Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 6.

Contents I

(1) Circuit Elements

- Two-terminal Elements
- Two-port Elements
- Multi-terminal Circuit Elements

Two-terminal Elements

Two-terminal elements play a major role in electric circuits!
Two-terminal circuit elements are defined by the between basic variables which are current $(i(t))$, voltage $(v(t))$, charge $(q(t))$ and flux $(\phi(t))$. The units of them are Amperes, Volts, Coulomb and Weber, respectively.

Two pairs of the basic variables

$$
i(t)=\frac{d q}{d t}
$$

and

$$
v(t)=\frac{d \phi}{d t}
$$

are the definition.

Two-terminal Elements

Controlled circuit element (Dependent element)

If the relation between the terminal variable is given by the equation $x=h(y, t)$, this two-terminal element is called as a y controlled element e.g. voltage controlled voltage sources,...

Time-invariant two-terminal element

A two-terminal element whose variables x and y fall on some fixed curve in the $x-y$ plane at any time t is called a time-invariant circuit element e.g. Linear resistor $V v=R i$.

$x-y$ characteristic

The curve on the $x-y$ plane at any time t is called $x-y$ characteristic e.g. $v-i$ characteristic of linear resistor.

Two-terminal Elements

Bilateral property

A element has a $x-y$ characteristics which is not symmetric with respect to the origin of the $x-y$ plane.

Linear element

A linear element is an element with a linear relationship between its variables x and y.

Linear

$f(x)$ is a function which satisfies the following two properties:

- Additivity (superposition): $f(x+y)=f(x)+f(y)$.
- Homogeneity : $f(\alpha x)=\alpha f(x)$ for all α.

Basic circuit element diagram

Resistor

A two-terminal element will be called a resistor if its voltage v and current i satisfy the following relation:

$$
\mathrm{R}=\{(v, i) \mid f(v, i)=0\}
$$

This relation is called the $v-i$ characteristic of the resistor and can be plotted graphically in the $v-i$ plane. The equation $f(v, i)=0$ represents a curve in the $v-i$ plane and specifies completely the two-terminal resistor.
The linear resistor is a special case of a resistor and satisfies Ohm's law which is

$$
f(v, i)=v-R i \quad \text { or } \quad f(v, i)=G v-i
$$

It means that the voltage across resistor is proportional to the current flowing through it.

Linear and Nonlinear Resistor

Ohm's law states

$$
v=R i \quad \text { or } \quad i=G v
$$

where the constant R is the resistance of the linear resistor measured in the unit of ohms (Ω), and G is the conductance measured in the unit of Siemens (S). A resistor which is not linear is called nonlinear.

$$
G=\frac{1}{R}
$$

(a)

(b)

Capacitor

A two-terminal element whose charge $q(t)$ and voltage $v(t)$ fall on some fixed curve in the $q-v$ plane at any time t is called a time-invariant capacitor. Linear time- invariant capacitor is represented by the equations

$$
q=C v \text { or } i=C \frac{d v}{d t}
$$

Values of capacitors are specified in ranges of farads (F).

Time-varying and Nonlinear Capacitor

If the $q-v$ characteristic changes with time, the capacitor is said to be time-varying. Then the mathematical model becomes

$$
q=C(t) v
$$

and

$$
i=\frac{d C}{d t} v+C(t) \frac{d v}{d t}
$$

The most general case, a time-varying nonlinear capacitor is defined by a family of time-dependent and nonlinear $q-v$ characteristics

$$
f(q, v, t)=0
$$

Inductor

A two-terminal element whose flux $\phi(t)$ and current $i(t)$ fall on some fixed curve in the $\phi-i$ plane at any time t is called a time-invariant inductor. The mathematical model of LTI inductor is

$$
\phi=L i \text { veya } \mathrm{v}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}
$$

Values of inductors are specified in ranges of Henry (H).

Inductor

If the $\phi-i$ characteristic changes with time, the inductor is said to be time-varying. Then the mathematical model becomes

$$
v=L(t) i
$$

and

$$
v=\frac{d L}{d t} i+L(t) \frac{d i}{d t}
$$

The most general case, a time-varying nonlinear capacitor is defined by a family of time-dependent and nonlinear $\phi-v$ characteristics

$$
f(\phi, v, t)=0
$$

Memristor

A two-terminal element whose flux $\phi(t)$ and current $q(t)$ fall on some fixed curve in the $\phi-q$ plane at any time t is called a time-invariant memristor. The mathematical model of LTI memristor is

$$
\phi=M q .
$$

Using the definitions, one can obtain $v=M i$ which is a

Memristor

Nonlinear memristor is defined by a family of nonlinear $\phi-v$ characteristics

$$
\phi=f(q)
$$

It can be written in the form

$$
v=\frac{d f(q)}{d t} i=\frac{d f\left(q\left(t_{0}+\int_{t_{0}}^{t} i(\tau) d \tau\right)\right)}{d t} i
$$

Nonlinear Resistors

Nonlinear Resistors: Diode

$$
i=I_{0} e^{\left(v / v_{T}-1\right)}
$$

where $v_{T}=0.026 \mathrm{~V}$ ve $I_{0} \mu \mathrm{~A}$.

(a)

(1) $\mathrm{T}_{j}=175^{\circ} \mathrm{C}$; typical values.
(2) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.
(3) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; maximum values.
(b)

Nonlinear Resistors: Zener diode

(a)

(b)

Nonlinear Resistors

Independent Sources

Independent current source: An independent currrent source is defined as a two-terminal circuit element whose current is a specified waveform $i_{s}(\cdot)$ irrespective of the voltage across it.

