Circuit and System Analysis EHB 232E

Prof. Dr. Müştak E. Yalçın

Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Outline I

- Mathematical Systems Theory
 - Linear State Equations
 - Distinct Eigenvalues
 - Series expansion of Homogeneous Solution
 - State transition matrix
 - Properties of state transition matrix
 - Non-homogeneous state equations
 - Controllability
 - Observability
- Sinusoidal Steady-State Analysis
 - Phasor analysis
 - Properties of phasors
 - Representation of state-space equations
 - Transfer function
 - Kirchhoff's Laws in the Frequence Domain
 - The Passive Circuit Elements in the Frequency Domain

Outline II

- The Concept of Impedance and Admittance
- Sinusoidal Steady-State Analysis
 - Sinusoidal Steady-State Power Calculation
 - Average Power
 - Complex, Real and Reactive Powers
 - Tellegen Theorem
 - Maximum Power Transfer
- Sinusoidal Steady-State Analysis
 - Mesh-Current Method in Frequency Domain
 - Node-voltage Method in Frequency Domain
 - Network functions
 - Superposition of Sinusoidal Steady States
 - Thevenin Norton Equivalent Circuits
- 5 Three-Phase Systems
 - Y-connected source
 - Line-to-line voltage

Outline III

- Delta-connected source
- Load in Three Phase Circuit
- Δ-to-Y
- Power calculation in balanced three-phase circuits

6 Laplace Transform in Circuit Analysis

- Laplace Transform
- Inverse Laplace Transform
- Analysis of state space equation
- Characteristic polynomial
- Stability and the Routh-Hurwitz Criterion
- Routh-Hurwitz Criterion
- Circuit elements in the s-domain
- s-Tanım Bölgesinde Devre Denklemleri
- Network Parameters
- Combinations of two-port networks
- Reciprocal Network

Outline IV

- Thevenin Norton Equivalent Circuits
- Laplace Transform in Circuit Analysis
 - Circuit elements in the s-domain
 - Circuit Analysis in the s-domain
 - Network Parameters
 - Combinations of two-port networks
 - Reciprocal Network
 - Thevenin Norton Equivalent Circuits
- 8 Block diagrams and signal-flow graph
 - Block diagrams
 - Block diagram reduction
 - Feedback
 - Example
 - Signal-Flow Graphs
- Bode plot
 - Bode plot

Basic course information

Day(s)/Time/Place/

It will be announced on

https://web.itu.edu.tr/yalcinmust/dersler.html

Exams

Final Exam: The date of the exam will be announced on

http://www.sis.itu.edu.tr/tr/sinav_programi/

Grading

It will be announced on

https://web.itu.edu.tr/yalcinmust/dersler.html

Web

https://web.itu.edu.tr/yalcinmust/ehb232.html

Schedule

- 1. Week Lecture
- 2. Week Lecture
- 3. Week Lecture
- 4. Week Lecture
- 5. Week Midterm I
- 6. Week Lecture
- 7. Week Lecture Homework I
- 8. Week Exercise session
- 9. Week Lecture Homework I Return
- 10. Week Midterm II
- 11. Week Lecture
- 12. Week Lecture Homework II
- 13. Week Lecture
- 14. Week Exercise session Homework II Return

Handouts & Reading Materials

Handouts

A copy of the handouts can be obtained from https://web.itu.edu.tr/yalcinmust/ehb232.html.

Textbook:

- James W. Nilsson and Susan A. Riedel, "Electric Circuits," Pearson Prentice Hall, 2008.
- Richard C. Dorf, James A. Svoboda, "Introduction to Electric Circuits," Wiley 2013.

Handouts & Reading Materials

Reading Materials:

- Leon O. Chua, Charles A. Desoer, Ernest S. Kuh, "Linear and Nonlinear Circuits," McGraw-Hill, 1987.
- Yılmaz Tokat, "Devre Analizi Dersleri: Kısım I," Çağlayan Kitapevi, 1986.
- Cevdet Acar, "Elektrik Devrelerinin Analizi," İstanbul Teknik Üniversitesi, 1995.
- Müştak E. Yalçın, "Devre ve Sistem Analizi Ders Notları", 2012.

Video

https://www.youtube.com/channel/UCunDN-zYoYoN4WZUX4no4oA.