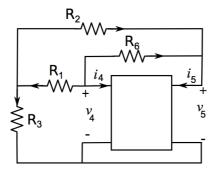
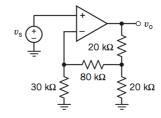
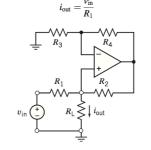

Homework-1

- 1.For the circuit given in Figure 1, obtain the equations to analysis the circuit using Chord (Line) current method such that unknown variables are i_6 , i_7 and i_8 ($V_3 = \alpha i_4$, $V_4 = \beta V_8$, $V_5 = \beta i_7$).
- 2. For the circuit given in Figure 3, obtain the equations to analysis the circuit using Generalized Branch Voltages method such that unknown variables are v_1, v_2 and v_3 (i₄ = $\beta i_5, i_5 = v_5$).

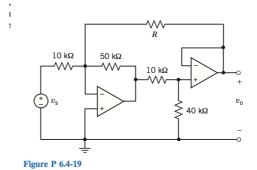




Figure 3

P 6.4-23 The input to the circuit shown in Figure P 6.4-23 is the voltage source voltage v_s . The output is the node voltage v_o The output is related to the input by the equation $v_o = kv_s$ where $k = \frac{v_o}{v_s}$ is called the gain of the circuit. Determine the value of the gain k.

Figure P 6.4-23

P 6.5-11 \bigoplus The circuit shown in Figure P 6.5-11 is called a Howland current source. It has one input, v_{in} , and one output, i_{out} . Show that when the resistances are chosen so that $R_2R_3 = R_1R_4$, the output is related to the input by the equation



P 6.4-19 The circuit shown in Figure P 6.4-19 has one input, v_s , and one output, v_o . The circuit contains one unspecified resistance, *R*.

(a) Express the gain of the circuit v_o/v_s in terms of the resistance R.

(b) Determine the range of values of the gain that can be obtained by specifying a value for the resistance *R*.
(c) Design the circuit so that ν₀ = -3ν_s.

