Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 10

Contents I

- Loop Current Method (Mesh Current Method)
- Generalized Mesh Current Method

Loop Current Method (Mesh Current Method)

The number of equations to be solved are equal to the number of independent loops. There exists a tree such that the meshes are Fundamental loops*. In this method KVL equations for the meshes (Mesh equations) will be used and the mesh currents will be the unknown variables!

Mesh Current Method

(1) Draw the circuit graph and assign the loop currents.
(2) Write mesh equations are obtained from KVL which is applied to each of the loop: $B v=0 \mathrm{It}$ can also be written such as

$$
B v=B_{1} v_{R}+B_{2} v_{k}=0
$$

where v_{k} and v_{R} voltages of independent voltage sources and resistors, respectively.
(3) Write the ohm law for the resistors: $v_{R}=\mathbf{R} i_{R}$
(9) Substitute the equations in Step 3 into the equations in Step 2.

$$
\left[\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right] v=B_{1} \mathbf{R} i_{R}+B_{2} v_{k}=0
$$

(0) Resistors's currents are written in terms of the mesh currents:

$$
i_{R}=B_{1}^{T} i_{c}
$$

(0) Substitute the equation in step 5 into step 4:

Mesh Current Method

1. The loop currents are assigned.

Mesh Current Method

2. Mesh equations:

$$
\begin{aligned}
& V_{2}+V_{3}-V_{1}=0 \\
& V_{4}+V_{5}-V_{3}=0
\end{aligned}
$$

3. Substitute the $v_{R}=R i_{R}$ equations into the equations in Step 2:

$$
\begin{aligned}
& R_{2} i_{2}+R_{3} i_{3}-V_{1}=0 \\
& R_{4} i_{4}+R_{5} i_{5}-R_{3} i_{3}=0
\end{aligned}
$$

4. Resistors's currents are written in terms of the mesh currents:

$$
\begin{aligned}
& i_{2}=i_{c 1} \\
& i_{3}=i_{c 1}-i_{c 2} \\
& i_{4}=i_{c 2} \\
& i_{5}=i_{c 2}
\end{aligned}
$$

Mesh Current Method

5. Substitute the equation in step 4 into step 3:

$$
\begin{array}{ll}
R_{2} i_{c 1}+R_{3}\left(i_{c 1}-i_{c 2}\right)-V_{1} & =0 \\
R_{4} i_{c 2}+R_{5} i_{c 2}-R_{3}\left(i_{c 1}-i_{c 2}\right) & =0
\end{array}
$$

6. In matrix form:

$$
\left[\begin{array}{cc}
R_{2}+R_{3} & -R_{3} \\
-R_{3} & R_{3}+R_{4}+R_{5}
\end{array}\right]\left[\begin{array}{l}
i_{c 1} \\
i_{c 2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] V_{1}=0
$$

Generalized Mesh Current Method

(1) Draw the circuit graph and assign the loop currents.
(2) Write mesh equations.

$$
B v=B_{1} v_{R}+B_{2} v_{2}+B_{3} v_{3}=0
$$

where v_{1} resistors, v_{2} voltage sources and v_{3} other elements's voltages.
(3) Write the ohm law for the resistors: $v_{1}=\mathbf{R} i_{1}$
(9) Substitute the equations in Step 3 into the equations in Step 2.

$$
B_{1} \mathbf{R} i_{1}+B_{2} v_{1}+B_{3} v_{3}=0
$$

(5) Resistors's currents are written in terms of the mesh currents:

$$
i_{1}=B_{1}^{T} i_{c}
$$

(0) Substitute the equation in step 5 into step 4:

Generalized Mesh Current Method

Srep 6: Write $v-i$ relations of the other elements

$$
M_{3} i_{3}+N_{3} v_{3}=T i_{3}
$$

and i_{3} is written in the term of the mesh currents

$$
M_{3} B_{3}^{T} i_{c}+N_{3} v_{3}=T i_{3}
$$

together with

$$
B_{1} \mathbf{R} B_{1}^{T} i_{c}+B_{2} v_{2}+B_{3} v_{3}=0
$$

Equations can be presented in matrix form:

$$
\left[\begin{array}{cc}
B_{1} \mathbf{R} B_{1}^{T} & B_{3} \\
M_{3} B_{3}^{T} & N_{3}
\end{array}\right]\left[\begin{array}{c}
i_{c} \\
v_{3}
\end{array}\right]=-\left[\begin{array}{c}
B_{2} \\
0
\end{array}\right] v_{2}-\left[\begin{array}{c}
0 \\
T i_{3}
\end{array}\right]
$$

The unknown variables : mesh currents and voltages of the current sources!

Generalized Mesh Current Method

1. The loop currents are assigned.

Generalized Mesh Current Method

2. Mesh equations:

$$
\begin{aligned}
& V_{2}+V_{3}-V_{1}+V_{k}=0 \\
& V_{4}+V_{5}-V_{6}-V_{3}=0
\end{aligned}
$$

3. Substitute the $v_{R}=R i_{R}$ equations into the equations in Step 2:

$$
\begin{aligned}
& R_{2} i_{2}+R_{3} i_{3}-V_{1}+V_{k}=0 \\
& R_{4} i_{4}+R_{5} i_{5}-V_{6}-R_{3} i_{3}=0
\end{aligned}
$$

4. Resistors's currents are written in terms of the mesh currents:

$$
\begin{aligned}
& i_{2}=i_{c 1} \\
& i_{3}=i_{c 1}-i_{c 2} \\
& i_{4}=i_{c 2} \\
& i_{5}=i_{c 2}
\end{aligned}
$$

Generalized Mesh Current Method

5. Substitute the equation in step 5 into step 4:

$$
\begin{aligned}
& R_{2} i_{c 1}+R_{3}\left(i_{c 1}-i_{c 2}\right)-V_{1}+V_{k}=0 \\
& R_{4} i_{c 2}+R_{5} i_{c 2}-V_{6}-R_{3}\left(i_{c 1}-i_{c 2}\right)=0
\end{aligned}
$$

Additional equation:

$$
i_{k}=i_{c 1}
$$

6. Unknown mesh current:

$$
\left(R_{4}+R_{5}+R_{3}\right) i_{c 2}-R_{3} i_{k}-V_{6}=0
$$

