Introduction to Embedded Systems
EHB326E
Lectures

Prof. Dr. Mustak E. Yalgin
Istanbul Technical University

mustak.yalcin@itu.edu.tr

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018



Describing a system as a state machine(

List all possible states
Declare all variables
For each state, list possible transitions, with conditions, to other
states
For each state and/or transition, list associated actions
For each state, ensure exclusive and complete exiting transition
conditions
o No two exiting conditions can be true at same time (Otherwise

nondeterministic state machine)
e One condition must be true at any given time

Note:

@ Each transition is implicitly ANDed with rising clock edge !

@ Any bit output is implicitly assigned a 0
For Moore machines the output generation is represented by assigning outputs
with states. For Mealy machines conditional output generation is represented by
assigning outputs to transitions! (EHB205 Int. Logic Design)

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 2/23



Simple parking gate controller:
The gate needs to do:
@ If a car wants to come through, the gate needs to raise the arm until
it is at the top position.
@ Once the gate is at the top position, it has to stay there until the car
has driven through the gate.
@ After the car has driven through the gate needs to lower the arm until
it reaches the bottom position.

!At_Top/Raise

At_Top/NOP

Car_at_Gate/raise !Car_Just_Exit/NOP

!Car_at_Gate/NOP

Car_Just_Exit/Lower

At_Bottom/NOP

!At_Bottom/lower

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018



Describing a system as a state machine

FSM is a powerful programming mechanism express a sequence of events.
An event describes a physical activity. An event is a tuple (real-time
stamp, value), where 'value’ describes what has happened in the physical
world (data value is irrelevant).

Example: The microcontroller reads two buttons and has two output pins
that each drive a LED.

int main() {
while (1) // Cyclic Executive ! {

if (Button-1_Pressed())
turn_on_LED1

else
turn-off LED1

if (Button-2_Pressed())
turn-on_LED2

else
turn-off_LED2

e el

Miistak E. Yalgin (ITO) EHB326E (V: 0.1) September, 2018 4/23



A sequence of events is a series of physical events for which you care
about the ORDER of events.

An event sequence is for example the following:
"ButtonlLeft is pressed and held, followed by ButtonRight”

The challenge is to find a good method to capture this in C.

Using the standard cyclic executive, this is not so easy, because a cyclic
executive looks only at one event at a time, with no memory of the past.
Everything is instantaneous.

B_L&!BR

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 5/23



Lets build an Ant

- SENSORS: antennae Land R, each 1 ifin
' contact with something

+ ACTUATORS: Forward Step F. ten-degree
turns TLand TR (left, right).

GOAL: Make our ant smart enough to get out of a maze ike:

STRATEGY: "Right antenna to the wall”

Bonk!
— —
s 8 %

o
e fReon)

Lost in space

IR 4
@

Action: Go forward until we hit something.

Alittle to the right...

Action: Step and turn right a ittle, look for wall

Then a little to the left

Ac dturn et a bele,tilnot
oS,
i '///
Y
Equivalent State Reduction

Observation:5, @S, if
1. States have identical outputs; AND
2. Every input —vequivalent states.
Reduction Strateay:
Find pairs of equivalent states, MERGE them.

EHB326E (V: 0.1)



Dealing with corners

An Evolutionary Step

Merge equivalent states Wall1 and Corner into a single new,
combined state.

ROMin its implementation!

Building the Transition Table

Ant Schematic

Implementation Details

R+LS, +LS,

Roboant®
(-~ e
-
e
Somiain
. —
iy e

Featuring the new Mark-Il ant: can add (M),
erase (E). and sense (5) marks along ts path.

Source: 6.004 Computation Structures (MIT OpenCourseWare)

Miistak E. Yalein (IT

EHB326E (V: 0.1)



Creating a Datapath (

@ Make all data inputs and outputs to be datapath inputs and outputs.

@ Implement the data storage by adding a register component into
datapath for every declared register (RULE: always put a register
before data output).

@ Examine each state and transaction, adding and connecting new
datapath components to implement new computation. Add
multiplexors in front of shared components and define a control signal
for them

Local registers: R Q (8 bits)

Local registers: R Q (8 bits)
(e
B ®=100
P% ReR+1
—=R- =R

(a)

_ Re100, Re=100
s AllBs [1e[lD

R R ®
(b)
A state's actions conflgure the datapath and controller ! (the next clock edge will
load the desired values)

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 8 /23



Connecting the Datapath to a Controller and Design the

Controller ( )

@ Just connect all control signals between controller and datapath
@ Describe the control behaviour into a FSM replacing actions and
conditions.

