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Chapter Objectives

• Concept of the center of gravity, center of mass, and 
the centroid

• Determine the location of the center of gravity and 
centroid for a system of discrete particles and a body of 
arbitrary shape

• Theorems of Pappus and Guldinus
• Method for finding the resultant of a general distributed 

loading



Chapter Outline

1. Center of Gravity and Center of Mass for a System of 
Particles

2. Composite Bodies
3. Theorems of Pappus and Guldinus



Center of Gravity and Center of Mass for 
a System of Particles

Center of Gravity 
• Locates the resultant weight of a system of particles
• Consider system of n particles fixed within a region of 

space
• The weights of the particles can be replaced by a 

single (equivalent) resultant weight having defined 
point G of application



Center of Gravity and Center of Mass for 
a System of Particles

Center of Gravity 
• Resultant weight = total weight of n particles

• Sum of moments of weights of all the particles about x, 
y, z axes = moment of resultant weight about these 
axes

• Summing moments about the x axis, 

• Summing moments about y axis,
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Center of Gravity and Center of Mass for 
a System of Particles

Center of Gravity 
• Although the weights do not produce a moment about 

z axis, by rotating the coordinate system 90° about x 
or y axis with the particles fixed in it and summing 
moments about the x axis, 

• Generally, 
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Center of Gravity and Center of Mass for 
a System of Particles

Center Mass
• Provided acceleration due to gravity g for every 

particle is constant, then W = mg

• By comparison, the location of the center of gravity 
coincides with that of center of mass

• Particles have weight only when under the influence of 
gravitational attraction, whereas center of mass is 
independent of gravity
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Center of Gravity and Center of Mass for 
a System of Particles

Center Mass
• A rigid body is composed of an infinite number of 

particles 
• Consider arbitrary particle having a weight of dW
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Center of Gravity and Center of Mass for 
a System of Particles

Centroid of a Volume
• Consider an object subdivided into volume elements 

dV, for location of the centroid, 
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Center of Gravity and Center of Mass for 
a System of Particles

Centroid of an Area
• For centroid for surface area of an object, such as 

plate and shell, subdivide the area into differential 
elements dA
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Center of Gravity and Center of Mass for 
a System of Particles

Centroid of a Line
• If the geometry of the object takes the form of a line, 

the balance of moments of differential elements dL 
about each of the coordinate system yields
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Example

Locate the centroid of the rod bent into the shape of a 
parabolic arc.



Example

Differential element
Located on the curve at the arbitrary point (x, y)
Area and Moment Arms
For differential length of the element dL

Since x = y2 and then dx/dy = 2y

The centroid is located at
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Example

Integrations
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Composite Bodies

• Consists of a series of connected “simpler” shaped 
bodies, which may be rectangular, triangular or 
semicircular

• A body can be sectioned or divided into its composite 
parts 

• Accounting for finite number of weights
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Composite Bodies

Procedure for Analysis
Composite Parts
• Divide the body or object into a finite number of 

composite parts that have simpler shapes
• Treat the hole in composite as an additional 

composite part having negative weight or size

Moment Arms
• Establish the coordinate axes and determine the 

coordinates of the center of gravity or centroid of each 
part



Composite Bodies

Procedure for Analysis
Summations
• Determine the coordinates of the center of gravity by 

applying the center of gravity equations
• If an object is symmetrical about an axis, the centroid 

of the objects lies on the axis



Example

Locate the centroid of the plate area.



Solution

Composite Parts
Plate divided into 3 segments.
Area of small rectangle considered “negative”.



Solution

Moment Arm
Location of the centroid for each piece is determined and 
indicated in the diagram.

Summations
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Theorems of Pappus and Guldinus

• A surface area of revolution is generated by revolving 
a plane curve about a non-intersecting fixed axis in 
the plane of the curve

• A volume of revolution is generated by revolving a 
plane area about a nonintersecting fixed axis in the 
plane of area



Theorems of Pappus and Guldinus

• The theorems of Pappus and Guldinus are used to 
find the surfaces area and volume of any object of 
revolution provided the generating curves and areas 
do not cross the axis they are rotated

Surface Area
• Area of a surface of revolution = product of length of 

the curve and distance traveled by the centroid in 
generating the surface area

LrA 



Theorems of Pappus and Guldinus

Volume
• Volume of a body of revolution = product of generating 

area and distance traveled by the centroid in 
generating the volume

ArV 



Example

Show that the surface area of a sphere is A = 4πR2 and 
its volume V = 4/3 πR3.

