
Introduction to Embedded Systems
EHB326E
Lectures

Prof. Dr. Müştak E. Yalçın

Istanbul Technical University

mustak.yalcin@itu.edu.tr

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 1 / 23

Data Flow Modeling and Implementation

Input Output Functionality of Digital Signal Processing System is
described using block diagrams ! A block diagram only shows a chain of
signal processing algorithms and the data samples to send to each other.
Pulse-Amplitude Modulation (PAM) system

[01110010....]32 –> [-1 3 -3 1 ...]16 –> [0...030...0]128 –> *h(n)–> DAC
Chapter 2, A Practical Introduction to Hardware/Software Codesign, Patrick R.

Schaumont

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 2 / 23

The block diagram only specifies the flow of data in the system but not
the execution order of the functions.

extern int read from file();

extern int map to symbol(int, int);

extern int pulse shape(int, int);

extern void send to da(int);

int main() {
int word, symbol, sample;

int i, j;

while (1) {
word = read from file();

for (i=0; i < 16; i + +) {
symbol = map to symbol(word, i);

for (j=0; j<128; j++)

sample = pulse shape(symbol, j);

send to da(sample); }
}

}
}

a sequential implementation, but it does not encourage a

parallel implementation

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 3 / 23

The major differences of this modeling style compared to modeling in C.

A Data Flow model is a concurrent model.

Data Flow models are distributed, and there is no need for central
controller

Data Flow models are modular.

Data Flow systems are easy to analyze (deadlock, stability)

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 4 / 23

Tokens, Actors, and Queues

The major differences of this modeling style compared to modeling in C.

Actors contain the actual operations.

Tokens carry information from one actor to the other.

Queues are unidirectional communication links that transport tokens
from one actor to the other. Data Flow queues have an infinite
amount of storage so that tokens will never get lost in a queue. Data
Flow queues are first-in first-out.

Each single execution of an actor is called the firing of that actor. An
actor will never fire if there is no input data, but instead it will wait until
data becomes available at its inputs.

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 5 / 23

The token consumption rate (at the actor inputs) and token production
rate (at the actor outputs).

When the number of tokens consumed/produced per actor firing is a fixed
and constant value, the resulting class of systems are called synchronous
data flow graphs or SDF graphs

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 6 / 23

Assuming that each SDF actor implements a deterministic function, then
the entire SDF graph is determinate ?

the system will work as specified as long as we implement the firing rules
correctly!

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 7 / 23

Analyzing Synchronous Data Flow Graphs

Deadlock and unstable ?

Periodic Admissible Sequential Schedules (PASS) (can continue forever):

A schedule is the order in which the actors must fire.

An admissible schedule is a firing order that will not cause deadlock
or token- build-up.

Such a schedule requires only a single actor to fire at a time. A PASS
would be used, for example, to execute an SDF model on top of a
microprocessor.

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 8 / 23

We can create a PASS for an SDF graph:

1 Create the topology matrix G of the SDF graph

2 Verify the rank of the matrix to be one less than the number of nodes
in the graph

3 Determine a firing vector

4 Try firing each actor in a round robin fashion, until it reaches the
firing count as specified in the firing vector

G =

A B C
2 −4 0 < −edgeAtoB
1 0 −2 < −edgeAtoC
0 1 −1 < −edgeBtoC

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 9 / 23

Step1: The entry (i,j) of this matrix will be positive if the node j produces
tokens into graph edge i . The entry (i,j) will be negative if the node j
consumes tokens from graph edge i.
Step2: Verifies that tokens cannot accumulate on any of the edges of the
graph!
Tokens left on the edges after the firings!

G =

 2 −4 0
1 0 −2
0 1 −1

 2
0
0

 =

 4
2
0

Step3: Determine a periodic firing vector qpass.

Gqpass = 0

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 10 / 23

Step4: Each node which has the adequate number of tokens on its input
queues will fire when tried

qpass =

 2
1
1

Example:

G=? and qpass

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 11 / 23

Converting Queues and Actors into Software

All elements of the SDF graph are mapped in software!

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 12 / 23

Converting Queues and Actors into Software: Queue

SDF graphs represent concurrent systems and use actors which
communicate over FIFO queues.

The number of elements N that can be stored by the queue.

The data type element of a queue elements.

A method to put elements into the queue.

A method to get elements from the queue.

