HOMEWORK-II

P 8.4-4 An electronic flash on a camera uses the circuit shown in Figure P 8.4-4. Harold E. Edgerton invented the electronic flash in 1930. A capacitor builds a steady-state voltage and then discharges it as the shutter switch is pressed. The discharge produces a very brief light discharge. Determine the elapsed time t_1 to reduce the capacitor voltage to one-half of its initial voltage. Find the current i(t) at $t = t_1$.

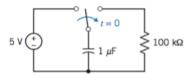


Figure P 8.4-4 Electronic flash circuit.

P 8.5-2 The circuit in Figure P 8.5-2 contains a current-controlled current source. What restriction must be placed on the gain *B* of this dependent source to guarantee stability?

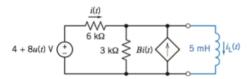
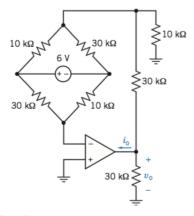



Figure P 8.5-2

P 6.4-7 Find v_0 and i_0 for the circuit shown in Figure P 6.4-7.

Figure P 6.4-7

P 5.5-9 Find the Norton equivalent circuit for the circuit shown in Figure P 5.5-9.

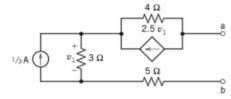


Figure P 5.5-9

P 6.4-4 \bigoplus The output of the circuit shown in Figure P 6.4-4 is v_0 . The inputs are v_1 and v_2 . Express the output as a function of the inputs and the resistor resistances.

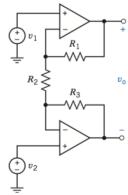


Figure P 6.4-4

P 6.3-14 • Determine the node voltages at nodes a, b, c, and d of the circuit shown in Figure P 6.3-14.

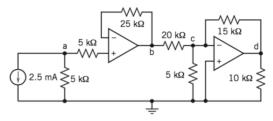


Figure P 6.3-14

P 5.4-15 \bigoplus Consider the circuit shown in Figure P 5.4-15. Replace the part of the circuit to the left of terminals a-b by its Thévenin equivalent circuit. Determine the value of the current i_0 .

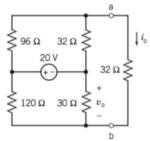


Figure P 5.4-15

P 8.6-6 Studies of an artificial insect are being used to understand the nervous system of animals. A model neuron in the nervous system of the artificial insect is shown in Figure P 8.6-6. A series of pulses, called synapses, is required. The switch generates a pulse by opening at t = 0 and closing at t = 0.5 s. Assume that the circuit is in steady state and that $v(0^-) = 10$ V. Determine the voltage v(t) for 0 < t < 2 s.

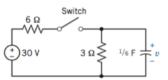


Figure P 8.6-6 Neuron circuit model.