Solution
Surface Area
Generated by rotating semi-arc about the x axis
For centroid, 

For surface area,
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Solution

Volume
Generated by rotating semicircular area about the x axis
For centroid, 

For volume,
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Chapter Objectives

• Introduce the concept of dry friction 
• To present specific applications of frictional force 

analysis on wedges, screws, belts, and bearings
• To investigate the concept of rolling resistance



Chapter Outline

1. Characteristics of Dry Friction
2. Problems Involving Dry Friction
3. Wedges
4. Frictional Forces on Screws
5. Frictional Forces on Flat Belts



Characteristics of Dry Friction

Friction
• Force that resists the movement of two contacting 

surfaces that slide relative to one another
• Acts tangent to the surfaces at points of contact with 

other body
• Opposing possible or existing motion of the body 

relative to points of contact
• Two types of friction – Fluid and Coulomb Friction



Characteristics of Dry Friction

• Fluid friction exist when the contacting surface are 
separated by a film of fluid (gas or liquid)

• Depends on velocity of the fluid and its ability to resist 
shear force 

• Coulomb friction occurs 
between contacting surfaces 
of bodies in the absence of a 
lubricating fluid



Characteristics of Dry Friction

Theory of Dry Friction
• Consider the effects caused by pulling horizontally on 

a block of uniform weight W which is resting on a 
rough horizontal surface

• Consider the surfaces of contact to be nonrigid or 
deformable and other parts of the block to be rigid



Characteristics of Dry Friction

Theory of Dry Friction
• Normal force ∆Nn and frictional force

∆Fn act along the contact surface

• For equilibrium, normal forces act upward to balance 
the block’s weight W, frictional forces act to the left to 
prevent force P from moving the block to the right



Characteristics of Dry Friction

Theory of Dry Friction
• Many microscopic irregularities exist between the two 

surfaces of floor and the block

• Reactive forces ∆Rn developed at each of the 
protuberances 

• Each reactive force consist 
of both a frictional component 
∆Fn and normal component ∆Nn



Characteristics of Dry Friction

Theory of Dry Friction
Equilibrium
• Effect of normal and frictional loadings are indicated 

by their resultant N and F
• Distribution of ∆Fn indicates that F is tangent to the 

contacting surface, opposite to the direction of P
• Normal force N is determined 

from the distribution of ∆Nn



Characteristics of Dry Friction

Theory of Dry Friction
Equilibrium
• N is directed upward to balance W
• N acts a distance x to the right of the line of action of 

W
• This location coincides with the centroid or the 

geometric center of the loading diagram in order to 
balance the “tipping effect” caused by P



Characteristics of Dry Friction

Theory of Dry Friction
Impending Motion
• As P is slowly increased, F correspondingly increase 

until it attains a certain maximum value F, called the 
limiting static frictional force

• Limiting static frictional force Fs is directly proportional 
to the resultant normal force N

Fs = μsN



Characteristics of Dry Friction

Theory of Dry Friction
Impending Motion
• Constant of proportionality μs is known as the 

coefficient of static friction
• Angle Φs that Rs makes with N is called the angle of 

static friction
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Characteristics of Dry Friction

Theory of Dry Friction

Typical Values of μs

Contact Materials Coefficient of Static Friction μs

Metal on ice 0.03 – 0.05

Wood on wood 0.30 – 0.70

Leather on wood 0.20 – 0.50

Leather on metal 0.30 – 0.60

Aluminum on aluminum 1.10 – 1.70



Characteristics of Dry Friction

Theory of Dry Friction
Motion
• When P is greater than Fs, the frictional force is 

slightly smaller value than Fs, called kinetic frictional 
force

• The block will not be held in equilibrium (P > Fs) but 
slide with increasing speed