Independent Sources

Independent voltage source: A two-terminal element is called an independent voltage source if the voltage across it is a given waveform $v_{s}(\cdot)$ irrespective of the current flowing through it.

Nonlinear resistor

Open circuit

$$
i(t)=0
$$

Nonlinear resistor

Short circuit

$$
v(t)=0
$$

Linear Controlled Sources

Dependent Source: A controlled sources is a resistive two-port element consisting of two branches: a primary branch which is either an open circuit or a short circuit and a secondary branch which is either a voltage source or a current source. Diamond-shaped symbol to denote controlled sources.
current sources

voltage sources

Linear Controlled Sources

Current-Controlled Current Source (CCCS)

CCCS is characterized by two linear equations

$$
\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
\alpha & 0
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]
$$

where α is called the current transfer ratio.

Current-Controlled Voltage Source (CCVS)

CCVS is characterized by two linear equations

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
r & 0
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]
$$

where r is called the transresistance.

Linear Controlled Sources

Voltage-Controlled Current Source (VCCS)

$$
\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
g & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

where g is called the transconductance.

Voltage-Controlled Voltage Source (VCVS)

$$
\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
k & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]
$$

where k is called the voltage transfer ratio.

Two-port Elements

Two-port Elements

The ideal transformer is an ideal two-port resistive circuit element which is characterized by the following two equations:

$$
\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & n \\
-n & 0
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]
$$

where n is a real number called the turns ratio.

(b)

Two-port Elements

Jirator

A gyrator is an ideal two-port element defined by the following equations:

$$
\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & G \\
-G & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

where the constant G is called the gyration conductance.

(b)

Examples

(a)

(b)

Multi-terminal Circuit Elements

npn- Bipolar Transistor

The most commonly used three-terminal device is the transistor. Low-frequency characterization is given by the one- dimensional diffusion model which yields the Ebers-Moll equations:

$$
\begin{aligned}
i_{E} & =-l_{e s}\left(e^{-v_{e b} / v_{T}-1}\right)+\alpha_{R} l_{C S}\left(e^{-v_{c b} / v_{T}-1}\right) \\
i_{C} & =\alpha_{F} l_{e s}\left(e^{-v_{e b} / v_{T}-1}\right)+I_{C S}\left(e^{-v_{c b} / v_{T}-1}\right) .
\end{aligned}
$$

(a)

(b)

Modelling of the common emitter transistor configuration using diode and dependent sources. One can obtain

$$
i_{1}=l_{e s}\left(e^{-v_{e b} / v_{T}-1}\right)
$$

and

$$
i_{2}=I_{C S}\left(e^{-v_{c b} / v_{T}-1}\right)
$$

Operational amplifier

Operational amplifiers (op amps) are multi-terminal devices. Terminals are labeled inverting input, non-inverting input, output, E_{+}, E_{-}and external ground. A "biased" op amp can be considered as a 4-terminal device.

(a)

The variable $v_{d}=v_{+}-v_{-}$is called the differential input voltage and will play an important role in op-amp circuit analysis.

Operational amplifier

The op-amp terminal currents and voltages obey the following approximate relation- ships:

$$
i_{+} \approx 0, i_{-} \approx 0 \text { and } v_{o}=G\left(v_{+}-v_{-}\right)
$$

where G called the open-loop voltage gain. v_{o} saturates at $v_{o}=E_{\text {sat }}$ where $E_{\text {sat }}$ is less than the power supply voltage.

Operational amplifier

In a small interval $-\epsilon<v_{d}<\epsilon$, we have

$$
G\left(v_{+}-v_{-}\right)=v_{o}
$$

which is called linear region.
In ideal op amp

$$
i_{+}=i_{-}=\epsilon=0
$$

and

$$
G=\infty
$$

Using the gain formula, we will have

$$
\begin{aligned}
& \left(v_{+}-v_{-}\right)=\frac{v_{0}}{G} \\
& \left(v_{+}-v_{-}\right) \approx 0
\end{aligned}
$$

Examples

Examples

Applying KCL at the node where the inverting input is connected and using the definition of op amp, we obtain

$$
\begin{aligned}
-G_{1} V_{-}+G_{2}\left(V_{o}-V_{-}\right) & =0 \\
G\left(V_{i}+V_{-}\right) & =V_{0}
\end{aligned}
$$

Substituting the first eqn. into the second eqn.

$$
V_{o}=\frac{G}{1+K G} V_{i}
$$

where $K=\frac{R_{1}}{R_{1}+R_{2}} \cdot \frac{G}{1+K G}$ is the gain. G is too big therefore

$$
V_{o}=\frac{1}{K} V_{i}
$$

The same result can be obtained using the relation $V_{+}=V_{-}$.

Examples

What is the $v-i$ characteristic ?

$$
\begin{gathered}
\frac{e}{R_{1}}=-\frac{V_{d 2}}{R_{2}} \\
i_{3}=-\frac{V_{d 2}}{R_{3}}=-\frac{R_{2} e}{R_{3} R_{1}} \\
i=i_{2}+i_{3}=-\frac{e}{R_{1}}+\frac{R_{2} e}{R_{3} R_{1}}=-\frac{e}{R_{1}}\left(1+\frac{R_{2}}{R_{3}}\right)
\end{gathered}
$$

