Introduction to Embedded Systems EHB326E Lectures

Prof. Dr. Müştak E. Yalçın


Istanbul Technical University

mustak.valcin@itu.edu.tr

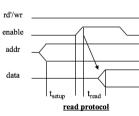
EHB326E (V: 0.1)

Interface: Ports

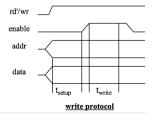
- Conducting device on periphery
- Single wire or set of wires with single function
- Connects bus to processor or memory
- Often referred to as a pin
 - Actual pins on periphery of IC package that plug into socket on printed-circuit board
 - Sometimes metallic balls instead of pins
 - Metal "pads" connecting processors and memories within single IC

EHB326E (V: 0.1)

port : a city, town, or other place where ships load or unload


Prof. Dr. Müstak E. Yalçın (İTÜ)

September, 2018 2 / 18


• Most common method for describing a communication protocol

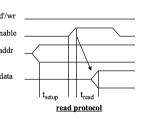
- Time proceeds to the right on x-axis
- Control signal: low or high
 - May be active low (go', go, or go_L)
 - Use terms assert (active) and deassert
 - Asserting go' means go=0
- Data signal: not valid or valid
- Protocol may have subprotocols
 - Called bus cycle, e.g., read and write
 - Each may be several clock cycles
- Read example
 - rd'/wr set low, address placed on addr for at least t_{setup} time before enable asserted.
 - enable triggers memory to place data on data wires by time t_{read}

EHB326E (V: 0.1)

Timing Diagrams

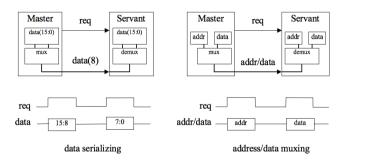
Interface: Bus

Bus


Prof. Dr. Müştak E. Yalçın (İTÜ)

- Set of wires (Uni-directional or bi-directional) with a single function (Address bus, data bus)
- Or, entire collection of wires (Address, data and control)

	rd'/wr	
Processor		Memory
	enable	
	addr[0-11]	
	1./50.52	
	data[0-7]	
	← / →	
	bus	
	040	


September, 2018 1 / 18

Prof. Dr. Müştak E. Yalçın (İTÜ)

Basic Protocol

- Actor: master initiates, servant (slave) respond
- actor can be receiver or sender.
- Addresses: special kind of data used to indicate where regular data should go
- Time multiplexing
 - Share a single set of wires for multiple pieces of data
 - Saves wires at expense of time

Prof. Dr. Müştak E. Yalçın (İTÜ)

September, 2018 5 / 18

- Expansion buses or "slots"
 - ISA Industry Standard Architecture
 - PCI Personal Component Interconnect
 - EISA Extended ISA SIMM Single Inline Memory Module (plugs into slot) DIMM Dual Inline Memory Module (plugs into slot)

EHB326E (V: 0.1)

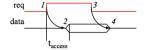
EHB326E (V: 0.1)

- MCA Micro-Channel Architecture
- AGP Accelerated Graphics Port item VESA Video Electronics Standards Association
- PCMCIA ? Personal Computer Memory Card International AssociaBon (outdated)
- PCI-e PCI express
- HT Hypertransport

Disk interfaces

- ATA AT Attachment (named after IBM PC-AT) (outdated)
- IDE Integrated Drive Electronics (same as ATA)
- Enhanced IDE
- SCSI Small Computer Systems Interface
- ESDI Enhanced Small Device Interface
 DOMCIA
- PCMCIA
- SATA serial ATA
 Ethernet (used for network drives)
- Ethernet (used for network driv

External buses


- Parallel sometimes called LPT ("line printer")
- Serial typically RS232C (RS422)
- PS/2 for keyboards and mice
- USB Universal Serial Bus
 IrDA Infrared Device Attachment
- FireWire very high speed, developed by IEEE

Communications buses

- Parallel/LPT
- Serial/RS232C
- Ethernet

Strobe protocol

Master req Servant

- Master asserts *req* to receive data
- Servant puts data on bus within time *t_{access}*
- Master receives data and deasserts *req*
- Servant ready for next request

September, 2018 6 / 18

Microprocessor interfacing: I/O addressing

A microprocessor communicates with other devices using some of its pins

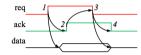
EHB326E (V: 0.1)

- Port-based I/O (parallel I/O)
 - Processor has one or more N-bit ports
 - Processor's software reads and writes a port just like a register

▶ 80C51, page 4-7

Prof. Dr. Müştak E. Yalcın (İTÜ)

• Bus-based I/O


- Processor has address, data and control ports that form a single bus
- Communication protocol is built into the processor
- A single instruction carries out the read or write protocol on the bus

EHB326E (V: 0.1)

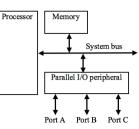
▶ PicoBlaze, page 4-7

Handshake protocol

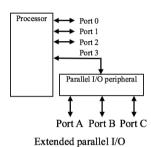
- Master asserts *req* to receive data
- Servant puts data on bus and asserts *ack*
- Master receives data and deasserts *req*

• Servant ready for next request

Parallel I/O peripheral


- When processor only supports bus-based I/O but parallel I/O needed
- Each port on peripheral connected to a register within peripheral that is read/written by the processor

Extended parallel I/O


- When processor supports port-based I/O but more ports needed
- One or more processor ports interface with parallel I/O peripheral extending total number of ports available for I/O

