Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 13

Contents I

(1) State Equation

- Analysis of Circuits Containing RLC Elements
- Durum Denklemlerinin Elde Edilmesi
- RLC and multi-terminal elements
- Obtaining State Equations directly from the circuit

State Equation

Capacitor current and or its voltage are given by

$$
C \frac{d V_{C}}{d t}=i_{C}
$$

and

$$
V_{C}(t)=\frac{1}{C} \int_{t_{0}}^{t} i_{C}(\tau) d \tau+V_{C}(0)
$$

Inductor voltage and current are given by

$$
L \frac{d i_{L}}{d t}=V_{L}
$$

and

$$
i_{L}(t)=\frac{1}{L} \int_{t_{0}}^{t} V_{L}(\tau) d \tau+i_{L}(0)
$$

State Equation

Using Branch Voltages Method

$$
i_{C}=i_{L}-i_{R}
$$

Using the definition of L and C elements

$$
\begin{aligned}
C \frac{d V_{C}}{d t} & =\frac{1}{L} \int_{t_{0}}^{t} V_{L}(\tau) d \tau+i_{L}(0)-G V_{R} \\
& =\frac{1}{L}\left(\int_{t_{0}}^{t} e(\tau) d \tau-\int_{t_{0}}^{t} V_{C}(\tau) d \tau\right)+i_{L}(0)-G V_{R}
\end{aligned}
$$

we have an Integro-Differential Equation!.

We can represent the same circuit by differential equations of the form

$$
\begin{aligned}
C \frac{d V_{C}}{d t} & =i_{L}-i_{R} \\
L \frac{d i_{L}}{d t} & =e-V_{C}
\end{aligned}
$$

We can write the state equations in matrix form:

$$
\left[\begin{array}{c}
\frac{d V_{C}}{d t} \\
\frac{d L_{L}}{d t}
\end{array}\right]=\left[\begin{array}{cc}
-G / C & 1 / C \\
-1 / L & 0
\end{array}\right]\left[\begin{array}{c}
V_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / L
\end{array}\right] e
$$

where $i_{R}=G V_{R}=G V_{C}$. This equation can be recast into the standard form

$$
\begin{aligned}
\dot{X} & =A X+B u \\
y & =C X+D u
\end{aligned}
$$

where X is state variable vector, y is output and u is input.

Obtaining State Equations

1. Pick a proper tree :

- The voltage sources must be placed in the tree.
- If the tree is not complete, the edges corresponding to as many capacitors as possible must be placed in the tree. If a capacitor in a loops which consisting entirely of capacitors and voltage sources. The capacitor must not be placed in the tree.
- If the tree is not complete, the edges corresponding to the resistors must be chosen and as many resistors as possible must be included.
- If still the tree is not completed, then, the edges corresponding to the inductors will be chosen until the tree is completed. If an inductors in a cut set which consisting entirely of inductors and current sources, the inductor must be placed in tree.
- All the edges corresponding to the current sources must be placed in the co-tree.

2. After the selection of proper tree, the state variables are branch capacitor voltages and chord inductor currents.
3. Obtaining State Equations from the circuit: Express the voltage across each element corresponding to a branch and the current through each element corresponding to non-branch edge in terms of voltage sources, current sources, and state variables. * If not possible, assign a new voltage variable to a resistor corresponding to a branch and a new current variable to a resistor corresponding to a non-branch edge.
a Apply KVL to the fundamental loop determined by each non-branch inductor.
b Apply KCL to the fundamental cut-set determined by each branch capacitor.
c Apply KVL to the fundamental loop determined by each resistor with a new current variable assigned in *.
d Apply KCL to the node or super-node corresponding to the fundamental cut-set determined by each resistor with a new voltage variable assigned in *
e Solve the simultaneous equations obtained from steps c and d for the new variables in terms of the voltage sources, current sources, and the state variables.
f Substitute the expressions obtained in step e into the equations determined in steps a and b.

