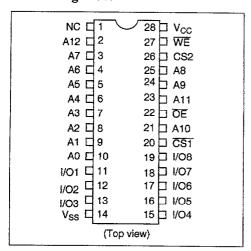
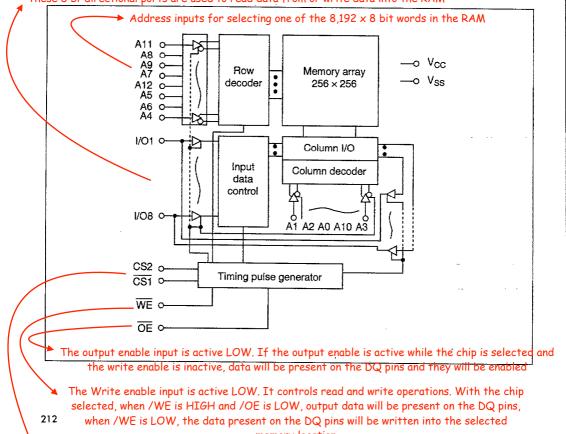
8192-word × 8-bit High Speed CMOS Static RAM

Features


- Low-power standby
 - 0.1 mW (typ)
 - -- 10 μW (typ) L-/LL-version
- · Low power operation
- 15 mW/MHz (typ)
- · Fast access time
 - 100/120/150 ns (max)
- Single +5 V supply
- · Completely static memory
 - No clock or timing strobe required
- · Equal access and cycle time
- · Common data input and output, three-state output
- · Directly TTL compatible - All inputs and outputs
- · Battery back up operation capability (L-/LL-version)

Ordering Information


Type No.	Access time	Package
HM6264AP-10	100 ns	600-mil, 28-pin
HM6264AP-12	120 ns	(DP-28)
HM6264AP-15	150 ns	
HM6264ALP-10	100 ns	
HM6264ALP-12	120 ns	
HM6264ALP-15	150 ns	
HM6264ALP-10L	100 ns	
HM6264ALP-12L	120 ns	
HM6264ALP-15L	150 ns	

Type No.	Access time	Package
HM6264ASP-10	100 ns	300-mil, 28-pin
HM6264ASP-12	120 ns	plastic DIP (DP-28N)
HM6264ASP-15	150 ns	<u></u>
HM6264ALSP-10	100 ns	
HM6264ALSP-12	120 ns	
HM6264ALSP-15	150 ns	
HM6264ALSP-10	L 100 ns	
HM6264ALSP-12	L 120 ns	
HM6264ALSP-15	L 150 ns	
HM6264AFP-10	100 ns	28-pin plastic
HM6264AFP-12	120 ns	(FP-28D/DA)
HM6264AFP-15	150 ns	
HM6264ALFP-10	100 ns	
HM6264ALFP-12	120 ns	····
HM6264ALFP-15	150 ns	
HM6264ALFP-10	L 100 ns	
HM6264ALFP-12	L 120 ns	
HM6264ALFP-15	5L 150 ns	
		end of the type number mm (max) thickness.

Pin Arrangement

Block Diagram
These 8 bi-directional ports are used to read data from or write data into the RAM

CS1 is active LOW and CS2 is active HIGH. Both chip enables must be active when data read from or write to the device.

						HM	16264A Series		
Trut	h Table								
WE	CS1	CS2	ŌĒ	Mode	I/O pin	V _{CC} current	Note		
×	Н	×	×	Not selected	High Z	I _{SB,} I _{SB1}			
×	×	L	×	— (power down)	High Z	I _{SB,} I _{SB1}			
Н	L	Н	Н	Output disabled	High Z	Icc			
Н	L	Н	L	Read	Dout	Icc	Read cycle		
L	L	Н	Н	Write	Din	Icc	Write cycle 1		
L	L	Н	L	Write	Din	I _{CC}	Write cycle 2		
Note:	×: Do	n't care.							

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Terminal voltage *1	V _T	-0.5 *2 to +7.0	V
Power dissipation	P _T	1.0	w
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature (under bias)	Tbias	-10 to +85	°C

Notes: 1. With respect to V_{SS} . 2. -3.0 V for pulse width \leq 50 ns

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input voltage	V _{IH}	2.2		6.0	V
	VIL	-0.3 *1	_	0.8	V

