T_s = T_{clk} \ge T_A$ latancey !

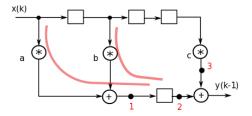
Parallel processing: Duplicate the hardware 2 output at the same time! $T_s = T_{clk}/2$ and $T_{clk} \ge 2T_A$


Prof. Dr. Müştak E. Yalçın (İTÜ)

 $T_{\text{critical}} = T_M + 2T_A$ then $T_s \ge T_{\text{critical}}$

The effective critical path can be reduced by using pipeling.

HOW: introducing pipelining latches along the datapath.

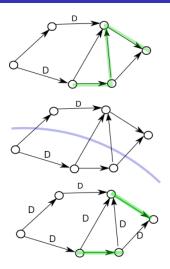


$T_{\rm critical} = T_M + T_A$

Clock	Input	Node 1	Node 2	Node 3	Output
0	x(0)	ax(0) + bx(-1)	-	-	-
1	x(1)	ax(1) + bx(0)	ax(0) + bx(-1)	cx(-2)	y(0)
2	x(2)	ax(2) + bx(1)	ax(1) + bx(0)	cx(-1)	y(1)
3	x(3)	ax(3) + bx(2)	ax(2) + bx(1)	cx(0)	y(2)

Pipelining reduces the critical path but it leads to a penalty:

Prof. Dr. Müştak E. Yalçın (İTÜ)

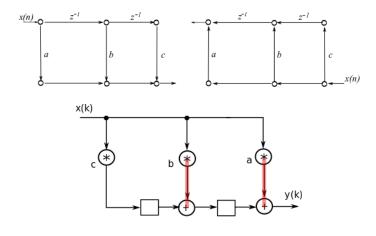


$T_{\rm critical} = T_M + T_A$

Clock	Input	Node 1	Node 2	Node 3	Output
0	x(0)	ax(0) + bx(-1)	-	-	-
1	x(1)	ax(1) + bx(0)	ax(0) + bx(-1)	cx(-2)	y(0)
2	x(2)	ax(2) + bx(1)	ax(1) + bx(0)	cx(-1)	y(1)
3	x(3)	ax(3) + bx(2)	ax(2) + bx(1)	cx(0)	y(2)

Pipelining reduces the critical path but it leads to a penalty: increase in latency! + latches

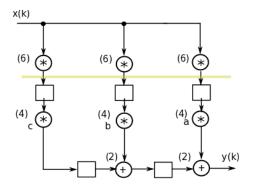
- Drawbacks:
 - Increase latency
 - Increase number of delay elements (registers/latches) in the critical path
- Clock period limitation: critical path may be between
 - An input and a latch
 - A latch and an output
 - 2 Latches
 - An input and an output
- Pipelining latches can only be placed across any feed-forward cutset of the graph
 - Cutset: A cutset is a set of edges of a graph such that if these edges are removed from the graph, the graph becomes disjoint.
 - Feed-forward cutset: A cutset is called a feed-forward cutset if the data move in the forward direction on all the edges of the cutset.

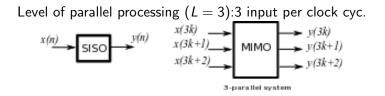


 $T_{\text{critical}} = 4u.t.$ to $T_{\text{critical}} = 2u.t.$ In the 2-level pipelined system, the number of delay elements in any path from the input to the output is increased by 1 Prof. Dr. Müştak E. Yalçın (İTÜ) ELE6xxE (V: 0.1) Jan, 2020

6 / 15

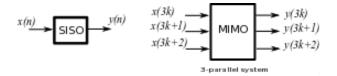
Transposition Theorem


Reversing the direction of all edges in a given SFG and interchanging the input and output ports preserve the functionality of the system.


 $T_{\rm critical} = T_A + T_M$

Prof. Dr. Müştak E. Yalçın (İTÜ)

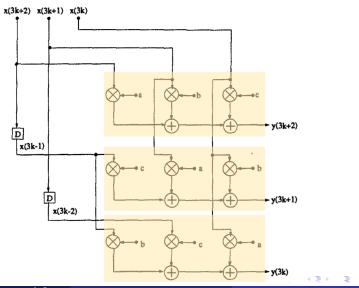
Break the MULTIPLIER into 2 smaller units with processing time of 6 and 4 units.



If a computation can be pipelined, it can be also be processed in parallel. To obtain a parallel processing structure, SISO system must be converted into a MIMO system.

Parallel Processing = Block processing systems: number of inputs procedded in a clock is referred to as the block size.

Placing a latch at any line produces an efferctive delay of *L* clock cyc. (block delay or L-slow). Delaying x(3k) by 1 clock would results in x(3(k-1)) !

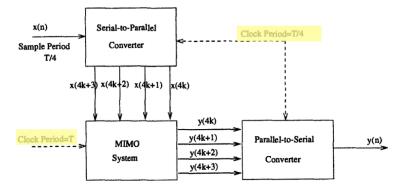

Critical path of Parallel Processing system has remained unchanged!

$$T_{clk} \ge T_{critical} = T_M + 2T_A$$

After 3-parallel system: 3 samples processes in 1 clock cyc.

$$T_{itr} = T_s = \frac{1}{L} T_{clk}$$

Paralle Processing Architecture for 3-tap filter:



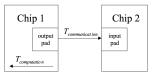
Prof. Dr. Müştak E. Yalçın (İTÜ)

ELE6xxE (V: 0.1)

Jan, 2020 11 / 15

Complete Paralle Processing System

 $T_s \neq T_{clk}$

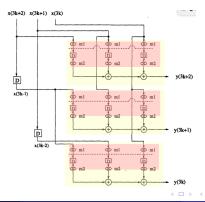

See: serial-to-parallel (Fig 3.12) and parallel-to-serial converters (Fig. 3.13)

Prof. Dr. Müştak E. Yalçın (İTÜ)

Why use paralle processing when we can use pipelining equally well ? Why to duplicate the HW ?

Input/Output bottlenecks !

- Consider the following chip set, when the critical path is less than the I/O bound (output-pad delay plus input-pad delay and the wire delay between the two chips), we say this system is communication bounded.
- So, we know that pipelining can be used only to the extent such that the critical path computation time is limited by the communication (or I/O) bound. Once this is reached, pipelining can no longer increase the speed.



Parallel & Pipelining Processing

By combining parallel processing (block size: L) and pipelining (pipelining stage: M), the sample period can be reduce to:

$$T_{itr} = T_s = rac{1}{ML} T_{clk}$$

Combined fine-grain pipelining and parallel processing for 3-tap FIR filter.

Prof. Dr. Müştak E. Yalçın (İTÜ)