Example

(1) Graph is drawn and pick the proper tree.
(2) V_{C} and i_{L} state variables.

$$
\dot{V}_{C}=f\left(V_{C}, i_{L}, e(t), i(t)\right) \dot{i_{L}}=f\left(V_{C}, i_{L}, e(t), i(t)\right)
$$

(1) KVL for the fundamental loop determined by the inductor and KCL to the fundamental cut-set determined by the capacitor.

$$
\begin{gathered}
i_{C}+i_{L}-i_{2}+i=0 \\
V_{L}-V_{3}-V_{C}+V_{1}=0
\end{gathered}
$$

using the definition of the inductor and capacitor

$$
\begin{aligned}
C \frac{d V_{C}}{d t} & =-i_{L}+i_{2}-i \\
L \frac{d i L}{d t} & =V_{3}+V_{C}-V_{1}
\end{aligned}
$$

KVL for the fundamental loop determined by R_{2} and KCL to the fundamental cut-set determined by R_{1} and R_{3}

$$
\begin{aligned}
R_{2} i_{2} & =e-V_{C} \\
G_{1} V_{1} & =i_{L} \\
G_{3} V_{3} & =-i_{L}-i
\end{aligned}
$$

Substitute the expressions

$$
\frac{d}{d t}\left[\begin{array}{c}
V_{C} \\
i_{L}
\end{array}\right]=\left[\begin{array}{cc}
\frac{-1}{R_{2} C} & \frac{-1}{C} \\
\frac{1}{L} & \frac{-\left(R_{3}+R_{1}\right)}{L}
\end{array}\right]\left[\begin{array}{c}
V_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{R_{2} C} \\
0
\end{array}\right] e(t)+\left[\begin{array}{c}
\frac{-1}{C^{\prime}} \\
-\frac{R_{3}}{L}
\end{array}\right] i
$$

Degenerate Circuit

Circuit which contains any

- Loops consisting entirely of capacitors and voltage sources.
- Cutsets consisting entirely of inductors and current sources.

two capacitors and the voltage source make a loop.

Degenerate Circuit

1. C2 must be placed to co-tree.

Degenerate Circuit

2. The state variable are $V_{C 1} i_{L}$.
3. KCL and KVL

$$
\begin{gathered}
i_{C 1}+i_{L}-i_{C 2}+i=0 \\
V_{L}-V_{1}-V_{C 1}=0
\end{gathered}
$$

Using the definition of C and L elements, the state equations;

$$
\begin{aligned}
C_{1} \frac{d V_{C 1}}{d t t} & =-i_{L}-i+i_{C 2} \\
L \frac{d i L}{d t} & =V_{1}+V_{C 1}
\end{aligned}
$$

Degenerate Circuit

Apply KVL to the fundamental loop determined by $C 2$ and KCL to the fundamental cut-set determined by $R 1$

$$
\begin{aligned}
V_{C 2} & =e-V_{C 1} \\
G_{1} V_{1} & =-i_{L}-i
\end{aligned}
$$

In order to obtain $i_{C 2}$ in terms of the voltage sources, current sources, and the state variables, we will use the definition of capacitor ($i_{C 2}=C_{2} \frac{d V_{C 2}}{d t}$).

$$
C_{2} \frac{d V_{C 2}}{d t}=C_{2} \frac{d e}{d t}-C_{2} \frac{d V_{C 1}}{d t}
$$

The state equation in standard form

$$
\begin{gathered}
C_{1} \frac{d V_{C 1}}{d t}
\end{gathered}=-\quad-i_{L}-i+C_{2} \frac{d e}{d t}-C_{2} \frac{d V_{C 1}}{d t} .
$$

RLC and multi-terminal elements

All the edge corresponding to the dependent voltage source must be placed in tree. All the edge corresponding to the dependent current source must be placed in co-tree.

