Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 14

Contents I

- Solution of State Equations
- First-Order Linear System
- Zero-input and Zero-state Responses
- Homogeneous and Particular Solutions
- Solution of Second Order State Equations
- Solution of the Homogeneous Second-Order Equation

Solution of State Equations

A first-order differential equation, which may be written in a standard form as

$$
\dot{x}=a x+b e
$$

where $a, b \in R$ and $e \in R$ is independent source.
Given initial condition $x\left(t_{0}\right)=x_{0}$ at t_{0} DE has a unique solution. In order to obtain $x(t)$, lets multiply the eqn. by $e^{-a t}$

$$
\begin{array}{ll}
e^{-a t} \dot{x} & =e^{-a t}(a x+b e) \\
e^{-a t} \dot{x}-e^{-a t} a x & =e^{-a t} b e \\
\frac{d}{d t}\left(e^{-a t} x\right) & =e^{-a t} b e
\end{array}
$$

Then integrate the eqn.

$$
\int_{t_{0}}^{t} \frac{d}{d t}\left(e^{-a t} x\right)=\int_{t_{0}}^{t} e^{-a t} b e(\tau) d \tau
$$

Solution of State Equations

The solution of the 1st order differential equation

$$
x(t)=e^{a\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{a(t-\tau)} b e(\tau) d \tau
$$

Zero-input response;

$$
x_{\mathrm{zi}}(t)=e^{a\left(t-t_{0}\right)} x\left(t_{0}\right)
$$

Zero-state response;

$$
x_{\mathrm{zS}}(t)=\int_{t_{0}}^{t} e^{a(t-\tau)} \operatorname{be}(\tau) d \tau
$$

Example

The switch is in 1, the current of capacitor

$$
C \frac{d V_{C}}{d t}=-G\left(V_{C}\right)
$$

The state equation;

$$
\frac{d V_{C}}{d t}=-\frac{1}{R C} V_{C}
$$

Zero-input response

$$
V_{C}(t)=e^{-\frac{1}{R C}\left(t-t_{0}\right)} V_{C}(0)
$$

The switch is in 2, the state equation of the circuit

$$
C \frac{d V_{C}}{d t}=G\left(e-V_{C}\right)
$$

in standart form

$$
\frac{d V_{C}}{d t}=-\frac{1}{R C} V_{C}+\frac{1}{R C} e
$$

The solution of $V_{C}(t)$;

$$
V_{C}(t)=e^{-\frac{1}{R C}\left(t-t_{0}\right)} V_{C}(0)+\int_{0}^{t} e^{-\frac{1}{R C}(t-\tau)} \frac{1}{R C} e(\tau) d \tau
$$

Homogeneous Solution

The homogeneous solution is also called the natural response is the general solution of DE when the input is set to zero;

$$
\dot{x}=a x
$$

The homogeneous solution has the form

$$
x_{h}(t)=K e^{a t}
$$

Particular Solution (Forced response) $x_{p}(t)$ is depend on the source e and it will be picked up from the Table. Substituting $x_{p}(t)$ into DE eqn. we will obtain the parameters of the $x_{p}(t)$.

$$
\dot{x_{p}}=a x_{p}+b e
$$

Particular Solutions

SOURCE	PARTICULAR SOLUTION
E	K
$E e^{\alpha t}$	$K e^{\alpha t}$
$E e^{a t}$	$K_{1} e^{a t}+K_{2} t e^{a t}$
$E t$	$K_{1}+K_{2} t$
$E \cos (w t)$	$K_{1} \cos (w t)+K_{2} \sin (w t)$
$E \sin (w t)$	$K_{1} \cos (w t)+K_{2} \sin (w t)$
$E_{1} \sin \left(w_{1} t\right)+E_{2} \cos \left(w_{2} t\right)$	$K_{1} \cos \left(w_{1} t\right)+K_{2} \sin \left(w_{2} t\right)$
	$+K_{3} \cos \left(w_{2} t\right)+K_{4} \sin \left(w_{2} t\right)$

The complete response

The complete response is the sum of natural response and forced response.

$$
x(t)=x_{h}(t)+x_{p}(t)
$$

Using initial condition $x\left(t_{0}\right)$

$$
x_{0}=K e^{a t_{0}}+x_{p}\left(t_{0}\right)
$$

Parameter for the natural response can be obtained $K=\frac{x_{0}-x_{p}\left(t_{0}\right)}{e^{\partial_{0}}}$.
The complete response

$$
x(t)=\underbrace{\left(x_{0}-x_{p}\left(t_{0}\right)\right) e^{a\left(t-t_{0}\right)}}_{\text {Natural response }}+\underbrace{x_{p}(t)}_{\text {Particular solution }}
$$

Zero-input and zero-state (forced response) responses express in term of natural response and Particular solution.