Note: 1. -3.0 V for pulse width ≤ 50 ns

DC and Operating Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	Test condition
Input leakage current	ll _U l	_		2	μĄ	Vin = V _{SS} to V _{CC}
Output leakage current	ll _{LO} l	_	_	2	μĀ	$\overline{\text{CS1}} = V_{\text{IH}} \text{ or } \text{CS2} = V_{\text{IL}} \text{ or } \overline{\text{OE}} = V_{\text{IH}} \text{ or } \overline{\text{WE}} = V_{\text{IL}}, V_{\text{I/O}} = V_{\text{SS}} \text{ to } V_{\text{CC}}$
Operating power supply current	ICCDC	_	7	15	mA	$\overline{\text{CS1}} = V_{\text{IL}}$, $\text{CS2} = V_{\text{IH}}$, $\overline{I}_{\text{I/O}} = 0 \text{ mA}$
Average operating current	l _{CC1}	_	30 30	45*5 55*6	mA	Min. cycle, duty = 100%, CS1 = V _{IL} , CS2 = V _{IH} , I _{I/O} = 0 mA
	I _{CC2}	_	3	5	mA	Cycle time = 1 μ s, duty = 100%, $I_{I/O}$ = 0 mA, $\overline{CS1}$ ≤ 0.2 V, $CS2 \ge V_{CC} - 0.2$ V, $V_{IH} \ge V_{CC} - 0.2$ V, $V_{IL} \le 0.2$ V
Standby power supply	I _{SB}	_	1	3	mΑ	$\overline{CS1} = V_{IH} \text{ or } CS2 = V_{IL}$
current	ISB1 *2	_	0.02	2	mA	CS1 ≥ Vcc - 0.2 V, CS2 ≥ Vcc - 0.2 V or
		_	2*3	100.3	μА	0 V ≤ CS2 ≤ 0.2 V, 0 V ≤ Vin
		_	2*4	50* ⁴	-	-
Output voltage	V _{OL}	_		0.4	٧	l _{OL} = 2.1 mA
	V _{OH}	2.4	_	_	٧	I _{OH} = -1.0 mA

- Notes: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and not guaranteed.
 - 2. $V_{IL} \min = -0.3 \text{ V}$
 - 3. These characteristics are guaranteed only for the L-version.
 - 4. These characteristics are guaranteed only for the LL-version.
 - 5. For 120 ns/150 ns version.
 - 6. For 100 ns version.

Capacitance $(f = 1 \text{ MHz}, \text{Ta} = 25^{\circ}\text{C})^{*1}$

Parameter	Symbol	Тур	Max	Unit	Test condition
Input capacitance	Cin	_	5	pF	Vin = 0 V
Input/output capacitance	CNO		7	pF	V _{I/O} = 0 V

1. This parameter is sampled and is not 100% tested. Note:

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, Ta = 0 to +70°C)

AC Test Conditions:

Input pulse levels: 0.8 V/2.4 V

· Input rise and fall time: 10 ns

· Input timing reference level: 1.5 V

· Output timing reference level

— HM6264A-10: 1.5 V

— HM6264A-12/15: 0.8 V/2.0 V

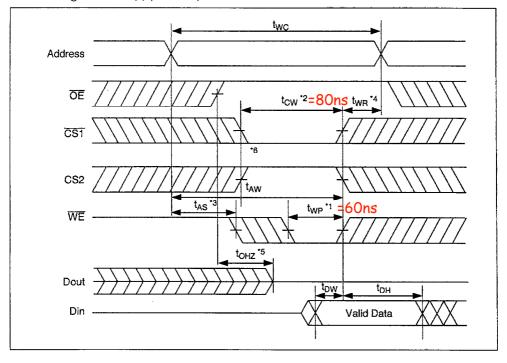
• Output load: 1 TTL gate and C_L (100 pF) (including scope and jig)

Read Cycle

		HM6264A-10 HM6264A-12		64A-12	HM62				
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit
Read cycle time		t _{RC}	100	>	120	_	150	_	ns
Address access time		t _{AA}	_	100		120	_	150	ns
Chip selection to output	CS1	t _{CO1}		100	_	120		150	ns
	CS2	tcoz	_	100	_	120	-	150	ns
Output enable to output valid		t _{OE}	_	50		60	_	70	ns
Chip selection to output in low Z	CST	t _{LZ1}	10		10		15	_	ns
	CS2	t _{LZ2}	10	_	10		15		ns
Output enable to output in	n low Z	toLZ	5		5		5		ns
Chip deselection to	CS1	t _{HZ1}	0	35	0	40	0	50	กร
output in high Z	CS2	t _{HZ2}	0	35	0	40	0	50	ns
Output disable to output i	n high Z	t OHZ	0	35	0	40	0	50	ns
Output hold from address	change	t _{OH}	10	_	10	_	10		ns

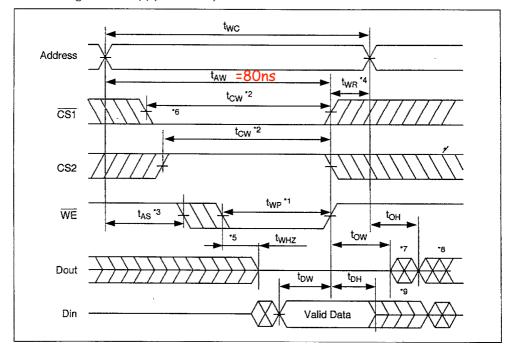
Notes 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs to achieve the open circuit condition and are not referred to output voltage levels.

 At any given temperature and voltage condition, t_{HZ} maximum is less than t_{LZ} minimum both for a given device and from device to device.



Read Timing Waveform address, and OE all at the same time, it will be max 100ns before valid data are available at chip outputs t_{RC} 100ns Address t_{AA} =100ns (max! t_{CO1} =100ns (max CS1 t_{LZ1} t_{CO2} =100ns (max t_{HZ1} CS2 t_{LZ2} t_{OE} t_{HZ2} tolz tonz Dout Valid Data ф Note: WE is high for read cycle.