Example

Transformer $V_{2}=n V_{1}, i_{1}=-n i_{2}$ and Gyrator $i_{3}=-\alpha V_{4}, i_{4}=\alpha V_{3}$

1. Graph is drawn. The voltage sources e, capacitors $C 1$ and $C 2$ are placed to tree. The tree is not complete, edge 2 is a dependent voltage source which is placed to tree. The edges 3 and 4 are placed to co-tree.
2. $V_{C 1}, V_{C 2}$ and i_{L} are state variable.

3. From the fundamental cut-sets and loop, we have

$$
\begin{array}{ll}
i_{C 1}+i_{3} & =0 \\
i_{C 2}+i_{L}+i_{3} & =0 \\
V_{L}+V_{R}-V_{C 2}-e & =0
\end{array}
$$

The state equations;

$$
\begin{array}{ll}
C_{1} \frac{d V_{C 1}}{d t} & =-i_{3} \\
C_{2} \frac{d V_{C 2}}{d t} & =-i_{L}-i_{3} \\
L \frac{d i_{L}}{d t} & =-V_{R}+V_{C 2}+e
\end{array}
$$

Express the i_{3} and V_{R} as function of state variable and independent sources

$$
\begin{aligned}
& i_{R}=-i_{4}+i_{L}=i_{L}-\alpha V_{3}=i_{L}-\alpha\left(-V_{C 1}+V_{2}+V_{C 2}\right) \\
&=i_{L}-\alpha\left(-V_{C 1}+n e+V_{C 2}\right) \\
& i_{3}=\alpha V_{4}=\alpha V_{R}=\alpha R i_{R} \\
& \frac{d}{d t}\left[\begin{array}{c}
V_{C 1} \\
V_{C 2} \\
i_{L}
\end{array}\right]=\left[\begin{array}{lll}
-- & -- & -- \\
-- & -- & -- \\
-- & -- & --
\end{array}\right]\left[\begin{array}{c}
V_{C 1} \\
V_{C 2} \\
i_{L}
\end{array}\right]+\left[\begin{array}{c}
-- \\
-- \\
--
\end{array}\right] e
\end{aligned}
$$

Obtaining State Equations directly from the circuit

Consider a dynamic circuit that does not contain any

- Loops consisting entirely of capacitors and voltage sources.
- Cutsets consisting entirely of inductors and current sources.

The objective of the analysis is the express the currents of capacitors and the voltages of the inductors as a function of the voltages of the capacitors, the currents of the inductors and the independent sources.

$$
\begin{aligned}
& C_{1} \frac{d V_{c 1}}{d t}=G 1\left(V_{d 1}-V_{d 2}\right)-G_{3}\left(V_{d 2}-V_{d 3}\right)-G_{2}\left(V_{d 2}-V_{d 4}\right) \\
& C_{2} \frac{d V_{c 2}}{d t}=G_{3}\left(V_{d 2}-V_{d 3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& V_{d 1}=e \\
& V_{d 3}=0 \\
& V_{d 2}=V_{C 1} \\
& V_{d 4}=-V_{C 2}
\end{aligned}
$$

Using the above equations, the state equations;

$$
\begin{aligned}
& C_{1} \frac{d V_{C 1}}{d t}=G 1\left(e-V_{C 1}\right)-G_{3}\left(V_{C 1}\right)-G_{2}\left(V_{C 1}+V_{C 2}\right) \\
& C_{2} \frac{d V_{C 2}}{d t}=G_{3} V_{C 1}
\end{aligned}
$$

In standard matris form:

$$
\frac{d}{d t}\left[\begin{array}{l}
V_{C 1} \\
V_{C 2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{G_{1}+G_{2}+G_{3}}{C_{1}} & -\frac{G_{2}}{C_{1}} \\
-\frac{G_{3}}{C_{2}} & 0
\end{array}\right]\left[\begin{array}{l}
V_{C 1} \\
V_{C 2}
\end{array}\right]+\left[\frac{G_{1}}{C_{1}} 0\right] e
$$