$$
x(t)=\underbrace{x_{0} e^{a\left(t-t_{0}\right)}}_{\text {zero-input response }}+\underbrace{x_{p}(t)-x_{p}\left(t_{0}\right) e^{a\left(t-t_{0}\right)}}_{\text {zero-state response }}
$$

A first-order differential equation is given by

$$
x=-2 \dot{x}+e(t)
$$

where $e(t)=e^{-t} u(t)$ and $x(0)=2$. Find $x(t)$ for $t>0$. The homogeneous solution is

$$
x_{h}(t)=K e^{-2 t}
$$

and the particular solution is

$$
x_{p}(t)=E e^{-t}
$$

Substituting the particular solution into the DE

$$
-E e^{-t}=-2 E e^{-t}+e^{-t}
$$

then $E=1$, we obtain the complete the solution

$$
x(t)=K e^{-2 t}+e^{-t}
$$

Applying the initial condition to the above equation, we obtain $K=1$. Then

$$
x(t)=\left(e^{-2 t}+e^{-t}\right) u(t)
$$

The zero-input response is

$$
x_{z i}(t)=2 e^{-2 t}
$$

and the zero-state response is

$$
\begin{aligned}
x_{z s}(t) & =\int_{0}^{t} e^{-2(t-\tau)} e^{-\tau} d \tau \\
& =e^{-2 t} \int_{0}^{t} e^{\tau)} d \tau \\
& =e^{-2 t}\left(e^{t}-1\right)
\end{aligned}
$$

The complete solution

$$
x(t)=2 e^{-2 t} u(t)+e^{-t}-e^{-2 t}
$$

A first-order differential equation is given by $\dot{x}=-4 x$ where $x(0)=4$. Find $x(t)$ for $t>0$. The homogeneous solution is $x(t)=K e^{-4 t}$ Applying the initial condition to the above equation, we obtain $K=4$. Then $x(t)=4 e^{-4 t} u(t)$
It's connected to a second first order system which is

$$
\dot{z}=-z+x(t)
$$

where $z(0)=1$. Find $z(t)$ for $t>0$.
The homogeneous and the particular solutions are

$$
z_{h}(t)=K e^{-t} \quad z_{p}(t)=E e^{-4 t}
$$

Substituting the particular solution into the DE

$$
-4 E e^{-4 t}=-E e^{-4 t}+4 e^{-4 t}
$$

then $E=-4 / 3$, we obtain the complete the solution $z(t)=K e^{-t}-4 / 3 e^{-4 t}$ Applying the initial condition to the above equation, we obtain $K=7 / 3$. Then

$$
z(t)=\left(7 / 3 e^{-t}-4 / 3 e^{-4 t}\right) u(t)
$$

>> $\mathrm{t}=0: 0.1: 5$;
>> plot (t,7*exp(-t)/3-4*exp(-4*t)/3);

Solution of Second Order State Equations

A second order state equation is given by standard form such as

$$
\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] e
$$

or

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=a_{11} x_{1}+a_{12} x_{2}+b_{1} e \\
& \frac{d x_{2}}{d t}=a_{21} x_{1}+a_{22} x_{2}+b_{2} e
\end{aligned}
$$

The output of this system is given by

$$
y(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)+d e(t)
$$

In order to have differential equation in the output variable

$$
\frac{d^{2} x_{1}}{d t^{2}}-\left(a_{11}+a_{22}\right) \frac{d x_{1}}{d t}+\left(a_{11} a_{22}-a_{12} a_{21}\right) x_{1}=b_{1} \frac{d u}{d t}+\left(a_{12} b_{2}-a_{22} b_{1}\right) e
$$

$$
\frac{d^{2} x_{2}}{d t^{2}}-\left(a_{11}+a_{22}\right) \frac{d x_{2}}{d t}+\left(a_{11} a_{22}-a_{12} a_{21}\right) x_{2}=b_{2} \frac{d u}{d t}+\left(a_{21} b_{1}-a_{11} b_{2}\right) e
$$

Undamped natural frequency

$$
w=\sqrt{a_{11} a_{22}-a_{12} a_{21}}
$$

Damping ratio

$$
Q=-\frac{1}{2 w}\left(a_{11}+a_{22}\right)
$$

With these new coefficients

$$
\begin{aligned}
& \frac{d^{2} x_{1}}{d t^{2}}+2 Q w \frac{d x_{1}}{d t}+w^{2} x_{1}=b_{1} \frac{d u}{d t}+\left(a_{12} b_{2}-a_{22} b_{1}\right) e \\
& \frac{d^{2} x_{2}}{d t^{2}}+2 Q w \frac{d x_{2}}{d t}+w^{2} x_{2}=b_{2} \frac{d u}{d t}+\left(a_{21} b_{1}-a_{11} b_{2}\right) e
\end{aligned}
$$

