Circuit and System Analysis EHB 232E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University Faculty of Electrical and Electronic Engineering
mustak.yalcin@itu.edu.tr

Outline I

(1) Three-Phase Systems

- Y-connected source
- Line-to-line voltage
- Delta-connected source
- Load in Three Phase Circuit
- Δ-to-Y
- Power calculation in balanced three-phase circuits

Three-Phase Systems

Three-Phase Sources

Three-Phase Sources

There are two ways of interconnecting the separate phase windings to form a three phase source in either a wye (Y) or a delta (Δ) configuration.

Phase Voltages of Y-connected source are the line-to-neutral voltages. Phase Voltages of Δ-connected source are the line-to-line voltages.

Y-connected source

Phase Voltage of Y-connected source (The line-to-neutral voltages)

$$
\begin{aligned}
v_{R}(t) & =V_{R M} \cos \left(w t-\theta_{R}\right) \\
v_{S}(t) & =V_{S M} \cos \left(w t-\theta_{S}\right) \\
v_{T}(t) & =V_{T M} \cos \left(w t-\theta_{T}\right)
\end{aligned}
$$

Y-connected source

Balanced Three-Phase Voltage Sources

$$
V_{R M}=V_{S M}=V_{T M}
$$

$$
\theta_{S}=\theta_{R}-120^{\circ}
$$

$$
\theta_{T}=\theta_{S}-120^{\circ}
$$

$$
\begin{aligned}
& V_{R}=V_{m} e^{j \theta_{R}} \\
& V_{S}=V_{m} e^{j \theta_{S}} \\
& V_{T}=V_{m} e^{j \theta_{T}}
\end{aligned}
$$

Phasor Diagrams

RST or abc phase sequence!

$$
V_{R}+V_{S}+V_{T}=?
$$

Line-to-line voltage

Line-to-line voltages:

$$
\begin{aligned}
& V_{R S}=V_{R}-V_{S}=V_{m} e^{j \theta_{R}}\left(1-e^{-j 120}\right)=V_{m} \sqrt{3} e^{j\left(\theta_{R}+30\right)} \\
& V_{S T}=V_{S}-V_{T}=V_{m} \sqrt{3} e^{j\left(\theta_{R}-90\right)} \\
& V_{T R}=V_{T}-V_{R}=V_{m} \sqrt{3} e^{j\left(\theta_{R}-210\right)}
\end{aligned}
$$

Line voltage refers to the voltage across any pair of lines.

Phasor Diagrams

Phasor Diagrams

Line-to-line voltage

In Y-connection: line voltage and phase voltage are not identical !

Δ-connected source

$$
\begin{aligned}
V_{R S} & =V_{M} e^{\theta} \\
V_{S T} & =V_{M} e^{\theta-120} \\
V_{T R} & =V_{M} e^{\theta-240}
\end{aligned}
$$

In Δ-connection: line voltage and phase voltage are identical!

Load in Three Phase Circuit

Balanced load: $Z_{1}=Z_{2}=Z_{3}$
In Y-connected Load: Phase currents and line current are identical. In Δ-connected they are not!

Y-connected Load

$\left|V_{R}\right|=\left|V_{S}\right|=\left|V_{T}\right|$ and

$$
Z_{1}=Z_{2}=Z_{3}=Z_{Y}=\left|Z_{Y}\right| e^{j \theta_{Y}}
$$

Phase currents (line current);

$$
I_{R}=\frac{V_{R}}{Z_{Y}}, \quad I_{S}=\frac{V_{R}}{Z_{Y}} e^{-120 j}, \quad I_{T}=\frac{V_{R}}{Z_{Y}} e^{-240 j}
$$

Δ-connected Load

Phase currents !:

$$
I_{2}=\frac{V_{R S}}{Z_{2}}=\frac{V_{R S}}{Z_{\triangle}}, \quad I_{3}=\frac{V_{S T}}{Z_{3}}=\frac{V_{S T}}{Z_{\triangle}}, \quad I_{1}=\frac{V_{T R}}{Z_{1}}=\frac{V_{T R}}{Z_{\triangle}}
$$

Line currents:

$$
\begin{aligned}
& I_{R}=I_{2}-I_{1}=\frac{V_{R S}-V_{T R}}{Z_{\triangle}}, \quad I_{S}=I_{3}-I_{2}=\frac{V_{S T}-V_{R S}}{Z_{\triangle}} \\
& I_{T}=I_{1}-I_{3}=\frac{V_{T R}-V_{S T}}{Z_{\triangle}}
\end{aligned}
$$