Characteristics of Dry Friction

Theory of Dry Friction
Motion
• The drop from Fs (static) to Fk (kinetic) can by 

explained by examining the contacting surfaces
• When P > Fs, P has the capacity to shear off the 

peaks at the contact surfaces



Characteristics of Dry Friction

Theory of Dry Friction
• Resultant frictional force Fk is directly proportional to 

the magnitude of the resultant normal force N
Fk = μkN

• Constant of proportionality μk is coefficient of kinetic 
friction

• μk are typically 25% smaller than μs

• Resultant Rk has a line of action defined by Φk, angle 
of kinetic friction
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Characteristics of Dry Friction

Theory of Dry Friction
• F is a static frictional force if equilibrium is maintained
• F is a limiting static frictional force when it reaches a 

maximum value needed to maintain equilibrium
• F is termed a kinetic frictional force when sliding 

occurs at the contacting surface



Characteristics of Dry Friction

Characteristics of Dry Friction
• The frictional force acts tangent to the contacting 

surfaces
• The max static frictional force Fs is independent of the 

area of contact
• The max static frictional force is greater than kinetic 

frictional force 
• When slipping, the max static frictional force is 

proportional to the normal force and kinetic frictional 
force is proportional to the normal force



Problems Involving Dry Friction

Types of Friction Problems
• In all cases, geometry and dimensions are assumed 

to be known
• 3 types of mechanics problem involving dry friction

- Equilibrium
- Impending motion at all points
- Impending motion at some points



Problems Involving Dry Friction

Types of Friction Problems
Equilibrium
• Total number of unknowns = Total number of 

available equilibrium equations
• Frictional forces must satisfy F ≤ μsN; otherwise, 

slipping will occur and the body will not remain in 
equilibrium

• We must determine the frictional 
forces at A and C to check 
for equilibrium



Problems Involving Dry Friction

Equilibrium Versus Frictional Equations
• Frictional force always acts so as to oppose the 

relative motion or impede the motion of the body over 
its contacting surface

• Assume the sense of the frictional force that require F 
to be an “equilibrium” force

• Correct sense is made after solving the equilibrium 
equations

• If F is a negative scalar, the sense of F is the reverse 
of that assumed



Example

The uniform crate has a mass of 20kg. If a force P = 80N 
is applied on to the crate, determine if it remains in 
equilibrium. The coefficient of static friction is μ = 0.3.



Solution

Resultant normal force NC act a distance x from the 
crate’s center line in order to counteract the tipping effect 
caused by P.

3 unknowns to be determined by 3 equations of 
equilibrium.



Solving
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Since x is negative, the resultant force acts (slightly) to 
the left of the crate’s center line.

No tipping will occur since x ≤ 0.4m

Max frictional force which can be developed at the 
surface of contact 

Fmax = μsNC = 0.3(236N) = 70.8N

Since F = 69.3N < 70.8N, the crate will not slip thou it is 
close to doing so.

Solution



Wedges

• A simple machine used to transform an applied force 
into much larger forces, directed at approximately right 
angles to the applied force

• Used to give small displacements or adjustments to 
heavy load

• Consider the wedge used to lift a block of weight W by 
applying a force P to the wedge



Wedges

• FBD of the block and the wedge

• Exclude the weight of the wedge since it is small 
compared to weight of the block



Example

The uniform stone has a mass of 500kg and is held in 
place in the horizontal position using a wedge at B. if the 
coefficient of static friction μs = 0.3, at the surfaces of 
contact, determine the minimum force P needed to 
remove the wedge. Is the wedge self-locking? Assume 
that the stone does not slip at A.



Solution

Minimum force P requires F = μs NA at the surfaces of 
contact with the wedge.
FBD of the stone and the wedge as below.
On the wedge, friction force opposes the motion and on 
the stone at A, FA ≤ μsNA, slipping does not occur.



Solution

5 unknowns, 3 equilibrium equations for the stone and 2 
for the wedge.
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Solution

Since P is positive, the wedge must be pulled out.

