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Why Laplace Transform

Laplace transform (F(s)) of f(t) function is given by

0.

Fls) = £{f(0)} = | e~StF(t)dt.

The Laplace transform converts linear differential equations into algebraic
equations. These are linear equations with polynomial coefficients. The
solution of these linear equations therefore leads to rational function
expressions for the variables involved.

Initial Conditions, Generalized Functions, and the Laplace Transform, by Kent H.
Lundberg; Haynes R. Miller ; David L. Trumper, IEEE Control Systems
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Properties of the Laplace Transform

) LA{kifi(t) + kafa(t)} = kiFi(s) + kaFa(s)
o c {%(tt)} _ sF(s) — F(07)
and
c { d;’; (t) } _ "F(s) — s"LF(0) — s"2F(0) — ... — £(0)
o L{/Ot f(T)dT} ~ F(SS)

LA{f(t—to)u(t —to)} = F(s)e ™°
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inguishing 0—, 0, and 0"

W hile the unilateral Laplace transform is frequently associat-
ed with the solution of differential equations, the need to
clearly distinguish 0-, 0, and 0+ is independent of any dynamic-
systems context. For a discontinuous function f(t), the deriva-
tive f'(t) must be interpreted as the generalized derivative of
f(t), which includes the singularity function

(F(t) — (8 D3t — )

at every point & at which (1) is discontinuous. In particular, if
f(0-) # f(0T), then the derivative includes a delta function at
the origin.

In the following example, adapted from Problem 11.17 of
[29], we apply the unilateral transform to three signals and
their derivatives. This example clarifies that the need for
using the Laplace transform (3) and properties (4) and (5) is

really a matter of properly defining signals and their trans-
forms, and is not fundamentally connected to the solution of
differential equations.

Consider the three signals £(t), g(t), and h(t) defined for all
time

f(t) = e,
gt = e ?u(t),
h(t) = e=u(t) — u(-),

which are plotted for the value a= 1 in Figure S1. Since all
three functions are nonsingular and agree for positive time they
have the same Laplace transform by means of (3). However,
their derivatives include different impulse values at t = 0, and
thus the Laplace transforms of their derivatives must differ. Our
choice of Laplace transform properties should give consistent
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FIGURE S1 Three functions f(f) = e, g(t) = e #u(t), h(t) = e #u(t) — u(—t), and their derivatives, plotted for a= 1 and defined
for all time. Impulses are represented by the red arrows, with the impulse area denoted by the number next to the arrowhead. Since
all three functions are identical for positive time, they have identical unilateral Laplace transforms. However, their derivatives differ at
the origin. Therefore, the Laplace transforms of their derivatives also differ.
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and correct results when operating on these signals and their
derivatives. The associated transforms are calculated below to
show that this consistency is found. We also demonstrate the
initial-value theorem in the context of these signals.

PROPERTIES OF f(f)
Consider the function f(t) = e~#" with the pre-initial value
f(0~) = 1. The Laplace transform of f(t) is

1
— aty _
F(s)=L_{e )_s+a'

The time derivative of (1) is
f(t)=—ae ™,

and the Laplace transform of the time derivative is

L (-ae ) = s%’”a (sn

Using the derivative rule (4)

oy = 8 =@
L_{f'()) = sF(s) — {0 )_57+a 1_s+a

produces the same result. The results from the initial-value
theorem are

(0% = lim —>— =1
s»x18+a
and
(0= lim —2 —
s»o0l S+ a

The time-domain and Laplace-domain calculations are thus
consistent.

PROPERTIES OF g(t)

The function g(t) = e~2'u(t) has an associated pre-initial value
9(07) = 0. The Laplace transform of g(t) is the same as for
f(t), namely,

1
G(s) =L (e "ut)) = ——.
(s) ( (1)} St+a
However, the time derivative now includes an impulse at the origin

g'() =48(t) — ae 'u(t).

The Laplace transform of this time derivative is

and System

s

’ a
LoD =1- G =sra

which is different from the result (S1). Using the derivative rule (4),

pE——— (S2)

() = g0y = —
L(g'(D) = sG(s) ~g(0") = = orTa

we obtain the correct result. The initial-value theorem gives
s
0H) = lim — =1
ORI L e
producing the value at t = 0*. We can also apply the more gener-
alinitial-value theorem to the transform of the derivative as follows.
Expanding out the nonsingular part of the transform gives

a -
G(s)=1-——=1+G(9).
(s) 555 + G(s).

and thus
g'0") = lim sG(s)=-a.
500

which is the correct value.

PROPERTIES OF h(t)
Finally consider the function
o a _[ -1, t<o,
hiy =eu) —u-D=1 & ¢
which has an associated pre-initial value h(0~) = —1. The

Laplace transform of this signal is the same as the Laplace
transforms of f and g. Computing the time derivative gives

h'(t) = 25() — ae"u(t)

The Laplace transform of this time derivative is

a _2sta

by =2— - )
{h®) st+a s+a

which is different from the results (S1) and (S2) above. Using the
derivative rule (4),

Lo(h(t) = sH(S) — h0) = —S— 11 =25%8
s+a s+a

gives the correct result. Finally, the initial-value theorem gives a
correct result for both h and its derivative, h(0*) =1 and
h'0*) = —a, although we don't show the details here.

