Homework II

P 12.3-3 \oplus A Y-connected source and load are shown in Figure P 12.3-3. (a) Determine the rms value of the current $i_{\mathrm{a}}(t)$. (b) Determine the average power delivered to the load.

Figure P 12.3-3
P 12.3-1 \oplus Consider a three-wire Y-to- Y circuit. The voltages of the Y-connected source are $\mathbf{V}_{\mathrm{a}}=(208 / \sqrt{3}) \quad \angle 0^{\circ} \mathrm{V}$ rms, $\mathbf{V}_{\mathrm{b}}=(208 / \sqrt{3}) \angle-120^{\circ} \mathrm{V}$ rms, \quad and $\quad \mathbf{V}_{\mathrm{c}}=(208 / \sqrt{3})$ $\angle 120^{\circ} \mathrm{V} \mathrm{rms}$. The Y-connected load is balanced. The impedance of each phase is $\mathbf{Z}=12 \angle 30^{\circ} \Omega$.
(a) Find the phase voltages.
(b) Find the line currents and phase currents.
(c) Show the line currents and phase currents on a phasor diagram.
(d) Determine the power dissipated in the load.

P 12.5-1 \uparrow Considerathree-wire Y-to- Δ circuit. The voltages of the Y-connected source are $\mathbf{V}_{\mathrm{a}}=(208 / \sqrt{3}) \angle-30^{\circ} \mathrm{V}$ rms, $\mathbf{V}_{\mathrm{b}}=(208 / \sqrt{3}) \angle-150^{\circ} \mathrm{V}$ rms, and $\mathbf{V}_{\mathrm{c}}=(208 / \sqrt{3}) \angle 90^{\circ} \mathrm{V}$ rms. The Δ-connected load is balanced. The impedance of each phase is $\mathbf{Z}=12 \angle 30^{\circ} \Omega$. Determine the line currents and calculate the power dissipated in the load.

P 13.3-3 \oplus The input to the circuit shown in Figure P 13.3-3 is the source voltage $\nu_{\text {in }}(t)$, and the response is the voltage across $R_{3}, v_{\text {out }}(t)$. The component values are $R_{1}=5 \mathrm{k} \Omega$, $R_{2}=10 \mathrm{k} \Omega, C_{1}=0.1 \mu \mathrm{~F}$, and $C_{2}=0.1 \mu \mathrm{~F}$. Sketch the asymptotic magnitude Bode plot for the network function.

Figure P 13.3-3

P 13.3-7 \oplus The input to the circuit shown in Figure P 13.3-7b is the voltage of the voltage source $v_{i}(t)$. The output is the voltage $v_{\mathrm{o}}(t)$. The network function of this circuit is $\mathbf{H}(\omega)=\mathbf{V}_{\mathrm{o}}(\omega) / \mathbf{V}_{\mathrm{i}}(\omega)$. The magnitude Bode plot is shown in Figure P 13.3-7a. Determine values of the corner frequencies z and p. Determine the value of the lowfrequency gain, k.

(a)

(b)

Figure P 13.3-7

