STATICS

Assist. Prof. Dr. Cenk Üstündağ

4
Force System Resultants

Chapter Objectives

- Method for finding the moment of a force about a specified axis.
- Define the moment of a couple.
- Determine the resultants of non-concurrent force systems
- Reduce a simple distributed loading to a resultant force having a specified location

Chapter Outline

5. Moment of a Force about a Specified Axis
6. Moment of a Couple
7. Simplification of a Force and Couple System
8. Further Simplification of a Force and Couple System
9. Reduction of a Simple Distributed Loading

4.5 Moment of a Force about a Specified Axis

Scalar Analysis

In the figure above, the moment about the y-axis would be $M_{y}=F_{z}\left(d_{x}\right)=F(r \cos \theta)$. However, unless the force can easily be broken into components and the " d_{x} " found quickly, such calculations are not always trivial and vector analysis may be much easier (and less likely to produce errors).

4.5 Moment of a Force about a Specified Axis

Vector Analysis

Our goal is to find the moment of F (the tendency to rotate the body) about the a-axis.

First compute the moment of F about any arbitrary point O that lies on the a'- a axis using the cross product.

$$
M_{O}=r \times F
$$

Now, find the component of M_{O} along the a-axis using the dot product.

$$
M_{a^{\prime}-a}=u_{a} \cdot M_{O}
$$

4.5 Moment of a Force about a Specified Axis

Vector Analysis

M_{a} can also be obtained as

$$
M_{a}=\mathbf{u}_{a} \cdot(\mathbf{r} \times \mathbf{F})=\left|\begin{array}{ccc}
u_{a_{x}} & u_{a_{y}} & u_{a_{z}} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

The above equation is also called the triple scalar product.
In this equation,
u_{a} represents the unit vector along the a-axis,
r is the position vector from any point on the a-axis to any point A on the line of action of the force, and
F is the force vector.

Example

Determine the moment produced by the force F which tends to rotate the rod about the $A B$ axis.

Solution

Solution on whiteboard

4.6 Moment of a Couple

A couple is defined as two parallel forces with the same magnitude but opposite in direction separated by a perpendicular distance "d."

The moment of a couple is defined as
$M_{O}=F d$ (using a scalar analysis) or as
$M_{O}=r \times F$ (using a vector analysis).
Here r is any position vector from the line of action of F to the line of action of F.

4.6 Moment of a Couple

The net external effect of a couple is that the net force equals zero and the magnitude of the net moment equals $F \cdot d$.

4.6 Moment of a Couple

Since the moment of a couple depends only on the distance between the forces, the moment of a couple is a free vector. It can be moved anywhere on the body and have the same external effect on the body.

Moments due to couples can be added together using the same rules as adding any vectors.

4.6 Moment of a Couple

Equivalent Couples

- 2 couples are equivalent if they produce the same moment
- Forces of equal couples lie on the same plane or plane parallel to one another

4.6 Moment of a Couple

Resultant Couple Moment

- Couple moments are free vectors and may be applied to any point P and added vectorially
- For resultant moment of two couples at point P,

$$
\mathbf{M}_{\mathrm{R}}=\mathbf{M}_{1}+\mathbf{M}_{2}
$$

- For more than 2 moments,

$$
M_{R}=\sum(\mathbf{r} \times \mathbf{F})
$$

Example

Given: Two couples act on the beam with the geometry shown.

Find: The magnitude of F so that the resultant couple moment is $1.5 \mathrm{kN} \cdot \mathrm{m}$ clockwise.

1) Add the two couples to find the resultant couple.
2) Equate the net moment to $1.5 \mathrm{kN} \cdot \mathrm{m}$ clockwise to find F .

Solution

Solution:

The net moment is equal to:

$$
\begin{aligned}
&+\Sigma \mathrm{M}=-F(0.9)+(2)(0.3) \\
&=-0.9 \mathrm{~F}+0.6 \\
&-1.5 \mathrm{kN} \cdot \mathrm{~m} \quad=-0.9 \mathrm{~F}+0.6
\end{aligned}
$$

Solving for the unknown force F, we get

$$
F=2.33 \mathrm{kN}
$$

Example

Given: A 450 N force couple acting on the pipe assembly.

