Circuit and System Analysis EHB 232E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University Faculty of Electrical and Electronic Engineering
mustak.yalcin@itu.edu.tr

Outline I

(1) Laplace Transform in Circuit Analysis-Cont.

- Network Parameters
- Combinations of two-port networks
- Reciprocal Network
- Thevenin - Norton Equivalent Circuits

Network Parameters

Impedance matrix (z-parameter) The two currents I_{1} and I_{2} are assumed to be known, and the voltages V_{1} and V_{2} can be found by:

$$
\left[\begin{array}{l}
V_{1}(s) \\
V_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{l}
l_{1}(s) \\
l_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
z_{11}=\left.\frac{V_{1}(s)}{l_{1}(s)}\right|_{l_{2}=0} & z_{12}=\left.\frac{V_{1}(s)}{l_{2}(s)}\right|_{l_{1}=0} \\
z_{21}=\left.\frac{V_{2}(s)}{l_{1}(s)}\right|_{l_{2}=0} & z_{22}=\left.\frac{V_{2}(s)}{l_{2}(s)}\right|_{l_{1}=0}
\end{array}
$$

Network Parameters

Admittance matrix (y-parameters) The two voltages V_{1} and V_{2} are assumed to be known, and the currents I_{1} and I_{2} can be found by:

$$
\left[\begin{array}{l}
l_{1}(s) \\
l_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1}(s) \\
V_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
y_{11}=\left.\frac{I_{1}(s)}{V_{1}(s)}\right|_{V_{2}=0} & y_{12}=\left.\frac{I_{1}(s)}{V_{2}(s)}\right|_{V_{1}=0} \\
y_{21}=\left.\frac{I_{2}(s)}{V_{1}(s)}\right|_{V_{2}=0} & y_{22}=\left.\frac{I_{2}(s)}{V_{2}(s)}\right|_{V_{1}=0}
\end{array}
$$

y_{21} and y_{12} are transfer admittances

g-parameters

Inverse hybrid model, we assume V_{1} and I_{2} are known, and find V_{2} and I_{1} by :

$$
\left[\begin{array}{l}
I_{1}(s) \\
V_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1}(s) \\
I_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{lr}
g_{11}=\left.\frac{I_{1}(s)}{V_{1}(s)}\right|_{I_{2}=0} & g_{12}=\left.\frac{I_{1}(s)}{I_{2}(s)}\right|_{V_{1}=0} \\
g_{21}=\left.\frac{V_{2}(s)}{V_{1}(s)}\right|_{I_{2}=0} & g_{22}=\left.\frac{V_{2}(s)}{I_{2}(s)}\right|_{V_{1}=0}
\end{array}
$$

h-parameters

Hybrid model, we assume V_{2} and I_{1} are known, and find V_{1} and I_{2} by:

$$
\left[\begin{array}{l}
V_{1}(s) \\
I_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
I_{1}(s) \\
V_{2}(s)
\end{array}\right]
$$

where

$$
\begin{aligned}
h_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{V_{2}=0} & h_{12}=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{\iota_{1}=0} \\
h_{21}=\left.\frac{l_{2}(s)}{I_{1}(s)}\right|_{V_{2}=0} & h_{22}=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{\iota_{1}=0}
\end{aligned}
$$

ABCD-parameters

Transmission model, we assume V_{1} and I_{1} are known, and find V_{2} and I_{2} by:

$$
\left[\begin{array}{c}
V_{1}(s) \\
I_{1}(s)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{2}(s) \\
-I_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
A=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{l_{2}=0} & B=\left.\frac{V_{1}(s)}{-I_{2}(s)}\right|_{V_{2}=0} \\
C=\left.\frac{I_{1}(s)}{V_{2}(s)}\right|_{l_{2}=0} & D=\left.\frac{-I_{1}(s)}{I_{2}(s)}\right|_{V_{2}=0}
\end{array}
$$

Example

$$
\begin{aligned}
& z_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{I_{2}=0}=Z_{A}+Z_{C} \quad z_{12}=\left.\frac{V_{1}(s)}{I_{2}(s)}\right|_{l_{1}=0}=Z_{C} \\
& z_{21}=\left.\frac{V_{2}(s)}{I_{1}(s)}\right|_{l_{2}=0}=Z_{C} \quad z_{22}=\left.\frac{V_{2}(s)}{I_{2}(s)}\right|_{l_{1}=0}=Z_{B}+Z_{C}
\end{aligned}
$$

ABCD

$$
1+\frac{Z_{3}}{Z_{2}} \quad Z_{3} \frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{Z_{3}}{Z_{1} Z_{2}} 1+\frac{Z_{3}}{Z_{1}}
$$

Example

For h-parameters

$$
\begin{aligned}
& h_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{V_{2}=0} \text { Port } 2 \text { short circuit } \\
& h_{21}=\left.\frac{l_{2}(s)}{l_{1}(s)}\right|_{V_{2}=0} \text { Port } 2 \text { short circuit } \\
& h_{11}=\left.\frac{V_{1}(s)}{l_{1}(s)}\right|_{V_{2}=0} \quad h_{21}=\left.\frac{l_{2}(s)}{l_{1}(s)}\right|_{V_{2}=0}
\end{aligned}
$$