The formulas (3), (4), and (5) give consistent results. We
hope that the signal examples presented above help to clarify
the need for and application of these formula:




Properties of the Laplace Transform

L{e®f(t)} = F(s+a)
d"F(s)
t"f(t)} =(—-1)"———=
L)} = (-1
Inverse Laplace Transform
c+joo

f(t) = LH{F(s)} = / e* F(s)ds

Prof. Dr. Miistak E. Yalcin (ITU) Circuit and System Analysis Spring, 2020




Partial-Fraction Expansion Method

s-transform of a linear time invariant system is often of the form (n > m)

P(s) ams™+ am_15" 1+ ...+ a;s + ag
Q(s)  bps"+ bp_15" 1+ ...+ bis+ by

F(s) =

which is ratio of two polynomials. The value(s) for s where P(s) = 0 are
called zeros. The value(s) for s where Q(s) = 0 are called poles.

If spi # spj, poles distinct.

if lims_o0 F(5)(s — 5pi) = o0 and lims_,oo F(5)(s — spi)* is constant then
S = Sp;i IS a k-multiple pole.
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Lets assume that poles distinct

s -+ {22

:254{@f;ﬂ+¢5f;g""*6§§§}

ki is the residue located at the corresponding pole s,; which is

ki = F(s) (s — spi)|

SZSp,'

L7YF(s)) = kesttu(t) + koeS2tu(t) + ... + kne¥tu(t)

L7 ko + F(s)} = kod(t) + kie*tu(t) + kpe2tu(t) + ... + kpetu(t)
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Y(s) = —3s+23s—-38 -9 L2
C(s—1)(s—2)(s—-3) s—-1 s-2 s-3

y(t) = —9e® + 4e%t + 23 for t > 0

s242s+3 16 1/6) 1/6j
(s24+25+2)(s2+25+5) s+1—j s+1+j s+1-2j s+
1 1
y(t) = ge_tsin(t) + §e_tsin(2t) for t >0

Y(s) =

x=2x—3y, x(0)=38
y=-2x+y, y(0)=3
Using Laplace transform
sX —8=2X-3Y — (s—2)X+3Y =38
sY-3=-2x+y - 2X+(s—-1)Y =3

8s — 17 5 3
X = = + s x(t) = 5e~t + 3e*

s?2—3s—4 s+1 s—4
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Q(s) has a multiple pole.

Pl(S)

where
kixk = F(s) (s — spi)”

S:Sp,'

and
1 dk_/F(s)(s — sp,-)k

" (k=) dsk—1
for [=1,2,...k—1.

Kil

S:Sp,'
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s-plane

~(s+3)(s*+25+2)
FS) = o a2y

zeros "0" and poles "x" on s-plane:
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The Convolution Theorem

The convolution operation: Let fi(t) and f(t) be functions defined on
[0,00) , and let us take them to be equal to zero for t < 0: The
convolution of the time functions f; and f> is a new time function denoted
by (f1 x f2)(t) and defined for all t by

f(t):fl(t)*fg(t):/t fl(T)fz(t—T)dT:/tfz(t—f)fz(f)df

0 0

The Convolution Theorem

Let f1(t) and f>(t) have Fi(s) and Fy(s) as Laplace transforms. We
assume that for i = 1,2, f(t) = 0 for t < 0. Laplace transform of the
convolution of f; and £, is given by

L{A(t) * fa(t)} = Fi(s)Fa(s)

Thus, the operation of convolution in the time domain is equivalent to

multiplication in the frequency domain.
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Using The Convolution Theorem, lets find inverse Laplace transform of

F8) = o)

1 1
s2(s+2)  s2(s+2)

= L {tu(t) x e u(t)}

t
tu(t)*e_2tu(t):/ re 2T dr
0
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Analysis of state space equation

Linear time invariant system

x = Ax+ Be
y Cx + De

where x state variable and y is output, u is input vectors. Using Laplace
transform

sX(s) —x(0) = AX(s)+ BE(s)
Y(s) = (X(s)+ DE(s)

we have Laplace transform state variable

X(s) = (sl — A)"1x(0) + (sI — A)"1BE(s)
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Output
Y(s) = C(sl — A)"'x(0) + (C(sl — A)"'B + D)E(s)

X(s) = (sl — A)"tx(0) + (sl — A)"IBE(s) = Q(s)x(0) + Q(s)BE(s)

where Q(s) = (sl — A)~1 and q(t) = L71{(s] — A)~1}.
Using The Convolution Theorem, we have

Q(s)x(0) + Q(s)BE(s) = L {q(t)x(O) + /0 q(t — T)BG(T)dT}
the state variable in time domain

x(t) = q(t)x(0) +/0 q(t — 7)Be(7)dT
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we know that

t
x(£)=  o()x(0) + / o(t — 7)Be(r)dr
N— e’ \0 y
zero-input response ~~

zero-state response

In this case
®(s) = (sl — A1

and
o(t) = L{(sl — A)'}

X(s) = ®(s)x(0) + &(s)BE(s)
Y(s) = Cd(s)x(0) + (CP(s)B + D)E(s)
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