Find: The couple moment in Cartesian vector notation.

Plan:

1) Use $M=r \times F$ to find the couple moment.
2) Set $r=r_{A B}$ and $F=F_{B}$.
3) Calculate the cross product to find M.

Solution

Solution:

$$
\begin{aligned}
r_{A B} & =\{0.4 i\} \mathrm{m} \\
F_{B} & =\{0 i+450(4 / 5) j-450(3 / 5) \mathrm{k}\} \mathrm{N} \\
& =\{0 i+360 j-270 \mathrm{k}\} \mathrm{N} \\
M & =r_{A B} \times F_{B} \\
& =\left|\begin{array}{ccc}
i & j & k \\
0.4 & 0 & 0 \\
0 & 360 & -270
\end{array}\right| \mathrm{N} \cdot \mathrm{~m} \\
& =[\{0(-270)-0(360)\} i-\{4(-270)-0(0)\} j+\{0.4(360)-0(0)\} \mathrm{k}] \mathrm{N} \cdot \mathrm{~m} \\
& =\{0 i+108 j+144 \mathrm{k}\} \mathrm{N} \cdot \mathrm{~m}
\end{aligned}
$$

Example

Determine the magnitude and direction of the couple moment acting on the gear.

(c)

Solution

4.7 Simplification of a Force and Couple System

When a number of forces and couple moments are acting on a body, it is easier to understand their overall effect on the body if they are combined into a single force and couple moment having the same external effect.

The two force and couple systems are called equivalent systems since they have the same external effect on the body.

4.7 Simplification of a Force and Couple System

MOVING A FORCE ON ITS LINE OF ACTION

Moving a force from A to B, when both points are on the vector's line of action, does not change the external effect.

Hence, a force vector is called a sliding vector. (But the internal effect of the force on the body does depend on where the force is applied).

4.7 Simplification of a Force and Couple System

MOVING A FORCE OFF OF ITS LINE OF ACTION

When a force is moved, but not along its line of action, there is a change in its external effect!
Essentially, moving a force from point A to B (as shown above) requires creating an additional couple moment. So moving a force means you have to "add" a new couple.
Since this new couple moment is a "free" vector, it can be applied at any point on the body.

4.7 Simplification of a Force and Couple System

When several forces and couple moments act on a body, you can move each force and its associated couple moment to a common point O .
Now you can add all the forces and couple moments together and find one resultant force-couple moment pair.

$$
\begin{aligned}
\mathbf{F}_{R} & =\Sigma \mathbf{F} \\
\mathbf{M}_{R_{O}} & =\Sigma \mathbf{M}_{c}+\Sigma \mathbf{M}_{O}
\end{aligned}
$$

4.7 Simplification of a Force and Couple System

If the force system lies in the $x-y$ plane (a 2-D case), then the reduced equivalent system can be obtained using the following three scalar equations.

$$
\begin{aligned}
F_{R_{x}} & =\Sigma F_{x} \\
F_{R_{y}} & =\Sigma F_{y} \\
M_{R_{O}} & =\Sigma M_{c}+\Sigma M_{O}
\end{aligned}
$$

Example

Given: A 2-D force system with geometry as shown.
Find: The equivalent resultant force and couple moment acting at A and then the equivalent single force location measured from A.