If P is zero, the wedge would remain in place (self-locking) 
and the frictional forces developed at B and C would 
satisfy 

FB < μsNB

FC < μsNC



Frictional Forces on Screws

• Screws used as fasteners
• Sometimes used to transmit power or motion from one 

part of the machine to another
• A square-ended screw is commonly used for the latter 

purpose, especially when large forces are applied 
along its axis

• A screw is thought as an inclined plane or wedge 
wrapped around a cylinder



Frictional Forces on Screws

• A nut initially at A on the screw will move up to B when 
rotated 360° around the screw

• This rotation is equivalent to translating the nut up an  
inclined plane of height l and length 2πr, where r is the 
mean radius of the head 

• Applying the force equations of equilibrium, we have
   srWM tan



Frictional Forces on Screws

Downward Screw Motion
• If the surface of the screw is very slippery, the screw 

may rotate downward if the magnitude of the moment 
is reduced to say M’ < M

• This causes the effect of M’ to become S’
M’ = Wr tan(θ – Φ)



Example

The turnbuckle has a square thread with a mean radius of 
5mm and a lead of 2mm. If the coefficient of static friction 
between the screw and the turnbuckle is μs = 0.25, 
determine the moment M that must be applied to draw the 
end screws closer together. Is the turnbuckle self-locking?



Solution

Since friction at two screws must be overcome, this 
requires

Solving

When the moment is removed, the turnbuckle will be self-
locking
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Frictional Forces on Flat Belts

• It is necessary to determine the frictional forces 
developed between the contacting surfaces

• Consider the flat belt which passes over a fixed curved 
surface

• Obviously T2 > T1

• Consider FBD of the belt 
segment in contact with the surface 

• N and F vary both in 
magnitude and direction



Frictional Forces on Flat Belts

• Consider FBD of an element having a length ds 
• Assuming either impending motion or motion of the belt, 

the magnitude of the frictional force 
dF = μ dN

• Applying equilibrium equations
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Frictional Forces on Flat Belts

• We have
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Example

The maximum tension that can be developed In the cord 
is 500N. If the pulley at A is free to rotate and the 
coefficient of static friction at fixed drums B and C is μs = 
0.25, determine the largest mass of cylinder that can be 
lifted by the cord. Assume that the force F applied at the 
end of the cord is directed vertically downward.



Example

Weight of W = mg causes the cord to move CCW over 
the drums at B and C.
Max tension T2 in the cord occur at D where T2 = 500N
For section of the cord passing over the drum at B 
180° = π rad, angle of contact between drum and cord 

β = (135°/180°)π = 3/4π rad
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Example

For section of the cord passing over the drum at C
W < 277.4N
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Cables

• Cables are often used in engineering structures for support 
and to transmit loads from one member to another. When 
used to support suspension roofs and bridges, cables form 
the main load-carrying element in the structure. 

• In the force analysis of such systems, the weight of the cable 
itself may be neglected; however, when cables are used as 
guys for radio antennas, electrical transmission lines and 
derricks, the cable weight may become important and must 
be included in the structural analysis. 



Cables

• Assumptions when deriving the relations between force in 
cable & its slope
– Cable is perfectly flexible & inextensible

• Due to its flexibility, cable offers no resistance to shear or 
bending

• The force acting the cable is always tangent to the cable at 
points along its length



Cable subjected to concentrated loads

• When a cable of negligible weight supports several 
concentrated loads, the cable takes the form of several 
straight line segments

• Each of the segment is subjected to a constant tensile force
•  specifies the angle 

of the chord AB
• L = cable length



Cable subjected to concentrated loads

• If L1, L2 & L3 and loads P1 & P2 are 
known, determine the 9 unknowns 
consisting of the tension of in each 
of the 3 segments, the 4 
components of reactions at A & B 
and the sags yC & yD

• For solutions, we write 2 equations
of equilibrium at each of 4 points A, 
B, C & D

• Total 8 equations
• The last equation comes from the 

geometry of the cable



Determine the tension in each segment of the cable. Also, what 
is the dimension h?

Example



By inspection, there are 
 4 unknown external reactions (Ax, 

Ay, Dx and Dy)
 3 unknown cable tensions

These unknowns along with the sag h 
can be determined from available 
equilibrium equations applied to points 
A through D.

A more direct approach to the solution 
is to recognize that the slope of cable 
CD is specified.

Solution



Solution
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Solution
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Now we can analyze the equilibrium of points C and B in sequence. 