Defining

$$
\begin{aligned}
& q_{0}=c_{1}\left(-b_{1} a_{22}+a_{12} b_{2}\right)+c_{2}\left(-b_{2} a_{11}+a_{21} b_{1}\right)+d\left(a_{11} a_{22}-a_{12} a_{21}\right) \\
& q_{1}=c_{1} b_{1}+c_{2} b_{2}-d\left(a_{11}+a_{22}\right) \\
& q_{2}=d
\end{aligned}
$$

The second order differential equation

$$
\frac{d^{2} y}{d t^{2}}-\left(a_{11}+a_{22}\right) \frac{d y}{d t}+\left(a_{11} a_{22}-a_{12} a_{21}\right) y=q_{2} \frac{d^{2} e}{d t^{2}}+q_{1} \frac{d e}{d t}+q_{0} e
$$

and it is in the term of standard parameter

$$
\frac{d^{2} y}{d t^{2}}+2 Q w \frac{d y}{d t}+w^{2} y=q_{2} \frac{d^{2} e}{d t^{2}} q_{1} \frac{d e}{d t}+q_{0} e
$$

Solution of the Homogeneous Second-Order Equation

For $e(t)=0$, 2nd order equation

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+2 Q w \frac{d y}{d t}+w^{2} y=0 \\
& y_{h}(t)=K_{1} e^{\lambda_{1} t}+K_{2} e^{\lambda_{2} t}
\end{aligned}
$$

where K_{1} and K_{2} are constants defined by the initial conditions, and the eigenvalues λ_{1} and λ_{2} are the roots of the characteristic equation. Or λ_{1} and λ_{2} are found from

$$
\lambda_{i}^{2}+2 Q w \lambda_{i}+w^{2}=0
$$

he eigenvalues

$$
\lambda_{1}, \lambda_{2}=-Q w \mp w \sqrt{Q^{2}-1}
$$

K_{1} and K_{2} are obtain

$$
y(0)=c_{1} x(0)+c_{2} x_{2}(0)
$$

using initial conditions

$$
y(0)=K_{1}+K_{2}
$$

and

$$
\left.\frac{d y(t)}{d t}\right|_{t=0}=c_{1}\left(a_{11} x_{1}(0)+a_{12} x_{2}(0)\right)+c_{2}\left(a_{21} x_{1}(0)+a_{22} x_{2}(0)\right)=K_{1} \lambda_{1}+K_{2} \lambda_{2}
$$

The response of the system for $e=0$ is depend on

$$
\lambda_{1}, \lambda_{2}=w\left(-Q \mp \sqrt{Q^{2}-1}\right) .
$$

- $Q>1: \lambda<0$ and real. In this case, the response is said to be overdamped.

- $Q=1$: The response is said to be critically damped.

$$
\lambda_{1}, \lambda_{2}=-w .
$$

Homogenous solution is

$$
y_{h}(t)=K_{1} e^{-w t}+K_{2} t e^{-w t}
$$

- $0 \leq Q<1$: The response is said to be underdamped.

$$
\lambda_{1}, \lambda_{2}=-Q w \mp j w \sqrt{1-Q^{2}} .
$$

The output

$$
y_{h}(t)=y_{0} \frac{e^{-Q w t}}{\sqrt{1-Q^{2}}} \cos \left(w_{d} t-\phi\right)
$$

where $w_{d}=w \sqrt{1-Q^{2}}$ and $\phi=\tan -1 \frac{Q}{\sqrt{1-Q^{2}}}$.

- $Q<0$

$$
\operatorname{Real}\{\lambda\}>0
$$

Natural Response of a Parallel RLC Circuit

$$
\frac{d^{2} v}{d t^{2}}+\frac{1}{R C} \frac{d v}{d t}+\frac{1}{L C} v=0
$$

$w=\frac{1}{\sqrt{L C}}, Q=\frac{\sqrt{L C}}{2 R C}$,
Electric Circuits, James W. Nilsson and Susan A. Riedel, pp. 286-301

Step response

We will find the output for $e(t)=u(t)$ which is given by

$$
y(t)=y_{h}(t)+y_{\ddot{o}}(t)
$$

The particular solution $y_{o ̈}(t)=K$. Substituting the particular solution into the eqn. we will have $K=\frac{1}{w_{n}^{2}}$. Step response is obtain such as

$$
y(t)=K_{1} e^{\lambda_{1} t}+K_{1} e^{\lambda_{2} t}+\frac{1}{w_{n}^{2}}
$$

K_{1} and K_{2} are obtained form the initial conditions with

$$
\begin{gathered}
y(0)=K_{1}+K_{2}+\frac{1}{w_{n}^{2}} \\
\left.\frac{d y(t)}{d t}\right|_{t=0}=K_{1} \lambda_{1}+K_{2} \lambda_{2}
\end{gathered}
$$

