Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 9

Contents I

- Nodal Analysis
- Generalized Nodal Analysis

Nodal Analysis

Method will first study for circuits which includes resistors and independent sources.

Which node will be the reference node ? choose a node which is connected to the maximum number of voltage sources.

If a voltage source is connected between a node and the reference node, the voltage is already known and it is not necessary to assign a variable. If there is a voltage source between two nodes, the difference between the node voltages equals to the voltage of the source.

Nodal Analysis

(1) Draw the circuit graph and one node is chosen as the reference node whose voltage is assumed as zero.
(2) Write the fundamental cut-set equations for the nodes which do not correspond to node of a voltage sources: $A_{d} i=0$

$$
A_{d}\left[\begin{array}{ll}
i_{R} & i_{k}
\end{array}\right]^{T}=A_{11} i_{R}+A_{12} i_{k}=0
$$

(3) Substitute $i_{R}=G V_{R}$ into the previous equation

$$
A_{d} i=A_{11} G_{R} V_{R}+A_{12} i_{k}=0
$$

(9) V_{R} is written in terms of the node voltages

$$
V_{R}=A_{11}^{T} V_{d}
$$

(6) Equations are presented in the form:

$$
A_{11} G_{R} A_{11}^{T} V_{d}+A_{12} i_{k}=0
$$

Nodal Analysis

1. Nodes are labels and reference node is chosen.

2. The fundamental cut-set equations for the nodes:

$$
\begin{array}{ll}
i_{4}+i_{2}+i_{7} & =0 \\
i_{1}+i_{6}-i_{2} & =0 \\
i_{5}-i_{6}+i_{8} & =0 \\
i_{3}-i_{1}-i_{5}-i_{4} & =0
\end{array}
$$

3. Resistors in the circuit:

$$
i_{k}=G_{k} V_{k} \quad k=\{4,5,6,7,8\}
$$

4. Substitute terminal equations of the resistors into the previous equation

$$
\begin{array}{ll}
G_{4} V_{4}+i_{2}+G_{7} V_{7} & =0 \\
i_{1}-G_{6} V_{6}-i_{2} & =0 \\
G_{5} V_{5}-G_{6} V_{6}+G_{8} V_{8} & =0 \\
i_{3}-i_{1}-G_{5} V_{5}-G_{4} V_{4} & =0
\end{array}
$$

5. Terminal voltage is written in terms of the node voltages:

$$
\begin{aligned}
& V_{1}=-V_{d 2} \\
& V_{2}=V_{d 1}-V_{d 2} \\
& V_{3}=-V_{d 4} \\
& V_{4}=V_{d 1} \\
& V_{5}=V_{d 3} \\
& V_{6}=V_{d 2}-V_{d 3} \\
& V_{7}=V_{d 4}-V_{d 1} \\
& V_{8}=V_{d 3}-V_{d 4}
\end{aligned}
$$

6. Substitute the equation in step 5 into step 4

$$
\begin{array}{ll}
G_{4}\left(V_{d 1}-V_{d 4}\right)+i_{2}+G_{7} V_{d 1} & =0 \\
i_{1}-G_{6}\left(V_{d 2}-V_{d 3}\right)-i_{2} & =0 \\
G_{5}\left(V_{d 3}-V_{d 4}\right)-G_{6}\left(V_{d 2}-V_{d 3}\right)+G_{8} V_{d 3} & =0 \\
i_{3}-i_{1}-G_{5}\left(V_{d 3}-V_{d 4}\right)-G_{4}\left(V_{d 1}-V_{d 4}\right) & =0
\end{array}
$$

Equations are presented in the matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
G_{4}+G_{7} & 0 & 0 & -G_{4} \\
0 & G_{6} & -G_{6} & 0 \\
0 & -G_{6} & G_{6}+G_{5}+G_{8} & -G_{5} \\
-G_{4} & 0 & -G_{5} & G_{4}+G_{5}
\end{array}\right]}
\end{aligned}\left[\begin{array}{l}
V_{d 1} \\
V_{d 2} \\
V_{d 3} \\
V_{d 4}
\end{array}\right]
$$

Generalized Nodal Analysis

This method is modified version of Nodal Analysis for circuits which include also dependent sources and/or multi-terminal circuit elements.

We will have additional unknown variables because of dependent sources and/or multi-terminal circuit elements.