Point C:
F

. kN( / ) T cos

F

. kN( / ) kN T sin

.   and  T . kN

 
  

   

   

  





Solution

0
4 82 32 3 0

0

4 82 32 3 3 0
53 8 6 90

2 53 8 2 74

x

o
BA BA

y

o
BA BA

o
BA BA

o

Point B:
F

T cos . kNcos .  

F

T sin . kNsin . kN

.   and  T . kN

h ( m)tan . . m

 

   

   

   

  

 





Cable subjected to a uniform distributed load

• The x,y axes have their origin located at the lowest point on 
the cable such that the slope is zero at this point

• Since the tensile force in the cable changes continuously in 
both magnitude & direction along the cable’s length, this load 
is denoted by T



Cable subjected to a uniform distributed load

• The distributed load is represented by its resultant force 
w0x  which acts at x/2 from point O

• Applying equations of equilibrium yields:

0

0

0

0
0

0
0

0
2 0

x

y

F
Tcos (T T)cos( )

F

Tsin w ( x) (T T)sin( )
With anti‐clockwise as positive
M

w ( x)( x / ) Tcos y Tsin x

 
      

   

        

 
      





Cable subjected to a uniform distributed load

• Dividing each of these equations by x and taking the limit 
as x 0, hence, y 0 ,  0 and T 0 , we obtain:

0

0d(Tcos )
    eqn 1

dx
d(Tsin )

w    eqn 2
dx

dy
tan            eqn 3

dx







 



Cable subjected to a uniform distributed load

• Integrating eqn 1 where T = T0 at x = 0, we have:

which indicates the horizontal component of force at any 
point along the cable remains constant

• Integrating eqn 2, realizing that Tsin = 0 at x = 0, we have:

0Tcos T       eqn 4 

0Tsin w x      eqn 5 



Cable subjected to a uniform distributed load

• Dividing eqn 5 by eqn 4 eliminates T
• Then using eqn 3, we can obtain the slope at any point

• Performing a second integration with y = 0 at x = 0 yields 

20

02
w

y x       eqn 7
T



0

0

w xdy
tan      eqn 6

dx T
  



Cable subjected to a uniform distributed load

• This is the equation of parabola 
• The constant T0 may be obtained by using the boundary 

condition y = h at x = L
• Thus

• Substituting into eqn 7 

2
2

h
y x      eqn 9

L


2
0

0 2
w L

T       eqn 8
h





Cable subjected to a uniform distributed load

• From eqn 4, the maximum tension in the cable occurs when 
 is maximum; i.e., at x = L.

• Hence from eqn 4 and 5

• Using eqn 8 we can express Tmax in terms of w0

2 2
0 0maxT T (w L)        eqn 10 

2
0 1 2maxT w L (L / h)     eqn 11 



Cable subjected to a uniform distributed load

• We have neglect the weight of the cable which is uniform 
along the length

• A cable subjected to its own weight will take the form of a 
catenary curve

• If the sag-to-span ratio is small, this curve closely 
approximates a parabolic shape



The cable supports a girder which weighs 12kN/m. Determine 
the tension in the cable at points A, B & C.

Example 5.2



The origin of the coordinate axes is established at point B, the 
lowest point on the cable where slope is zero, 

Assuming point C is located x’ from B we have:

Solution

2 2 20

0 0 0

6
2 2
w 12kN/m

y x x x    (1) 
T T T

  

2 2
0

0

66 1 0x' T . x'    (2) 
T

  



For point A,

Thus from equations 2 and 1, we have: 

Solution

2

0

2
2

2

612 30

612 30
1 0
60 900 0 12 43

[ ( x')]
T

[ ( x')]
. x'

x' x' x' . m

  

  

    

2
0 1 0 12 43 154 4

12 0 7772
154 4

T . ( . ) . kN
dy

x . x   (3)
dx .

 

 



At point A,

We have, 

Solution

17 57

30 12 43 17 57

0 7772 17 57 1 366

53 79

A
x .

o
A

x ( . ) . m

dy
tan . ( . ) .

dx

.


