
Microprocessor System Design
EHB432E
Lecture -4

Prof. Dr. Müştak E. Yalçın

Istanbul Technical University

mustak.yalcin@itu.edu.tr

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 1 / 13

General-Purpose Processors: Software

Processor designed for a variety of computation tasks

Low unit cost, in part because manufacturer spreads NRE over large
numbers of units

Motorola sold half a billion 68HC05 microcontrollers in 1996 alone

Carefully designed since higher NRE is acceptable
Can yield good performance, size and power

Low NRE cost, short time-to-market/prototype, high flexibility
User just writes software; no processor design

a.k.a. “microprocessor” – “micro” used when they were implemented
on one or a few chips rather than entire rooms

BLG 212E Microprocessor Systems

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 2 / 13

General-Purpose Processors: Basic Architecture

Key di↵erences
Datapath is general
Control unit doesn’t store the algorithm – the algorithm is
“programmed” into the memory

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 3 / 13

General-Purpose Processors: Basic Architecture

Datapath Unit: consists of circuitry for transforming data and for
storing temporary data.
N-bit processor : N-bit ALU, registers, buses, memory data interface

Control Unit: consists of circuitry for retrieving program instructions
and for moving data to, from and through the datapath according to
those instr.
Program Counter’s size determines address space

Memory: While registers serve a processor’s short term storage
requirements, memory serves the processor’s medium and long-term
information-storage requirements. Two memory architectures:
Harvard and Princeton.

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 4 / 13



General-Purpose Processors: Operations

Datapath Operations
Load : Read memory location into register
ALU operation: Input certain registers through ALU, store back in
register
Store : Write register to memory location

Control Unit
Control unit: configures the datapath operations

Sequence of desired operations (“instructions”) stored in memory –
“program”

Instruction cycle – broken into several sub-operations, each one clock
cycle, e.g.:

Fetch: Get next instruction into IR
Decode: Determine what the instruction means
Fetch operands: Move data from memory to datapath register
Execute: Move data through the ALU
Store results: Write data from register to memory

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 5 / 13

Instruction Cycles

0: INPUT S0,(S1);
;Fetch : get next instruction into IR

;Decode: Determine what the instruction means

;Fetch operands: Move data from memory to datapath register

;Execute: Move data through the ALU

;Store results: Write data from register to memory

1: ADD S0, 01;
Fetch : get next instruction into IR

Decode: Determine what the instruction means

Fetch operands: Move data from memory to datapath register

Execute :Move data through the ALU

Store results: Write data from register to memory

2: STORE S0,(S1)
Fetch : get next instruction into IR

Decode: Determine what the instruction means

Fetch operands: Move data from memory to datapath register

Execute :Move data through the ALU

Store results: Write data from register to memory

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 6 / 13

Pipelining: Increasing Instruction Throughput

F D FO E S

F D FO E S

F D FO E S

F D FO E S

F D FO E S

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 7 / 13

General-Purpose Processors

Performance can be improved by:
Faster clock (but there is a limit)
Pipelining: slice up instruction into stages, overlap stages
Multiple ALUs to support more than one instruction stream

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 8 / 13



Architectural Considerations

Faster clock (but there’s a limit)
Pipelining: slice up instruction into stages, overlap stages
Multiple ALUs to support more than one instruction stream

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 9 / 13

Programmer’s View

A programmer writes the program instructions that carry out the desired
functionality on the general-purpose processor.

Programmer doesn’t need detailed understanding of architecture
Instead, needs to know what instructions can be executed

Two levels of instructions:
Assembly level
Structured languages (C, C++, Java, etc.)

Most development today done using structured languages
But, some assembly level programming may still be necessary
Drivers: portion of program that communicates with and/or controls
(drives) another device

Often have detailed timing considerations, extensive bit manipulation
Assembly level may be best for these

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 10 / 13

Programmer’s View: Instruction set

The assembly-language programmer must know the processors’s
instruction set.
An instruction : an opcode field and operand fields.
[opcode (specifies the operation)] [operand1 (loc. of data)] [operand2 (loc. of data)]

Data-transfer instructions

Arithmetic/logical instructions

Branch instructions
Unconditional Jump
Conditional Jump
Return instruction
Call instruction (saves the add. of current inst.)

Source operands serve as input to the operation, while a destination
operand stores the output.

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 11 / 13

Programmer’s View: Instruction set

The operand field may indicate the data’s location through one of several
addressing modes :

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 12 / 13



The embedded systems programmer must be aware of

Program and data memory space

Registers (for data-transfer instruction etc.): How many are there?

Input and output (I/O) facilities (to help communicate with other
devices)

Interrupts :
An interrupt causes the processor to suspend execution of the main
program, and instead jump to an Interrupt Service Routine (ISR) that
fulfills a special, short-term processing need.

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 13 / 13

Development Environment

Development processor: on which we write and debug our programs

Target processor : that the program will run on in our embedded
system

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 14 / 13

Development Environment

Assemblers translate assembly instructions to binary machine
instructions.

A linker allows a programmer to create a program in
separately-assembled files.

Compilers translate structured programs into machine (or assembly)
programs.

A cross-compiler executes on one processor (our development
processor), but generates code for a di↵erent processor (our target
processor).

Debuggers help programmers evaluate and correct their programs.

Emulators support debugging of the program while it executes on the
target processor.

All this tool in integrated development environment (IDE)

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 15 / 13

Development Environment

Instruction set simulator (ISS):

Gives us control over time – set breakpoints, look at register values, set
values, step-by-step execution, ...
But, doesn’t interact with real environment

Download to board

Use device programmer
Runs in real environment, but not controllable

Compromise: emulator

Runs in real environment, at speed or near
Supports some controllability from the PC

Prof. Dr. Müştak E. Yalçın (

˙

IT

¨

U) MSD January, 2016 16 / 13