If there are dependent sources in the circuit, write down equations that express their values in terms of node voltages.
(1) Draw the circuit graph and one node is chosen as the reference node.
(2) Write the fundamental cut-set equations for the nodes:

$$
A i=\left[\begin{array}{lll}
A_{1} & A_{2} & A_{3}
\end{array}\right]\left[\begin{array}{ll}
i_{1} & i_{2} \\
i_{3}
\end{array}\right]^{T}=A_{1} i_{1}+A_{2} i_{2}+A_{3} i_{3}=0
$$

i_{1} vector of resistor currents, i_{2} vector of current source currents and i_{3} vector of voltage source currents.
(3) $i_{1}=G_{R} V_{R}$
(9) $A_{1} G_{R} V_{R}+A_{2} i_{2}+A_{3} i_{3}=0$
(3) Using $V=A^{T} V_{d}$, we have $V_{1}=A_{1}^{T} V_{d}$.
(0) $v-i$ relation of the dependent sources

$$
\begin{gathered}
M_{3} i_{3}+N_{3} V_{3}=T V_{3} \\
T=\left\{\begin{array}{lc}
T_{i, i}=1 & \text { if } V_{3 i} \text { isavoltagesource } \\
T_{i, j}=0 & \text { other }
\end{array}\right.
\end{gathered}
$$

Generalized Nodal Analysis

$$
T V_{3}=\left[\begin{array}{llllllll}
V_{k 1} & V_{k 2} & \ldots & V_{k l} & 0 & 0 & \ldots
\end{array}\right]^{T}
$$

Substitute the node equation

$$
M_{3} i_{3}+N_{3} A_{3}^{T} V_{d}=T V_{3}
$$

Using the equ. in step 4

$$
\begin{gathered}
A_{1} G_{R} A_{1}^{T} V_{d}+A_{2} i_{2}+A_{3} i_{3}=0 \\
{\left[\begin{array}{cc}
A_{1} G_{R} A_{1}^{T} & A_{3} \\
N_{3} A_{3}^{T} & M_{3}
\end{array}\right]\left[\begin{array}{c}
V_{d} \\
i_{3}
\end{array}\right]=-\left[\begin{array}{c}
A_{2} \\
0
\end{array}\right] i_{2}-\left[\begin{array}{c}
T V_{3} \\
0
\end{array}\right]}
\end{gathered}
$$

Example

1. Nodes are labeled and the reference node is chosen

Example

2.the fundamental cut-set equations for the nodes

$$
\begin{aligned}
& i_{4}+i_{2}-i_{7}=0 \\
& i_{5}-i_{6}+i_{8}=0
\end{aligned}
$$

3. Write the $v-i$ relations of the resistors:

$$
i_{k}=G_{k} V_{k} \quad k=\{4,5,6,7,8\}
$$

4. Substitute the equations in Step 3 into the equations in Step 2.

$$
\begin{array}{ll}
G_{4} V_{4}+i_{2}-G_{7} V_{7} & =0 \\
G_{5} V_{5}-G_{6} V_{6}+G_{8} V_{8}=0
\end{array}
$$

5. Terminal voltage is written in terms of the node voltages:

$$
\begin{aligned}
& V_{1}=-V_{d 2} \\
& V_{2}=V_{d 1}-V_{d 2} \\
& V_{3}=-V_{d 4} \\
& V_{4}=V_{d 1} \\
& V_{5}=V_{d 3} \\
& V_{6}=V_{d 2}-V_{d 3} \\
& V_{7}=V_{d 4}-V_{d 1} \\
& V_{8}=V_{d 3}-V_{d 4}
\end{aligned}
$$

6. Substitute the equation in step 5 into step 4:

$$
\begin{array}{ll}
G_{4} V_{d 1}+i_{2}-G_{7}\left(V_{d 4}-V_{d 1}\right) & =0 \\
G_{5} V_{d 3}-G_{6}\left(V_{d 2}-V_{d 3}\right)+G_{8}\left(V_{d 3}-V_{d 4}\right) & =0
\end{array}
$$

Voltage sources are written in the terms of the node valtages

$$
\begin{aligned}
V_{d 2} & =-e_{1} \\
V_{d 4} & =-e_{3}
\end{aligned}
$$

Equations are presented in the matrix form:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cc}
G_{4}+G_{7} & 0 \\
0 & G_{5}+G_{6}+G_{8}
\end{array}\right]} & {\left[\begin{array}{l}
V_{d 1} \\
V_{d 3}
\end{array}\right]}
\end{array}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] i_{2}\right]+\left[\begin{array}{ll}
0 & G_{7} \\
G_{6} & G_{8}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{3}
\end{array}\right]=0=0
$$

