Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 4.

Contents I

(1) Independent KCL and KVL Equations

- Independent KCL Equations
- Independent KVL Equations

Independent KCL Equations

Cut sets for the nodes are
$G_{K 1}=\{1,2,6\}, G_{K 2}=\{2,3,4\}, G_{K 3}=\{1,3,5\}, G_{K 4}=\{4,5,6\}$. If we apply KCL to the cut sets, we obtain

$$
\begin{aligned}
& i_{1}+i_{2}+i_{6}=0 \\
& i_{4}+i_{3}-i_{2}=0 \\
& i_{5}-i_{1}-i_{3}=0 \\
& -i_{5}-i_{4}-i_{6}=0
\end{aligned}
$$

which are node equations. current reference direction [+ if branch leaves the node]

Independent KCL Equations

In matrix form

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & -1 & 1 & 1 & 0 & 0 \\
-1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5} \\
i_{6}
\end{array}\right]=0
$$

For an n_{n}-node n_{b}-branch connected graph G, node equations are given by

$$
A_{a} i=0
$$

where $i=\left[i_{1} i_{2} \ldots i_{n_{b}}\right]^{T}$ is called the branch current vector. A_{a} is called incidence matrix of the graph G and $A_{a} \in\{-1,0,1\}^{n_{n} \times n_{b}}$.

Independent KCL Equations

$$
\begin{aligned}
& -i_{1}-i_{2}-i_{6}=0 \\
& -i_{4}-i_{3}+i_{2}=0 \\
& -i_{5}+i_{1}+i_{3}=0 \\
& +----- \\
& -i_{5}-i_{4}-i_{6}=0
\end{aligned}
$$

The four equations are linearly dependent. Any three of the four equations are linearly independent.

Independence property of KCL equations

For any connected grahp with n_{n} nodes, the KCL equations for any $n_{n}-1$ of these nodes form a set of $n_{n}-1$ linearly independent equations.

Independent KCL Equations

If in A_{a}, we delete the row corresponding to the datum node (reference node), we obtain the reduced incidence matrix A which is of dimension $n_{n}-1 \times n_{e}$. The KCL equations is given by

$$
A i=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & -1 & 1 & 1 & 0 & 0 \\
-1 & 0 & -1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5} \\
i_{6}
\end{array}\right]=0
$$

Independent KCL Equations

The first one is obtained by first and second node equations

$$
\begin{array}{ll}
i_{1}+i_{2}+i_{6} & =0 \\
i_{4}+i_{3}-i_{2} & =0 \\
+----- & \\
i_{1}+i_{3}+i_{4}+i_{6} & =0
\end{array}
$$

Independent KVL Equations

All 6 edges voltages can be expressed in terms of 3 node-to-datum voltages as follows:

$$
\begin{aligned}
& V_{1}=V_{n 1}-V_{n 3} \\
& V_{2}=V_{n 1}-V_{n 2} \\
& V_{3}=V_{n 2}-V_{n 3} \\
& V_{4}=V_{n 2} \\
& V_{5}=V_{n 3} \\
& V_{6}=V_{n 1} \\
& V_{6 \text { asic. of }}=\text { Electrical Circuits }
\end{aligned}
$$

Independent KVL Equations

$$
\begin{aligned}
& V_{1}=V_{n 1}-V_{n 3} \\
& V_{2}=V_{n 1}-V_{n 2} \\
& V_{3}=V_{n 2}-V_{n 3} \\
& V_{4}=V_{n 2} \\
& V_{5}=V_{n 3} \\
& V_{6}=V_{n 1} \\
& V=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] V_{n}
\end{aligned}
$$

Independent KVL Equations

Independent KVL Equations

For an n_{n}-node n_{b}-branch connected graph G, independent KVL equations are given by

$$
V=M V_{n}
$$

where $V=\left[V_{1} V_{2} \ldots V_{n_{e}}\right]^{T}$ and $V_{n}=\left[V_{n 1} V_{n 2} \ldots V_{n n_{n}-1}\right]^{T}$ are called the branch voltage vector and node-to-datum voltage vector, respectively. M is a $n_{e} \times n_{n}-1$ matrix.

Independent KVL Equations

KVL equation for the closed node sequence 1-2-3-1

$$
V_{2}+V_{3}-V_{1}=0
$$

This equation can be obtained from the first three equations.

Independent KVL and KCL Equations

Comparing the independent KVL and KCL equations, we conclude that

$$
M=A^{T}
$$

- current reference directions is chosen,
- a datum node is chosen and the reduced incidence matrix A is defined,
- KCL is dritten as $A i=0$
- then we use associated reference directions to find that KVL $\left(V=A^{T} V_{n}\right)$.

Tellegen's Theorem

Consider an arbitrary circuit. Let the graph have n_{b} branches. Let us use associated reference directions. Let $i=\left[\begin{array}{lll}i_{1} & i_{2} & \ldots i_{n_{b}}\end{array}\right]^{T}$ be any set of branch currents satisfying KCL for G and let $V=\left[\begin{array}{lll}V_{1} & V_{2} & \ldots V_{n_{b}}\end{array}\right]^{T}$ be any set of branch voltages satisfying KVL for G, then

$$
\sum_{k=1}^{n_{b}} v_{k} i_{k}=0
$$

Proof Since i satisfies KCL, we have

$$
A i=0
$$

and since V satisfies KVL, we have

$$
V=A^{T} V_{n}
$$

Using these two equations, we obtain

$$
V^{T} i=V_{n}^{T} A i=V_{n}^{T}(A i)=0
$$