Step Response of a Parallel RLC Circuit

$$
\frac{d^{2} v}{d t^{2}}+\frac{1}{R C} \frac{d v}{d t}+\frac{1}{L C} v=\frac{1}{L C} i_{k}
$$

Electric Circuits, James W. Nilsson and Susan A. Riedel, pp. 301-307

Step response

Example

$$
\dot{x}=\left[\begin{array}{ll}
0 & 2 \\
-1 & -3
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] e
$$

where $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is the initial condition and the output is $y(t)=x_{1}(t)$ Let find the output for $e(t)=0, \mathrm{e}(\mathrm{t})=\mathrm{u}(\mathrm{t})$ and $\mathrm{e}(\mathrm{t})=10 \cos (t)$.
We have

$$
\begin{aligned}
& \dot{x_{1}}=2 x_{2} \\
& \dot{x_{2}}=-x_{1}-3 x_{2}+e
\end{aligned}
$$

The output is obtain such as

$$
\begin{aligned}
\ddot{x_{1}} & =2 \ddot{x_{2}} \\
\dot{x_{1}} & =2\left(-x_{1}-3 x_{2}+e\right) \\
& =-2 x_{1}-6 x_{2}+2 e \\
& =-3 \dot{x_{1}}-2 x_{1}+2 e
\end{aligned}
$$

For the homogeneous solution, we must find eigenvalues

$$
\operatorname{det}\left\{\lambda I-\left[\begin{array}{ll}
0 & 2 \\
-1 & -3
\end{array}\right]\right\}=\lambda^{2}+3 \lambda+2=0
$$

$\lambda=-1$ ve $\lambda=-2$. The homogeneous solution

$$
y(t)=K_{1} e^{-t}+K_{2} e^{-2 t}
$$

Using initial condition

$$
\begin{aligned}
& y(0)=K_{1}+K_{2}=1 \\
& y(0)=-K_{1}-2 K_{2}=0
\end{aligned}
$$

$K_{1}=2$ and $K_{2}=-1$ are obtained. The solution is

$$
y(t)=2 e^{-t}-e^{-2 t}
$$

For $e(t)=u(t)$, the particular solution is chosen from table which is

$$
y_{\partial \ddot{\partial}}(t)=E
$$

Substituting the particular solution into the DE equ. We have $E=1$.

$$
y(t)=K_{1} e^{-t}+K_{2} e^{-2 t}+1
$$

Using the initial conditions

$$
\begin{aligned}
y(0) & =K_{1}+K_{2}+1=1 \\
y(0) & =-K_{1}-2 K_{2}+1=0
\end{aligned}
$$

we will have $K_{1}=-1$ and $K_{2}=1$. The complete solution is given by

$$
y(t)=-e^{-t}+e^{-2 t}+u(t)
$$

For $e(t)=10 \cos (t)$, the particular solution is chosen from table which is

$$
y_{\ddot{o}}(t)=E_{1} \cos t+E_{2} \sin t
$$

Substituting the particular solution into the DE equ.
$-E_{1} \cos t-E_{2} \sin t=3 E_{1} \sin t-3 E_{2} \cos t-2 E_{1} \cos t-2 E_{2} \sin t+20 \cos t$
we have $E_{1}=2$ ve $E_{2}=6$ then

$$
y(t)=K_{1} e^{-t}+K_{2} e^{-2 t}+2 \cos t+6 \sin t
$$

Using the initial conditions

$$
\begin{aligned}
y(0) & =K_{1}+K_{2}+2=1 \\
y(0) & =-K_{1}-2 K_{2}+6=0
\end{aligned}
$$

we will have $K_{1}=-8$ and $K_{2}=7$. The complete solution is given by

$$
y(t)=-8 e^{-t}+7 e^{-2 t}+2 \cos t+6 \sin t
$$

$E=-2 V, R=2 \Omega, e(t)=0.2 \sin (w t), C=1 F, v_{R}=i_{R}^{2}$
DC Analysis:

$$
\begin{gathered}
C \frac{d V_{c}}{d t}=i_{C}=0 \\
e=i R+v_{R}=-4=2 i_{R}+i_{R}^{2} \\
i_{R}=-2 A m p s
\end{gathered}
$$

AC Analysis: $R_{Q}=-4 \Omega$

$$
\begin{aligned}
& C C \frac{d V_{c}}{d t}=\frac{\left(e-v_{C}\right)}{R}-\frac{v_{C}}{R_{Q}} \\
& \frac{d v_{C}}{d t}=-\frac{v_{C}}{4}+0.1 \sin (w t)
\end{aligned}
$$