Inputsic, tot_It_s(bit)

Outputsd, tot_Id, tot_clr (bit)
tot_Id

—»

tot_clr
—

tot_It_s
-

Controller

Study : Example 5.2 from Frank Vahid, Digital Design

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 9/



State machine vs. sequential program model

Different thought process used with each model
State machine

e Encourages designer to think of all possible states and transitions
among states based on all possible input conditions

Sequential program model:

o Designed to transform data through series of instructions that may be
iterated and conditionally executed

State machine description excels in many cases
e More natural means of computing in those cases

Prof. Dr. Miistak E. Yalein (iTU) EHB326E (V: 0.1) September, 2018 10 / 23



Example

Example : it Eﬂm
"Move the elevator either up or down to reach Control ol
the target floor. Once at the target floor, floor
open the door for at least 10 seconds, and Re$:$
keep it open until the target floor changes. Resolver

bl buttons
. . N b2 } inside
Ensure the door is never open while moving. bN J elevator
Don't change directions unless there are no
higher requests when moving up or no lower

requests when moving down.”

Egé ulfldown

dn2 (- buttons
on each

dnNJ  floor

T TS

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018



Design Technology

The system specification:

The designer describes the desired functionality in some language, often a
natural language like English, but preferably an executable language !

Designers must spend much time and effort simply understanding and
describing the desired behaviour of a system, and some studies have found
that most system bugs come from mistakes made describing the desired
behaviour rather than from mistakes in implementing that behaviour.

D. Gajski, F. Vahid, S. Narayan and J. Gong, "Specification an Design of embedded systems,” page 10 - 13.

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 12 /23



Example

Inputs: int floor; bit bl...bN; upl...upN-1; dn2...dnN;
Outputs: bit up, down, open;
Global variables: int req;

void main() { - - R

Call concurrently: - up
; Unit »
UnitControl() and Control down
ontro! NG
RequestResolver () 0p§1
»
void UnitControl() { floor
up = down = 0O; open = 1;
while (1) { Areg
while (req == floor); Request
open = 0; Resolver

bl buttons
if (req > floor) { up = 1;} b2 } inside

T T

else {down = 1;} bN J elevator
i 1= H
while Ereq != floor); upl up/down
open = 1; up2 butt
delay(10); dn2 ¢ eh
y 5 on each
} dnN)  floor
void RequestResolver() {
while (1)

req = ...

}
Read : Chapter 8: Embedded System Design, F. Vahdi & T Givargis

. Miistak E. Yalain (iTU EHB326E (V: 0.1) September, 2018 13 /23



Concurrency & Parallelism

Concurrency is the ability to execute simultaneous operations because
these operations are completely independent. Parallelism is the ability to
execute simultaneous operations because the operations can run on
different processors or circuit elements.

UnitControl() and RequestResolver() two concurrent process.

Hardware is always parallel. Software on the other hand can be sequential,
concurrent, or parallel. Sequential and concurrent software requires a
single processor, parallel software requires multiple processors

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 14 /23



Modeling the example with FSMD

Functional Level :

u,d,O, t= 170 707 ! req>ﬂ001’)
req>floor Q) timer < 10
T e g S DoorOven
oorOpe
req==floo I(timer<1Q udot=00,11

f(req>floor)

uis up, d is down, o is open
req<floor t is timer_start

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 15 / 23



General template: FSM to Seq. Prog. Language

#define SO 0O
#define S1 1

#define SN N
void StateMachine()
int state = SO; // or whatever is the initial state.
while (1) {
switch (state) {
S0:
// Insert S0’s actions here & Insert transitions Ti leaving SO:
if( TO’s condition is true ) {state = TO’s next state; /*actions*/ }
if( T1’s condition is true ) {state = T1’s next state; /*actions*/ }

if( Tm’s condition is true ) {state = Tm’s next state; /*actions*/ }
break;

Si:

// Insert S1’s actions here

// Insert transitions Ti leaving S1

break;

SN:

// Insert SN’s actions here

// Insert transitions Ti leaving SN

break;

