Homework II

P 12.3-3 \bigoplus A Y-connected source and load are shown in Figure P 12.3-3. (a) Determine the rms value of the current $i_a(t)$. (b) Determine the average power delivered to the load.

Figure P 12.3-3

P 12.3-1 C Consider a three-wire Y-to-Y circuit. The voltages of the Y-connected source are $V_a = (208/\sqrt{3}) / 0^{\circ}$ V rms, $V_b = (208/\sqrt{3}) / -120^{\circ}$ V rms, and $V_c = (208/\sqrt{3}) / 120^{\circ}$ V rms. The Y-connected load is balanced. The impedance of each phase is $\mathbf{Z} = 12 / 30^{\circ} \Omega$.

- (a) Find the phase voltages.
- (b) Find the line currents and phase currents.
- (c) Show the line currents and phase currents on a phasor diagram.
- (d) Determine the power dissipated in the load.

P 12.5-1 Consider a three-wire Y-to- Δ circuit. The voltages of the Y-connected source are $\mathbf{V}_a = (208/\sqrt{3}) / \underline{-30^{\circ}} \text{ V rms}$, $\mathbf{V}_b = (208/\sqrt{3}) / \underline{-150^{\circ}} \text{ V rms}$, and $\mathbf{V}_c = (208/\sqrt{3}) / \underline{90^{\circ}} \text{ V rms}$. The Δ -connected load is balanced. The impedance of each phase is $\mathbf{Z} = 12 / \underline{30^{\circ}} \Omega$. Determine the line currents and calculate the power dissipated in the load.

P 13.3-3 The input to the circuit shown in Figure P 13.3-3 is the source voltage $v_{in}(t)$, and the response is the voltage across R_3 , $v_{out}(t)$. The component values are $R_1 = 5 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $C_1 = 0.1 \mu\text{F}$, and $C_2 = 0.1 \mu\text{F}$. Sketch the asymptotic magnitude Bode plot for the network function.

Figure P 13.3-3

P 13.3-7 The input to the circuit shown in Figure P 13.3-7*b* is the voltage of the voltage source $v_i(t)$. The output is the voltage $v_o(t)$. The network function of this circuit is $\mathbf{H}(\omega) = \mathbf{V}_o(\omega)/\mathbf{V}_i(\omega)$. The magnitude Bode plot is shown in Figure P 13.3-7*a*. Determine values of the corner frequencies *z* and *p*. Determine the value of the low-frequency gain, *k*.