Δ-connected Load

$$
\begin{aligned}
V_{R S}-V_{T R} & =\sqrt{3} V_{R} e^{30 j}-\sqrt{3} V_{T} e^{30 j} \\
& =\sqrt{3} e^{30 j}\left(V_{R}-V_{T}\right) \\
& =\sqrt{3} e^{30 j}\left(\sqrt{3} V_{R} e^{-30 j}\right) \\
& =3 V_{R}
\end{aligned}
$$

Line currents;

$$
I_{R}=\frac{3 V_{R}}{Z_{\triangle}}, I_{S}=\frac{3 V_{S}}{Z_{\triangle}}, I_{T}=\frac{3 V_{T}}{Z_{\triangle}} .
$$

$\left|I_{R}\right|=\left|I_{S}\right|=\left|I_{T}\right|=\left|I_{L}\right|$ and $\left|I_{1}\right|=\left|I_{2}\right|=\left|I_{3}\right|=\left|I_{\Delta}\right|$ where

$$
\left|I_{L}\right|=\sqrt{3}\left|I_{\Delta}\right|
$$

Example

In a balanced δ-connected load, line-to-line voltage is 600 V at $@ 50 \mathrm{~Hz}$.(a) Calculate phase current and (b) line current. Phase current :

$$
I_{\Delta}=\frac{600}{120}=5 \mathrm{~A}
$$

Line current:

$$
I_{L}=\sqrt{3} I_{\Delta}=8.66 A
$$

Example

Line current (T) :

$$
I_{L}=\frac{V_{T}}{Z_{G}+Z_{H}+Z_{L}}
$$

The phase voltage at the load (T): $V_{T L}=I_{L} Z_{L}$ The line voltage at the load (T): $V_{T R}=\sqrt{3} V_{T L} e^{-30 j}$

Δ-to-Y

Y to Δ;
$Z_{a}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{1} Z_{3}}{Z_{2}}, Z_{b}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{1} Z_{3}}{Z_{3}}, Z_{c}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{1} Z_{3}}{Z_{1}}$
Δ to Y ;
$Z_{1}=\frac{Z_{a} Z_{b}}{Z_{a}+Z_{b}+Z_{c}}, Z_{2}=\frac{Z_{b} Z_{c}}{Z_{a}+Z_{b}+Z_{c}}, Z_{3}=\frac{Z_{a} Z_{c}}{Z_{a}+Z_{b}+Z_{c}}$
PS: if $Z_{1}=Z_{2}=Z_{3}=Z_{Y}$ and $Z_{a}=Z_{b}=Z_{c}=Z_{\Delta}$ then

$$
Z_{Y}=\frac{Z_{\Delta}}{3}
$$

Power calculation

Complex power in Y -connected load

$$
N_{Y}=N_{R}+N_{S}+N_{T}
$$

the complex power associate the R -phase

$$
\begin{aligned}
N_{R} & =\frac{1}{2} V_{R} \bar{I}_{R}=\frac{1}{2} V_{R} \bar{V}_{R} \bar{Y}_{Y} \\
& =\frac{1}{2}\left|V_{R}\right|^{2} \bar{Y}_{Y}
\end{aligned}
$$

$$
\left|V_{R}\right|=\left|V_{S}\right|=\left|V_{T}\right|=\left|V_{P}\right| \text { and } V_{P \mathrm{rms}}=\frac{\left|V_{P}\right|}{\sqrt{2}}
$$

$$
N_{Y}=\frac{3}{2} \bar{Y}_{Y}\left|V_{R}\right|^{2}=3 \bar{Y}_{Y} V_{P \mathrm{rms}}^{2}
$$

or using phase current;

$$
N_{Y}=3 Z_{Y} I_{\text {Lrms }}^{2} .
$$

Power calculation

Line-to-line voltage for balanced load

$$
V_{R S}=\sqrt{3} V_{R} e^{-30 j}
$$

$\left|V_{R S}\right|=\left|V_{S T}\right|=\left|V_{T R}\right|=\left|V_{L L}\right|$ and $V_{L L \text { rms }}=\frac{\left|V_{L L}\right|}{\sqrt{2}}$.
Power ;

$$
N_{Y}=\bar{Y}_{Y} V_{L L \mathrm{rms}}^{2}
$$

Complex power of Y-connected $Z_{Y}=\left|Z_{Y}\right| e^{j \phi_{Y}}\left(\phi_{Y}=\phi_{V}-\phi_{I}\right)$