Miistak E. Yalein (ITU EHB326E (V: ptember, 2018 16 / 23



Sequential program model for the example

#define IDLE O
#define GOINGUP 1
#define GOINGDN 2
#define DOOROPEN 3
void UnitControl() {
int state = IDLE;
while (1) {
switch (state) {
IDLE: up=0; down=0; open=1; timer_start=0;
if (reg==floor) {state = IDLE;}
if (req > floor) {state = GOINGUP;}
if (req < floor) {state = GOINGDN;}
break;
GOINGUP: up=1; down=0; open=0; timer_start=0;
if (req > floor) {state = GOINGUP;}
if (!(reg>floor)) {state = DOOROPEN;}
break;
GOINGDN: up=1; down=0; open=0; timer_start=0;
if (req < floor) {state = GOINGDN;}
if (!(reg<floor)) {state = DOOROPEN;}
break;
DOOROPEN: up=0; down=0; open=1; timer_start=1;
if (timer < 10) {state = DOOROPEN;}
if (!(timer<10)){state = IDLE;}
break;

ptember, 2018 17 / 23

Miistak E. Yalein (ITU EHB326E (V:



Example 5.1 (Vahid, page 227) : Soda dispenser
#define INIT O
#define WAIT 1
#define ADD 2
#define DISP 3
void State Machine SodaDisp()
int state = INIT;

while(1){
switch(state){
P N INIT : d = 0; tot = 0;
state = WAIT;
break;
tot=tot+a WAIT :
if(c == 1){state = ADD; }
d=0 c'*(tot<s) if((tot < s)&(!(c))){state = WAIT; }
tot=0 if(I(tot < s)&(!(c))){state = DISP; }
break;
ADD :
tot = tot + c;
state = WAIT;
d=1 break;
DISP : d = 1;
state = INIT;
break;
}
}

Miistak E. Yalgin (ITU EHB326E (V: 0.1) September, 2018



Design of Soda Dispenser on general-purpose processor

C Program Microprocessor
PO |
P1 et

o ) sote = DY } P2.1
:.IJ:> 22|

Miistak E. Yalgin (ITU

single-purpose processor

(i

Inputscs,tot_It_s(bit)

Outputsd, tot_Id, tot_cir (bit) tot_Id.
B tot_ld tot_
o> c S\
/\\<‘~/'~ Add ) | tot_clr
do— (o) (v o
N, O ot s tette
d=0X . ot ts [+
tot_cli > \\
{ isp )
_/
Controller o=t

EHB326E (V: 0.1)

Datapath

Design of Soda Dispenser on

September, 2018



Embedded System Design

The designer refines Behavioural Specifications into register-transfer (RT)
specifications
@ by converting behavior on general-purpose processors to assembly
code,
@ by converting behavior on single-purpose processors to a connection
of register-transfer components and state machines.

System Specification with executable language)

Behavioral specification

FSM, FSMD, FSM,FSMD
General purpose processor Single purpose processor
l Register-transfer specification l
assembly code RT components & state machine
l logic specification
machine code gate level netlist

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018



Hardware /Software codesign

Hardware /Software codesign is the design of cooperating hardware
components and software components in a single design effort.

Manage Design Complexity

Improve Performance Reduce Design Cost
Improve Energy Efficiency Stick to Design Schedule
Reduce Power Density Handle Deep Submicron
more in Hardware A more in Software

Hardware/Software codesign is the partitioning and design of an
application in terms of fixed ("hardware’) and flexible ('software’)

components.

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018



Example 5.1 (Vahid, page 227) :

Dispenser

C—»

d-—

Inputsic, tot_It_s(bit)
Outputsd, tot_Id, tot_clr(bit)

— © o naa)
=Ny >
NG @ tot_Id=1

c"tot_lIt_s

Controller

tot_Id
—

tot_clr
—

tot_It_s
f-—

r. Miistak E. Yalein (iTU)

Hardware /Software codesign of Soda

#define INIT O

#define WAIT 1

#define ADD 2

#define DISP 3

void State Machine SodaDisp()
int state = INIT;

while(1){
switch(state){
INIT : d = 0; tot_clr = 1;
state = WAIT;
break;
WAIT :
if(c == 1){state = ADD; }
if ((tot_It_s)&((c))){state = WAIT; }
if (tot_It_s)&((c))){state = DISP; }
break;
ADD : tot_ld =1
state = WAIT;
break;
DISP : d = 1;
state = INIT;
break;
}
}

EHB326E (V: 0.1) September, 2018



Hardware/Software codesign of Soda Dispenser

S a
C Program Microprocessor
PO.IL  tot Id Ay '
tot cl -
po.oJ__torcr >lcir tot
8
‘ 8 |8
po.2| ftotlts bt || Bbi
< adder
— Datapath B/I/_

Example : Obtain Sequential Prog. of Example 5.2 from Frank Vahid,
Digital Design

Prof. Dr. Miistak E. Yalgin (ITU) EHB326E (V: 0.1) September, 2018 23 /23



