Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 5.

Contents I

- Fundamental Loop Analysis
- Mesh Equation
- Fundamental Cut-set
- Example

Fundamental Loop Analysis

Fundamental Loop

Every link of G_{T} and the unique tree path between its nodes constitute a unique loop. This loop is called the Fundamental loop associated with the link.

Consider a link / which connects nodes 1 and 2 . There is a unique tree path between 1 and 2. This path, together with the link $/$, constitutes a loop. There cannot be any other loop.

Fundamental Loop Equation

The linear algebraic equations obtained by applying KVL to each Fundamental loop constitute a set of $n_{e}-n_{n}-1$ linearly independent equations.

Reference direction for the loop which agrees with that of the link defining the loop.

Fundamental Loop Analysis

The links $G_{L}=\{1,4,6\}$ for the chosen tree $G_{T}=\{2,3,5\}$. The Fundamental loop sets are $G_{L 1}=\{1,2,3\} \quad G_{L 4}=\{4,5,3\}$ $G_{L 6}=\{6,2,3,5\}$.
If we apply KVL to the Fundamental loops, we obtain:

$$
\begin{array}{ll}
V_{1}-V_{3}-V_{2} & =0 \\
V_{4}-V_{5}-V_{3} & =0
\end{array}
$$

Fundamental Loop Analysis

$$
V=\left[\begin{array}{c}
V_{l} \\
-- \\
V_{b}
\end{array}\right]=\left[\begin{array}{c}
V_{1} \\
V_{4} \\
V_{6} \\
-- \\
V_{2} \\
V_{3} \\
V_{5}
\end{array}\right]
$$

where V_{l} is link voltage vector, V_{b} is tree branch voltage vector. In matrix form:

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & -1 & 0 \\
0 & 1 & 0 & 0 & -1 & -1 \\
0 & 0 & 1 & -1 & -1 & -1
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{4} \\
V_{6} \\
-- \\
V_{2} \\
V_{3}
\end{array}\right]=0
$$

Fundamental Loop Analysis

$$
B=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & -1 & 0 \\
0 & 1 & 0 & 0 & -1 & -1 \\
0 & 0 & 1 & -1 & -1 & -1
\end{array}\right]
$$

B is an $n_{b}-n_{n}+1 \times n_{b}$ matrix called the Fundamental loop matrix.

$$
\begin{gathered}
B V=[I \mid F]\left[\begin{array}{c}
V_{l} \\
-- \\
V_{b}
\end{array}\right]=0 \\
V_{l}=-F V_{b}
\end{gathered}
$$

The number of Fundamental loop equations is $n_{e}-n_{n}+1$ (=number of links).

Mesh Equation

Meshes are special case of the Fundamental loops i.e., there exists a tree such that the meshes are Fundamental loops ${ }^{* * * *}$.

There are 3 meshes. Corresponding loop sets and mesh currents (loop currents) $G_{M 1}=\{1,2,3\}$ and $i_{m 1}: G_{M 2}=\{3,4,5\}$ and $i_{m 2}$;
$G_{M 3}=\{2,4,6\}$ and $i_{m 3}$.

Mesh Analysis

$$
\begin{aligned}
& i_{1}=i_{m 1} \\
& i_{2}=-i_{m 3}-i_{m 1} \\
& i_{3}=-i_{m 2}+i_{m 1} \\
& i_{4}=-i_{m 3}-i_{m 1} \\
& i_{5}=i_{m 2} \\
& i_{6}=i_{m 3} \\
& i=\left[\begin{array}{cccccc}
1 & 0 & 0 & -1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 0 & -1
\end{array}\right]^{T}=B_{f}^{T} i_{c}
\end{aligned}
$$

where $i=\left[\begin{array}{llllll}i_{1} & i_{5} & i_{6} & i_{2} & i_{3} & i_{4}\end{array}\right]^{T}$ is branch current vector and $i_{m}=\left[\begin{array}{lll}i_{m 1} & i_{m 2} & i_{m 3}\end{array}\right]^{T}$ is mesh current vector.

Fundamental Cut-set

Cut-set

is made up of links and of one tree branch, namely the tree branch which defines the cut set. Every tree branch defines a unique Fundamental cut set.