$$
N_{Y}=\frac{3}{2}\left|I_{L}\right|\left|V_{P}\right|\left(\cos \phi_{Y}+j \sin \phi_{Y}\right)
$$

instead of V_{P} lets use line-to-line voltage

$$
\begin{aligned}
N_{Y} & =\frac{3}{2}\left|I_{L}\right| \frac{\left|V_{L L}\right|}{\sqrt{3}}\left(\cos \phi_{Y}+j \sin \phi_{Y}\right) \\
& =\frac{\sqrt{3}}{2}\left|I_{L}\right|\left|V_{L L}\right|\left(\cos \phi_{Y}+j \sin \phi_{Y}\right) \\
N_{Y} & =\sqrt{3} I_{L \mathrm{rms}} V_{L \text { Lrms }}\left(\cos \phi_{Y}+j \sin \phi_{Y}\right)
\end{aligned}
$$

Power calculation in Δ-connected load

$$
N_{\triangle}=N_{1}+N_{2}+N_{3}
$$

For Z_{1}

$$
N_{1}=\frac{1}{2} Z_{1}\left|I_{1}\right|^{2}=\frac{1}{2} Z_{\Delta}\left|I_{1}\right|^{2}
$$

using $\left|I_{1}\right|=\left|I_{3}\right|=\left|I_{3}\right|=\left|I_{P}\right|$

$$
N_{\triangle}=3 Z_{\Delta}\left|I_{P_{\mathrm{rms}}}\right|^{2}
$$

we have $\left|I_{L}\right|=\sqrt{3}\left|I_{P}\right|$ hence

$$
N_{\triangle}=Z_{\Delta}\left|I_{L \mathrm{rms}}\right|^{2}
$$

Power calculation

$Z_{\Delta}=\left|Z_{\Delta}\right| e^{j \phi_{\Delta}}\left(\phi_{\triangle}=\phi_{V}-\phi_{I}\right)$

$$
N_{\triangle}=\frac{3}{2}\left|I_{P}\right|\left|V_{L L}\right|\left(\cos \phi_{\triangle}+j \sin \phi_{\triangle}\right)
$$

$$
\begin{aligned}
N_{\triangle} & =\frac{3}{2}\left|V_{L L}\right| \frac{\left|I_{L}\right|}{\sqrt{3}}\left(\cos \phi_{\triangle}+j \sin \phi_{\triangle}\right)=\frac{\sqrt{3}}{2}\left|V_{L L}\right|\left|I_{L}\right|\left(\cos \phi_{\triangle}+j \sin \phi_{\triangle}\right) \\
& =\sqrt{3} I_{L \text { rms }} V_{L L \mathrm{rms}}\left(\cos \phi_{\triangle}+j \sin \phi_{\triangle}\right) .
\end{aligned}
$$

Examples

A balance three-phase source with line-to-line voltage $220 \sqrt{6}$ is supplying 25992 W active and OVAR reactive power to Y and Δ-connected two balanced loads. Δ-connected balanced load is absorbing 12966 W active and 4332 VAR reactive power. Calculate Y-connected load.

Examples

Total Power delivered to loads

$$
N=N_{Y}+N_{\triangle}=25992
$$

hence

$$
N_{Y}=12996-j 43432 .
$$

$V_{R}=\frac{1}{\sqrt{3}} V_{R S} e^{-j 30}$ then $V_{R}=220 \sqrt{2} e^{-j 30}$.

$$
N_{Y}=3 V_{L \mathrm{rms}}^{2} \bar{Y}_{Y}
$$

using $V_{\text {Lrms }}=220$ we obtaine

$$
Y_{Y}=0.0895+j 0.02982
$$

Examples

In a balanced 3-phase system, $Z=4+j 2, Z_{1}=\frac{2}{3} Z$ and $Z_{2}=\frac{1}{6} Z$ are given. For $V_{R S}=V_{S T}=20+j 10$, calculate the currents I_{R}, I_{S}, I_{T}.

Examples

Use Δ to Y conversion, then obtaine the empedance connected to each line : $2 Z / 3+Z / 3, Z / 6+Z / 3$ and $Z / 3$. Then KVL:

$$
(Z) I_{R}-I_{S} Z / 2=V_{R S}
$$

and

$$
Z / 2 I_{R}-I_{T} Z / 3=V_{S T}
$$

then obtaine $I_{T}=-10$ and $I_{R}=20 / 3$ (2 Equ.s and 3 unknown !!).