    

     

  

0 154 4 261 4
53 79A o

A

T .
T . kN

cos cos( . )
  

 



At point B, x = 0

At point C, x = 12.43m

Solution

0

0

0 0

154 4 154 4
0

o
B B

x

B o
B

dy
tan

dx
T .

T . kN
cos cos



    

  


12 43

0

0 7772 12 43 0 9657

44 0
154 4 214 6

44 0

C
x .

o
C

C o
C

dy
tan . ( . ) .

dx

.
T .

T . kN
cos cos .



   

 

  




Moments of Inertia10
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Definition of Moments of Inertia for Areas

• Centroid for an area is determined by the first moment 
of an area about an axis

• Second moment of an area is referred as the moment 
of inertia

• Moment of inertia of an area originates whenever one 
relates the normal stress σ or force per unit area



Definition of Moments of Inertia for Areas

Moment of Inertia
• Consider area A lying in the x-y plane
• Be definition, moments of inertia of the differential 

plane area dA about the x and y axes 

• For entire area, moments of 
inertia are given by










Ay

Ax

yx

dAxI

dAyI

dAxdIdAydI

2

2

22



Definition of Moments of Inertia for Areas

Moment of Inertia
• Formulate the second moment of dA about the pole O 

or z axis
• This is known as the polar axis

where r is perpendicular from the pole (z axis) to the 
element dA

• Polar moment of inertia for entire area,

dArdJO
2

yxAO IIdArJ   2



Parallel Axis Theorem for an Area

• For moment of inertia of an area known about an axis 
passing through its centroid, determine the moment of 
inertia of area about a corresponding parallel axis 
using the parallel axis theorem

• Consider moment of inertia of the shaded area
• A differential element dA is 

located at an arbitrary distance y’
from the centroidal x’ axis



Parallel Axis Theorem for an Area

• The fixed distance between the parallel x and x’ axes 
is defined as dy

• For moment of inertia of dA about x axis 

• For entire area

• First integral represent the moment of inertia of the 
area about the centroidal axis

 

 










AyAyA

A yx

yx

dAddAyddAy

dAdyI

dAdydI

22

2

2

'2'

'

'



Parallel Axis Theorem for an Area

• Second integral = 0 since x’ passes through the area’s 
centroid C

• Third integral represents the total area A

• Similarly

• For polar moment of inertia about an axis 
perpendicular to the x-y plane and passing through 
pole O (z axis)

2

2

2

0;0'

AdJJ

AdII

AdII

ydAydAy

CO

xyy

yxx







 



Radius of Gyration of an Area

• Radius of gyration of a planar area has units of length 
and is a quantity used in the design of columns in 
structural mechanics

• For radii of gyration

• Similar to finding moment of inertia of a differential 
area about an axis

dAydIAkI

A
Jk

A
I

k
A
Ik

xxx

O
z

y
y

x
x

22 





Example

Determine the moment of inertia for the rectangular area 
with respect to (a) the centroidal x’ axis, (b) the axis xb
passing through the base of the rectangular, and (c) the 
pole or z’ axis perpendicular to the x’-y’ plane and 
passing through the centroid C.



Solution

Part (a)
Differential element chosen, distance y’ from x’ axis.
Since dA = b dy’,

Part (b)
By applying parallel axis theorem,

32/

2/

22/

2/

22

12
1')'('' bhdyybdyydAyI

h

h

h

hAx   

3
2

32

3
1

212
1 bhhbhbhAdII xxb











Solution

Part (c)
For polar moment of inertia about point C,

)(
12
1

12
1

22
'

3
'

bhbhIIJ

hbI

yxC

y







Moments of Inertia for Composite Areas

• Composite area consist of a series of connected 
simpler parts or shapes 

• Moment of inertia of the composite area = algebraic 
sum of the moments of inertia of all its parts

Procedure for Analysis
Composite Parts
• Divide area into its composite parts and indicate the 

centroid of each part to the reference axis
Parallel Axis Theorem
• Moment of inertia of each part is determined about its 

centroidal axis



Moments of Inertia for Composite Areas

Procedure for Analysis
Parallel Axis Theorem
• When centroidal axis does not coincide with the 

reference axis, the parallel axis theorem is used 
Summation
• Moment of inertia of the entire area about the 

reference axis is determined by summing the results 
of its composite parts



Example

Compute the moment of inertia of the composite area 
about the x axis.