A method to test the number of elements in the queue.

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 13 / 23

Converting Queues and Actors into Software: Queue

Circular queue

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 14 / 23

Converting Queues and Actors into Software: Actor

A data flow actor can be captured as a function, with some additional
support to interface with the FIFO queues

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 15 / 23

typedef struct actorio {
fifo t *in1;

fifo t *in2;

fifo t *out1;

fifo t *out2;

} actorio t;

void sort actor(actorio t *g) {
int r1, r2;

if ((fifo size(g->in1) > 0) && (fifo size(g->in2) > 0)) {
r1 = get fifo(g->in1);

r2 = get fifo(g->in2);

put fifo(g->out1, (r1 > r2) ? r1 : r2);

put fifo(g->out2, (r1 > r2) ? r2 : r1);

}

}

Listing 2.2 FIFO object in C (P. Schaumont, Page 52)

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 16 / 23

Sequential Targets with Dynamic Schedule

In a dynamic system schedule, the firing rules of the actors will be tested
at runtime;
Single-Thread Dynamic Schedules: Next calls the actors in a round-robing
fashion
void main() {
fifo t F1, F2, F3, F4;

actorio t sort io;

...

sort io.in1 = &F1;

sort io.in2 = &F2;

sort io.out1 = &F3;

sort io.out2 = &F4;

while (1) {
sort actor(&sort io);

// .. call other actors

} }

It is impossible to call the actors in the ‘wrong’ order ! why ?
void main() {

...

while(1){

src actor(&src io);

snk actor(&src io);

} }
Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 17 / 23

Using PASS
void main() {

...

while(1){

src actor(&src io);

snk actor(&src io);

snk actor(&src io);

} }

Check tokens present
void snk actor(actorio t *g) {

int r1, r2;

while ((fifo size(g->in1) > 0))

{

r1 = get fifo(g->in1);

... // do processing

} }

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 18 / 23

MultiThread Dynamic Schedules

To switch the processor back and forth between the two threads of
control. How ? A thread scheduler will switch between threads!

Cooperative multithreading

The threads of control indicate at which point they release control back to
the scheduler. The scheduler then decides which thread can run next.

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 19 / 23

stp init() initializes the theading system.
stp create(stp userf t *F, void *G) creates a thread that will start execution with
user function F.
stp yield() releases control over the thread to the scheduler.
stp abort() terminates a thread so that it will be no more scheduled.

void world(void *null) {
int n = 5;

while (n-- > 0) {
printf("world");

stp yield();

}
}

See: Listing 2.3: and Link: Quick thread programming

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 20 / 23

http://www.quickthreadprogramming.com

Static schedule

Determine upfront exactly in what order the actors need to run (fire) and
no longer test firing rules when calling actors.

PASS: A();A();A();A();B();B();C(); or A();A();B();A();A();B();C();
void main() {
int f1, f2, f3, f4;

// initial token

f1 = 16;

f2 = 12;

// system schedule while (1) {
// code for actor 1

f3 = (f1 > f2) ? f1 : f2;

f4 = (f1 > f2) ? f2 : f2;

// code for actor 2

f1 = (f3 != f4) ? f3 - f4; f2 = f4;

} }

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 21 / 23

Hardware Implementation of Data Flow

1 Map each queue to a wire.
2 Map each queue containing a token to a register. The initial value of

the register must equal the initial value of the token.
3 Map each actor to a combinational circuit, which completes a firing

within a clock cycle.

sort

out1=(a>b)? a:b;

out2=(a>b)? b:a;

diff

out1=(a!=b)? a-b:a;

out2=b:

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 22 / 23

Hardware Implementation of Data Flow

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 23 / 23

Find critical path !
Not possible to introduce arbitrary initial to-
kens in a graph without following the rules for
actor firing

By letting the in actor produce another token, we will be able to reduce
the longest combinational path to a single addition

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 24 / 23

Multirate Expansion

Determine the PASS firing rates of each actor.

Duplicate each actor thenumber of times indicated by its firing rate.

Convert each multirate actor input/output to multiple single-rate
input/outputs.

Reintroduce the queues in the data flow system to connect all actors.

Reintroduce the initial tokens in the system, distributing them
sequentially over the single-rate queues.

Prof. Dr. Müştak E. Yalçın (İTÜ) EHB326E (V: 0.1) September, 2018 25 / 23

	Processors