Example

1. Nodes are labeled and the reference node is chosen

Example

2. the fundamental cut-set equations for the nodes

$$
\begin{aligned}
& i_{A-}+i_{3}-i_{4}=0 \\
& i_{A o}-i_{3}-i_{5}=0 \\
& i_{B-}-i_{6}+i_{5}=0 \\
& i_{B O}-i_{6}+i_{4}=0 \\
& i_{B+}-i_{2}=0 \\
& i_{A+}-i_{1}=0
\end{aligned}
$$

Example

3. Write the $v-i$ relations of the resistors: $i_{k}=G_{k} V_{k} k=\{1,2, . ., 6\} 4$.

Substitute the equations in Step 3 into the equations in Step 2:

$$
\begin{aligned}
i_{A-}+G_{3} V_{3}-G_{4} V_{4} & =0 \\
i_{A o}-G_{3} V_{3}-G_{5} V_{5} & =0 \\
i_{B-}-G_{6} V_{6}+G_{5} V_{5} & =0 \\
i_{B o}-G_{6} V_{6}+G_{4} V_{4} & =0 \\
i_{B+}-G_{2} V_{2} & =0 \\
i_{A+}-G_{1} V_{1} & =0
\end{aligned}
$$

5. Terminal voltage is written in terms of the node voltages:

$$
\begin{aligned}
& V_{1}=V_{d 1}-V_{d 7} \\
& V_{2}=V_{d 1}-V_{d 6} \\
& V_{3}=V_{d 2}-V_{d 3} \\
& V_{4}=V_{d 5}-V_{d 2} \\
& V_{5}=V_{d 4}-V_{d 3} \\
& V_{6}=V_{d 4}-V_{d 5}
\end{aligned}
$$

Example

6. Substitute the equation in step 5 into step 4:

$$
\begin{aligned}
& i_{A-}+G_{3}\left(V_{d 2}-V_{d 3}\right)-G_{4}\left(V_{d 5}-V_{d 2}\right)=0 \\
& i_{A o}-G_{3}\left(V_{d 2}-V_{d 3}\right)-G_{5}\left(V_{d 4}-V_{d 3}\right)=0 \\
& i_{B-}-G_{6}\left(V_{d 4}-V_{d 5}\right)+G_{5}\left(V_{d 4}-V_{d 3}\right)=0 \\
& i_{B o}-G_{6}\left(V_{d 4}-V_{d 5}\right)+G_{4}\left(V_{d 5}-V_{d 2}\right)=0 \\
& i_{B+}-G_{2}\left(V_{d 1}-V_{d 6}\right)=0 \\
& i_{A+}-G_{1}\left(V_{d 1}-V_{d 7}\right)=0
\end{aligned}
$$

Additional equations

$$
i_{A+}=i_{A-}=i_{B+}=i_{d 1}=e=0 . i_{B-}=0
$$

Additional equations is written in terms of the node voltages and independent sources:

$$
\begin{aligned}
& V_{d 2}=V_{d 7} \\
& V_{d 4}=V_{d 6} \text { Basic of Electrical Circuits }
\end{aligned}
$$

Example

$$
\begin{aligned}
G_{3}\left(V_{d 2}-V_{d 3}\right)-G_{4}\left(V_{d 5}-V_{d 2}\right) & =0 \\
i_{A o}-G_{3}\left(V_{d 2}-V_{d 3}\right)-G_{5}\left(V_{d 4}-V_{d 3}\right) & =0 \\
-G_{6}\left(V_{d 2}-V_{d 5}\right)+G_{5}\left(V_{d 4}-V_{d 3}\right) & =0 \\
i_{B o}-G_{6}\left(V_{d 4}-V_{d 5}\right)+G_{4}\left(V_{d 5}-V_{d 2}\right) & =0 \\
-G_{2}\left(e-V_{d 4}\right) & =0 \\
-G_{1}\left(e-V_{d 2}\right) & =0
\end{aligned}
$$

when the equations are given in matrix form

$$
\left[\begin{array}{cccc}
G_{3}+G_{4} & -G_{3} & 0 & -G_{4} \\
-G_{6} & -G_{5} & G_{5} & -G_{6} \\
0 & 0 & G_{2} & 0 \\
G_{1} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{d 2} \\
V_{d 3} \\
V_{d 4} \\
V_{d 5}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
-G_{2} \\
-G_{1}
\end{array}\right] e=0
$$