Solution

Composite Parts
Composite area obtained by subtracting the circle form 
the rectangle.
Centroid of each area is located in the figure below.



Solution

Parallel Axis Theorem
Circle

Rectangle

        46224

2
'

104.11752525
4
1 mm

AdII yxx







         4623

2
'

105.11275150100150100
12
1 mm

AdII yxx







Solution

Summation
For moment of inertia for the composite area,

   
  46

66

10101

105.112104.11

mm

Ix







Product of Inertia for an Area

• Moment of inertia for an area is different for every axis 
about which it is computed

• First, compute the product of the inertia for the area as 
well as its moments of inertia for given x, y axes

• Product of inertia for an element of area dA located at 
a point (x, y) is defined as 

dIxy = xydA
• Thus for product of inertia,

 Axy xydAI



Product of Inertia for an Area

Parallel Axis Theorem
• For the product of inertia of dA with respect to the x 

and y axes

• For the entire area,

• Forth integral represent the total area A,

  dAdydxdI
A yxxy   ''

  

 






AyxAyA Ax

A yxxy

dAdddAxddAyddAyx

dAdydxdI

''''

''

yxyxxy dAdII  ''



Example

Determine the product Ixy of the triangle.



Solution

Differential element has thickness dx and area dA = y dx
Using parallel axis theorem,

locates centroid of the element or origin of x’, y’ axes

yxdAIddI xyxy
~~

 yx ~,~



Solution

Due to symmetry,

Integrating we have

2/~,~0 yyxxId xy 

82

22

0

3
2

2 hbdxx
b
hI

b

xy  

dxx
b
hx

b
hxxdx

b
hyxydxdIxy

3
2

2

222
)(0 

























Solution

Differential element has thickness dy and 
area dA = (b - x) dy.
For centroid, 

For product of inertia of element
yyxbxbxx  ~,2/)(2/)(~

  dyy
h
bbyyyhbbdyy

h
bb

yxbdyxbyxdAIddI xyxy













 







 







 



2
2

2
2

2
1

2
/

2
)(0~~~



Moments of Inertia for an Area about Inclined 
Axes

• In structural and mechanical design, necessary to 
calculate Iu, Iv and Iuv for an area with respect to a set 
of inclined u and v axes when the values of θ, Ix, Iy and 
Ixy are known

• Use transformation equations which relate the x, y and 
u, v coordinates 

dAxyyxuvdAdI
dAyxdAudI

dAxydAvdI
xyv
yxu

uv

v

u

)sincos)(sincos(
)sincos(

)sincos(
sincos
sincos

22

22



















Moments of Inertia for an Area about Inclined 
Axes

• Integrating, 

• Simplifying using trigonometric identities,

)sin(cos2cossincossin

cossin2cossin

cossin2sincos

22

22

22













xyyxuv

xyyxv

xyyxu

IIII

IIII

IIII




22 sincos2cos

cossin22sin






Moments of Inertia for an Area about Inclined 
Axes

• We can simplify to

• Polar moment of inertia about the z axis passing 
through point O is,







2cos22sin
2

2sin2cos
22

2sin2cos
22

xy
yx

uv

xy
yxyx

v

xy
yxyx

u

I
II

I

I
IIII

I

I
IIII

I






















yxvuO IIIIJ 



Moments of Inertia for an Area about Inclined 
Axes

Principal Moments of Inertia
• Iu, Iv and Iuv depend on the angle of inclination θ of the 

u, v axes
• The angle θ = θp defines the orientation of the principal 

axes for the area

  2/
2tan

02cos22sin
2

2

yx

xy
p

p

xy
yxu

II
I

I
II

d
dI















 











Moments of Inertia for an Area about Inclined 
Axes

Principal Moments of Inertia
• Substituting each of the sine and cosine ratios, we 

have

• Result can gives the max or min moment of inertia for 
the area

• It can be shown that Iuv = 0, that is, the product of 
inertia with respect to the principal axes is zero

• Any symmetric axis represent a principal axis of inertia 
for the area

2
2

max
min 22 xy

yxyx I
IIII

I 






 



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