Cut sets of the tree of $G_{T}=\{2,3,5\}$ are $G_{C 2}=\{2,1,6\}$
$G_{C 3}=\{3,1,4,5\} \quad G_{C 5}=\{5,4,6\}$.
Prof. Dr. Müștak E. Yalçın (iTÜ)

Fundamental Cut-set

If we apply KCL to the three cut sets, we obtain

$$
\begin{array}{ll}
i_{2}+i_{1}+i_{6} & =0 \\
i_{3}+i_{1}+i_{4}+i_{6} & =0 \\
i_{4}+i_{5}+i_{6} & =0
\end{array}
$$

which are called Fundamental cut-set equations. Reference direction for the cut set which agrees with that of the tree branch defining the cut set.

Fundamental Cut-set

$$
i=\left[\begin{array}{c}
i_{l} \\
-- \\
i_{b}
\end{array}\right]=\left[\begin{array}{c}
i_{1} \\
i_{4} \\
i_{6} \\
-- \\
i_{2} \\
i_{3} \\
i_{5}
\end{array}\right]
$$

where i_{l} is link current vector and i_{b} is tree branch current vector. In matrix form:

$$
\left.\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
i_{1} \\
i_{4} \\
i_{6} \\
-- \\
i_{2} \\
i_{3} \\
.
\end{array}\right]=0
$$

Fundamental Cut-set

$$
Q i=[E \mid I]\left[\begin{array}{c}
i_{l} \\
-- \\
i_{b}
\end{array}\right]=0
$$

Q is called the Fundamental cut-set matrix. Q is an $n_{b}-n_{n}+1 \times n_{n}-1$

$$
i_{b}=-E i_{l}
$$

Q has a rank $n_{n}-1$ it includes the unit matrix. Hence the linear algebraic equations obtained by applying KCL to each Fundamental cut set constitute a set of $n_{n}-1$ linearly independent equations.

Relation Between B and Q

$$
F=-E^{T}
$$

Proof : Since they are the tree-branch voltages of the tree, the branch voltages are given by

$$
\begin{gathered}
V=Q^{T} V_{n} \\
B V=B Q^{T} V_{n}=0 \\
B Q^{T} V_{n}=0 \\
B Q^{T}=0 \\
I E^{T}+F I=0 \\
E^{T}+F=0 \\
E^{T}=-F
\end{gathered}
$$

Example

Fundamental cut sets of the tree $G_{T}=\{2,3,5,7,8\}$ are $G_{C 2}=\{2,1\}$, $G_{C 3}=\{3,1,4\}, G_{C 5}=\{5,4,6\}, G_{C 7}=\{7,6,9\}, G_{C 8}=\{8,9\}$.

KCL equations based on Fundamental cut sets

$$
\left[\begin{array}{cccccccccc}
-1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
i_{1} \\
i_{4} \\
i_{6} \\
i_{9} \\
-- \\
i_{2} \\
i_{3} \\
i_{5} \\
i_{7} \\
i_{8}
\end{array}\right]=0
$$

Example

Fundamental Loop sets of the tree $G_{T}=\{2,3,5,7,8\}$ are $G_{L 1}=\{1,2,3\}$, $G_{L 4}=\{4,3,4\}, G_{L 6}=\{6,5,6\}, G_{L 9}=\{9,7,8\}$.

KVL equations based on the Fundamental loops

$$
\left[\begin{array}{cccc:ccccc}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{4} \\
V_{6} \\
V_{9} \\
-- \\
V_{2} \\
V_{3} \\
V_{5} \\
V_{7} \\
V_{8}
\end{array}\right]=0
$$

KVL equations for the nodes

KCL equations for the nodes

$$
\left[\begin{array}{ccccccccc}
-1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & -1 & 0 & -1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
i_{2} \\
i_{3} \\
i_{4} \\
i_{5} \\
i_{6} \\
i_{7} \\
i_{8} \\
i_{9}
\end{array}\right]=0
$$

Mesh equations

$$
\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5} \\
i_{6} \\
i_{7} \\
i_{8} \\
i_{9}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{m 1} \\
i_{m 2} \\
i_{m 3} \\
i_{m 4}
\end{array}\right]
$$