▶ 8255, Programmable Peripheral Interface

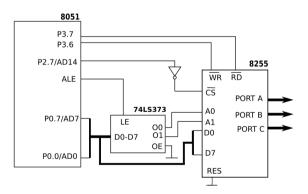
Prof. Dr. Müştak E. Yalçın (İTÜ)

Adding parallel I/O to a busbased I/O processor

September, 2018 9 / 18

The ways to talk to peripherals

- Memory-mapped I/O
 - Peripheral registers occupy addresses in same address space as memory
 - e.g., Bus has 16-bit address lower 32K addresses may correspond to memory upper 32k addresses may correspond to peripherals

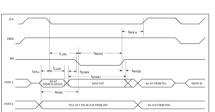

• Standard I/O (I/O-mapped I/O)

- $\bullet\,$ Additional pin (M/IO) on bus indicates whether a memory or peripheral access
- e.g., Bus has 16-bit address all 64K addresses correspond to memory when M/IO set to 0 all 64K addresses correspond to peripherals when M/IO set to 1

Prof. Dr. Müştak E. Yalçın (İTÜ)

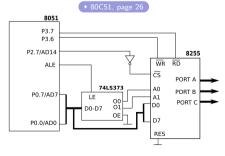
EHB326E (V: 0.1)

September, 2018 10 / 18

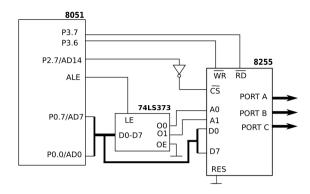

I/O port addresses assigned (memory mapped I/O) to ports A, B, C, and the control register:

 $\texttt{x1xxxxxx} \texttt{xxxxxx00}{=}4000 \texttt{h}{=}\mathsf{PORT} \texttt{ A}$

 $\texttt{x1xxxxxx} \texttt{xxxxxx01}{=}4001 \texttt{h}{=}\mathsf{PORT} \texttt{ B}$


x1xxxxxx xxxxx10=4002h=PORT C

x1xxxxxx xxxxxx11=4003h=CONTROL • 8255, page 3-102 .


EHB326E (V: 0.1)

For P3.7 and P3.6 see • 80C51, page 6 and for 74LS373 see • 74LS373

September, 2018

"All the ports of A, B and C are output ports " then the control word of the 8255 for the configurations (8255, page 3-100) is 1000000b=80h For P3.7 and P3.6 see • 80C51, page 6 and for 74LS373 (Latch) see • 74LS373. A program to send *FFh* to all ports:

80h ightarrow @4003h
FFh ightarrow @4000h
FFh ightarrow @4001h
FFh ightarrow @4002h

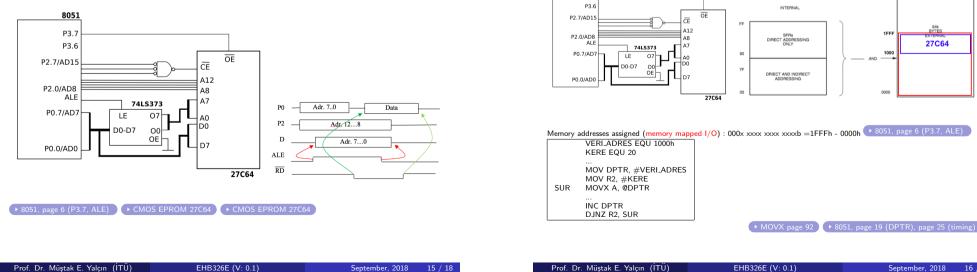
Prof. Dr. Müştak E. Yalçın (İTÜ)

EHB326E (V: 0.1) September, 2018 13 / 18

Memory-mapped I/O

- Requires no special instructions
 - Assembly instructions involving memory like MOV and ADD work with peripherals as well • 80C51
 - Standard I/O requires special instructions (INPUT, OUTOUT PicoBlaze Page 32) to move data between peripheral registers and memory

Standard I/O


Prof. Dr. Müstak E. Yalçın (İTÜ)

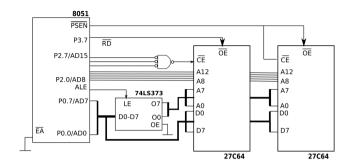
8051 P3.

- No loss of memory addresses to peripherals
- Simpler address decoding logic in peripherals possible
 - When number of peripherals much smaller than address space then high-order address bits can be ignored

EHB326E (V: 0.1)

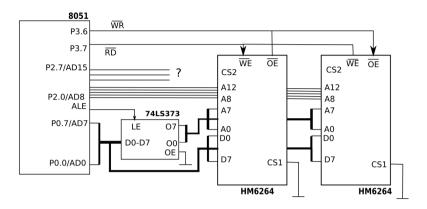
An external ROM uses the 8051 data space to store the data (starting at 1000H). Write a program to read 20 Bytes of these data.

September, 2018 14 / 18


27C64

EFFE M

166


1000

An 8051-based system with 8K bytes of program ROM and 8K bytes of data ROM.

if $\overline{EA} = 1$, PC starts from 0000h(internal memory) then 0FFFh (external memory), if $\overline{EA} = 0$, PC start from external memory (0000h - ----h). \rightarrow 8051, page 25 (external program memory read cycle)

EHB326E (V: 0.1)

Prof. Dr. Müştak E. Yalçın (İTÜ)

September, 2018 17 / 18

Prof. Dr. Müştak E. Yalçın (İTÜ)

EHB326E (V: 0.1)

September, 2018 18 / 18