Input current ($i=I_{1}$)

$$
I_{1}=k \frac{V_{1}}{R_{1}}+\frac{V_{1}}{R_{1}}
$$

then

$$
h_{11}=\frac{R_{1}}{1+k}
$$

for h_{21}

$$
I_{2}=-k i
$$

Substituing $I_{1}=(k+1) i$ into the above equ

$$
h_{21}=-\frac{k}{1+k}
$$

Problems: Richard C. Dorf, James A. Svoboda-Introduction to Electric

The rest of the parameters

$$
h_{12}=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{\iota_{1}=0} \quad h_{22}=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{\iota_{1}=0}
$$

For $I_{1}=0$, the circuit is given

$$
h_{12}=-\frac{R_{1} k}{(1+k) R_{2}} \quad h_{22}=\frac{1}{(1+k) R_{2}}
$$

Combinations of two-port networks

Series-series connection

From KCL and KVL

$$
l_{1}=l_{1 A}=l_{1 B} \quad I_{2}=I_{2 A}=l_{2 B}
$$

and

$$
V_{1}=V_{1 A}+V_{1 B} \quad V_{2}=V_{2 A}+V_{2 B}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1}(s) \\
V_{2}(s)
\end{array}\right]=\left[\begin{array}{l}
V_{1 A}(s) \\
V_{2 A}(s)
\end{array}\right]+\left[\begin{array}{l}
V_{1 B}(s) \\
V_{2 B}(s)
\end{array}\right]=\left[\begin{array}{ll}
z_{11 A} & z_{12 A} \\
z_{21 A} & z_{22 A}
\end{array}\right]\left[\begin{array}{l}
I_{1 A}(s) \\
I_{2 A}(s)
\end{array}\right]} \\
& +\left[\begin{array}{ll}
z_{11 B} & z_{12 B} \\
z_{21 B} & z_{22 B}
\end{array}\right]\left[\begin{array}{l}
l_{1 B}(s) \\
l_{2 B}(s)
\end{array}\right] \\
& =\left\{\left[\begin{array}{ll}
z_{11 A} & z_{12 A} \\
z_{21 A} & z_{22 A}
\end{array}\right]+\left[\begin{array}{ll}
z_{11 B} & z_{12 B} \\
z_{21 B} & z_{22 B}
\end{array}\right]\right\}\left[\begin{array}{l}
l_{1}(s) \\
l_{2}(s)
\end{array}\right] \\
& Z=Z_{A}+Z_{B}
\end{aligned}
$$

Parallel-parallel connection

$$
Y=Y_{A}+Y_{B}
$$

Parallel-series connection

$$
g=g_{A}+g_{B}
$$

Series-parallel connection

Cascade connection

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{A}+\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{B}
$$

Good to read : http://en.wikipedia.org/wiki/Two-port_network

Common emittor

$$
v_{b e}=f\left(i_{b}, v_{c e}\right) i_{c}=g\left(i_{b}, v_{c e}\right.
$$

small signal analysis:

$$
\begin{gathered}
v_{b e}=\frac{v_{b e}}{i_{b}} i_{b}+\frac{v_{b e}}{v_{c e}} v_{c e}=h_{i} i_{b}+h_{r} i_{b} \\
i_{c}=\frac{i_{c}}{i_{b}} i_{b}+\frac{i_{c}}{v_{c e}} v_{c e}=h_{f} i_{b}+h_{o} v_{c e}
\end{gathered}
$$

- h_{i} input impedance with $v_{c e}=0$. This is AC resistance between base and emitter, the reciprocal of the slope of the current-voltage curve of the input characteristics.
- h_{r} reverse transfer voltage ratio with $i_{b}=0$. In general is small and can be ignored.
- h_{f} forward transfer current ratio or current amplification factor with $v_{\text {ce }}=0$.
- h_{o} output admittance with $i_{b}=0$. It is slope of the current-voltage curve in the output characteristics. In general is small and can be ignored.

Reciprocal Network

Reciprocity theorem For a reciprocal two-port N , the following relationship holds for each associated two-port representation which exists:

$$
\begin{array}{r}
z_{12}=z_{21} \\
y_{12}=y_{21} \\
h_{12}=-h_{21} \\
g_{12}=-g_{21}
\end{array}
$$

READ : PROOF OF THE RECIPROCITY THEOREM (Chua's book page: 776)

- A gyrator ($i_{1}=G v_{2}$ and $i_{2}=-G v_{1}$) is not reciprocal two-port
- An ideal transformer $\left(v_{1}=n v_{2}\right.$ and $\left.i_{2}=n i_{1}\right)$ is a reciprocal two-port.

Thevenin - Norton Equivalent Circuits

Driving-point characteristic of Thevenin equivalent circuit is defined by

$$
V=Z_{\mathrm{th}}(s) I+V_{\mathrm{th}}(s)
$$

