Basic of Electrical Circuits EHB 211E

Prof. Dr. Müștak E. Yalçın
Istanbul Technical University
Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Lecture 7

Contents I

(1) Analysis Methods

- Chord (Link) Current Method
- Generalized Chord Current Method

Chord (Link) Current Method

$$
B i_{\prime^{\prime}}+Q i_{s}+M v_{s}=0
$$

where i_{l}, is link voltage vector which does not include current sources in co-tree and i_{s} is current sources vector and v_{s} is voltage sources vector.

Currents in the co-tree (except the currents of current sources) are the unknown variables. Therefore independent sources must be placed to links and independent voltage sources must be places to branches.

Chord Current Method

Linear Circuits Containing Two-Terminal Resistors and Independent Sources
(1) Pick a proper tree of the graph of circuit which includes all the voltage sources. Current sources are placed in co-tree. Complete the tree with the resistors.
(2) Write the fundamental loop equations which do not correspond to the current sources in co-tree.
(3) Write the $v-i$ relations of the resistors in the form $V_{k}=R_{k} i_{k}$
(1) Substitute the voltages in Step 3 into the equations in Step 2.
(5) Write the fundamental cut-set equations which do not correspond voltage sources.
(0) Substitute the fundamental loop equations in Step 4 into the equations in Step 5.
(3) Present the equation in the form

$$
B i_{\prime^{\prime}}+Q i_{s}+M v_{s}=0
$$

Chord Current Method

1. Proper tree $G_{A}=\{1,3,4,5\}$.

Chord Current Method

2. The fundamental loop equations for the links 6,7 and 8 :

$$
\begin{aligned}
& V_{6}+V_{5}+V_{1}=0 \\
& V_{7}-V_{4}-V_{3}=0 \\
& V_{8}-V_{3}-V_{5}=0
\end{aligned}
$$

Chord Current Method

3. Write the $v-i$ relations of the resistors:

$$
V_{k}=R_{k} i_{k} \quad k=\{4,5,6,7,8\}
$$

Chord Current Method

4. Substitute the $v-i$ relations into

$$
\begin{aligned}
& V_{6}+V_{5}+V_{1}=0 \\
& V_{7}-V_{4}-V_{3}=0 \\
& V_{8}-V_{3}-V_{5}=0
\end{aligned}
$$

obtain

$$
\begin{aligned}
& R_{6} i_{6}+R_{5} i_{5}+V_{1}=0 \\
& R_{7} i_{7}-R_{4} i_{4}-V_{3}=0 \\
& R_{8} i_{8}-V_{3}-R_{5} i_{5}=0
\end{aligned}
$$

which include the currents of links and branches.

Chord Current Method

5. fundamental cut-set equations for the links 4 and 5 :

$$
\begin{aligned}
& i_{4}+i_{2}+i_{7}=0 \\
& i_{5}+i_{8}-i_{6}=0
\end{aligned}
$$

Chord Current Method

6. Substitute

$$
\begin{aligned}
& i_{4}=-i_{2}-i_{7} \\
& i_{5}=-i_{8}+i_{6}
\end{aligned}
$$

into

$$
\begin{aligned}
& R_{6} i_{6}+R_{5} i_{5}+V_{1}=0 \\
& R_{7} i_{7}-R_{4} i_{4}-V_{3}=0 \\
& R_{8} i_{8}-V_{3}-R_{5} i_{5}=0
\end{aligned}
$$

we will have

$$
\begin{aligned}
& R_{6} i_{6}+R_{5}\left(-i_{8}+i_{6}\right)+V_{1}=0 \\
& R_{7} i_{7}-R_{4}\left(-i_{2}+i_{7}\right)-V_{3}=0 \\
& R_{8} i_{8}-V_{3}-R_{5}\left(-i_{8}+i_{6}\right)=0
\end{aligned}
$$

Chord Current Method

The unknown variables $i_{\prime \prime}=\left[\begin{array}{lll}i_{6} & i_{7} & i_{8}\end{array}\right]^{T}$ which are the currents in co-tree (except the link 2 which is a current source.)

$$
\begin{aligned}
{\left[\begin{array}{ccc}
R_{6}+R_{5} & 0 & -R_{5} \\
0 & R_{7}-R_{4} & 0 \\
-R_{5} & 0 & R_{8}+R_{5}
\end{array}\right] } & {\left[\begin{array}{l}
i_{6} \\
i_{7} \\
i_{8}
\end{array}\right]+\left[\begin{array}{c}
0 \\
R_{4} \\
0
\end{array}\right] i_{2} } \\
& +\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{3}
\end{array}\right]=0
\end{aligned}
$$

Chord Current Method

The branches currents

$$
\left[\begin{array}{l}
i_{1} \\
i_{3} \\
i_{4} \\
i_{5}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
i_{2} \\
i_{6} \\
i_{7} \\
i_{8}
\end{array}\right]
$$

Generalized Chord Current Method

Linear Circuits Containing Two-Terminal Resistors and Independent/dependent Sources

- Follow the same steps as before after taking the dependent sources as a independent source.
- Place the dependent source in tree if it is a voltage source (or co-tree if it is a current source).
- At the last step, compare the number of the unknowns and the number of equations! Currents and/or voltages of the dependent sources will be the additional unknowns.
- Using $v-i$ relations of the dependent sources new unknown variable are written in the terms of the link currents, voltage sources and current sources.

Generalized Chord Current Method

1. Proper tree $G_{A}=\{2,3,4,5,7\}$.

Generalized Chord Current Method

2. Fundamental loop equation for the link 1 :

$$
V_{1}+V_{2}+V_{5}=0
$$

3. Write the $v-i$ relations of the resistors:

$$
V_{k}=R_{k} i_{k} \quad k=\{1,2,3,4\}
$$

Generalized Chord Current Method

4. Substitute the equation in step 3 into the fundamental loop equations:

$$
R_{1} i_{1}+R_{2} i_{2}-e=0
$$

5. Fundamental cut-set equation:

$$
i_{2}-i_{8}-i_{1}-i_{6}=0
$$

6. Substitute $i_{2}=i_{8}+i_{1}+i_{6}$ into $R_{1} i_{1}+R_{2} i_{2}-e=0$ we have

$$
R_{1} i_{1}+R_{2}\left(i_{8}+i_{1}+i_{6}\right)-e=0
$$

which e voltage source, i_{6} current source, i_{1} link current (which is the unknown variable) what is i_{8} ?

Generalized Chord Current Method

Write $v-i$ relation for dependent source:

$$
i_{8}=k V_{3}
$$

Substitute the $v-i$ relation of the edge 3 into the above equ.

$$
i_{8}=k R_{3} i_{3}
$$

i_{3} is written in the term of the link currents using fundamental cut-set equation for the branch 3.

$$
i_{8}=-k R_{3} i_{6}
$$

In this case we will have

$$
\left(R_{1}+R_{2}\right) i_{1}+\left(R_{2}-k R_{3}\right) i_{6}-e=0
$$

Generalized Chord Current Method

- If the circuit includes multi-terminal component, it is thought to be an independent source. The type of the source is decided by its $v-i$ relation. Then a proper tree is picked.
- At the last step, compare the number of the unknowns and the number of equations! Currents and/or voltages of the multi-terminal component will be the additional unknowns.
- Using $v-i$ relations of the dependent sources new unknown variable are written in the terms of the link currents, voltage sources and current sources.