Write Cycle


		HM6264A-10		HM6264A-12		HM6264A-15		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Write cycle time	twc	100	_	120	_	150	_	ns
Chip selection to end of write	t _{CW}	80	_	85	_	100	_	ns
Address setup time	t _{AS}	0		0	_	0	_	ns
Address valid to end of write	t _{AW}	80		85	_	100	_	ns
Write pulse width	t _{WP}	60	_	70		90	_	ns
Write recovery time	t _{WR}	0	_	0	_	0		ns
Write to output in high Z	t _{whz}	0	35	0	40	0	50	ns
Data to write time overlap	t _{DW}	40	_	40	_	50		ns
Data hold from write time	t _{DH}	0		0	_	0		ns
Output enable to output in high Z	tонz	0	35	0	40	0	50	ns
Output active from end of write	tow	5	_	5		5	_	ns

Write Timing Waveform (1) $(\overline{OE} \text{ Clock})$

You can assert CS1, CS2, address, data, and WE all at the same time! You need to wait 60ns from WE edge, or 80ns from CS1/CS2 edge for write to have happened

Write Timing Waveform (2) (OE Low Fix)

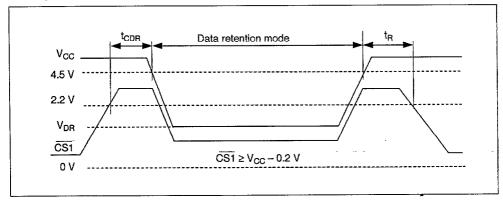
- Notes: 1. A write occurs during the overlap of a low $\overline{CS1}$, a high CS2, and a low \overline{WE} . A write begins at the latest transition among $\overline{CS1}$ going low, CS2 going high and \overline{WE} going low. A write ends at the earliest transition among $\overline{CS1}$ going high, CS2 going low and \overline{WE} going high. Time t_{WP} is measured from the beginning of write to the end of write.
 - 2. t_{CW} is measured from the later of CS1 going low or CS2 going high to the end of write.
 - 3. t_{AS} is measured from the address valid to the beginning of write.
 - t_{WR} is measured from the earliest of CS1 or WE going high or CS2 going low to the end of the write cycle.
 - During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
 - If CS1 goes low simultaneously with WE going low or after WE goes low, the outputs remain in high impedance state.
 - 7. Dout is the same phase of the latest written data in this write cycle.
 - 8. Dout is the read data of the next address.
 - If CS1 is low and CS2 is high during this period, I/O pins are in the output state. Input signals
 of opposite phase to the outputs must not be applied to I/O pins

Low V_{CC} Data Retention

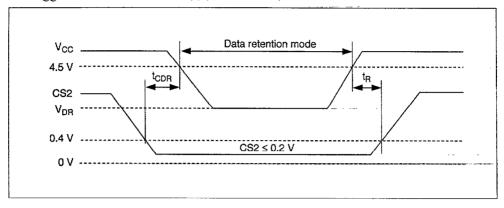
In data retention mode, CS2 controls the address, WE, CS1, OE, and the Din buffer. If CS2 controls data retention mode, Vin (for these inputs) can be in the high impedance state. If CS1 controls the data retention mode, CS2 must satisfy either

 $CS2 \ge V_{CC} - 0.2 \text{ V or } CS2 \le 0.2 \text{ V.}$ The other input levels (address, \overline{WE} , \overline{OE} , $\overline{I/O}$) can be in the high impedance state.

Low V_{CC} Data Retention Characteristics (Ta - 0 to +70°C)


This characteristics is guaranteed only L/LL-version.

Parameter	Symbol	Min	Тур	Max	Unit	Test Condition
V _{CC} for data retention	V _{DR}	2.0	_		V	$\overline{\text{CS1}}$ ≥ V _{CC} = 0.2 V, CS2 ≥ V _{CC} = 0.2 V, or CS2 ≤ 0.2 V
Data retention current	I _{CCDR}		1*1	50 ^{*1}	μА	V _{CC} = 3.0 V,
		_	1*2	25*2		$\overline{\text{CS1}}$ ≥ V _{CC} = 0.2 V, CS2 ≥ V _{CC} = 0.2 V, or 0 V ≤ CS2 ≤ 0.2 V, 0 V ≤ Vin
Chip deselect to data retention time	t _{CDR}	0	_		ns	See retention waveform
Operation recovery time	t _R	t _{RC} *3	_		ns	See retention waveform


Notes:

- 1. V_{1L} min = -0.3 V, 20 μ A max at Ta = 0 to 40°C. These characteristics are guaranteed only for the L-version.
- 2. V_{iL} min = -0.3 V, 10 μ A max at Ta = 0 to 40°C. These characteristics are guaranteed only for the LL-version.
- 3. t_{BC} = Read cycle time.

Low V_{CC} Data Retention Waveform (1) (CSI Controlled)

Low V_{CC} Data Retention Waveform (2) ($\overline{CS2}$ Controlled)