Plan:

1) Sum all the x and y components of the forces to find $F_{R A}$.
2) Find and sum all the moments resulting from moving each force component to A.
3) Shift $F_{R A}$ to a distance d such that $d=M_{R A} / F_{R y}$

Solution

$$
\begin{aligned}
+\rightarrow \Sigma \mathrm{F}_{\mathrm{Rx}} & =50(\sin 30)+100(3 / 5) \\
& =85 \mathrm{kN} \\
+\uparrow \Sigma \mathrm{F}_{\mathrm{Ry}} & =200+50(\cos 30)-100(4 / 5) \\
& =163.3 \mathrm{kN} \\
+\uparrow \mathrm{M}_{\mathrm{RA}} & =200(3)+50(\cos 30)(9) \\
& -100(4 / 5) 6=509.7 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

$$
\begin{gathered}
F_{R}=\left(85^{2}+163.3^{2}\right)^{1 / 2}=184 \mathrm{kN} \\
\angle \theta=\tan ^{-1}(163.3 / 85)=62.5^{\circ}
\end{gathered}
$$

The equivalent single force F_{R} can be located at a distance d measured from A.
$\mathrm{d}=\mathrm{M}_{\mathrm{RA}} / \mathrm{F}_{\mathrm{Ry}}=509.7 / 163.3=3.12 \mathrm{~m}$

4.8 Further Simplification of a Force and Couple System

Concurrent Force System

- A concurrent force system is where lines of action of all the forces intersect at a common point O

(a)

(b)

$$
F_{R}=\sum F
$$

4.8 Further Simplification of a Force and Couple System

Coplanar Force System

- Lines of action of all the forces lie in the same plane
- Resultant force of this system also lies in this plane

4.9 Reduction of a Simple Distributed Loading

- Large surface area of a body may be subjected to distributed loadings
- Loadings on the surface is defined as pressure
- Pressure is measured in Pascal (Pa): $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$

Uniform Loading Along a Single Axis

- Most common type of distributed loading is uniform along a single axis

4.9 Reduction of a Simple Distributed Loading

Magnitude of Resultant Force

- Magnitude of $d \mathbf{F}$ is determined from differential area $d A$ under the loading curve.
- For length L,

$$
F_{R}=\int_{L} w(x) d x=\int_{A} d A=A
$$

- Magnitude of the resultant force is equal to the total area A under the loading diagram.

4.9 Reduction of a Simple Distributed Loading

Location of Resultant Force

- $M_{R}=\sum M_{O}$
- dF produces a moment of $x d F=x w(x) d x$ about O
- For the entire plate,

$$
M_{R o}=\Sigma M_{O} \quad \bar{x} F_{R}=\int_{L} x w(x) d x
$$

- Solving for \bar{x}

$$
\bar{x}=\frac{\int_{L} x w(x) d x}{\int_{L} w(x) d x}=\frac{\int_{A} x d A}{\int_{A} d A}
$$

4.9 Reduction of a Simple Distributed Loading

Example

Determine the magnitude and location of the equivalent resultant force acting on the shaft.

Solution

For the colored differential area element,

$$
d A=w d x=60 x^{2} d x
$$

For resultant force
$F_{R}=\Sigma F ;$
$F_{R}=\int_{A} d A=\int_{0}^{2} 60 x^{2} d x$
$=60\left[\frac{x^{3}}{3}\right]_{0}^{2}=60\left[\frac{2^{3}}{3}-\frac{0^{3}}{3}\right]$
$=160 \mathrm{~N}$

Solution

For location of line of action,
$\bar{x}=\frac{\int_{A} x d A}{\int_{A} d A}=\frac{\int_{0}^{2} x\left(60 x^{2}\right) d x}{160}=\frac{60\left[\frac{x^{4}}{4}\right]_{0}^{2}}{160}=\frac{60\left[\frac{2^{4}}{4}-\frac{0^{4}}{4}\right]}{160}$
$=1.5 \mathrm{~m}$
Checking,

$$
\begin{aligned}
& A=\frac{a b}{3}=\frac{2 m(240 \mathrm{~N} / \mathrm{m})}{3}=160 \\
& \bar{x}=\frac{3}{4} a=\frac{3}{4}(2 \mathrm{~m})=1.5 \mathrm{~m}
\end{aligned}
$$

STATICS

Assist. Prof. Dr. Cenk Üstündağ

5 Equilibrium of a Rigid Body

Chapter Objectives

- Develop the equations of equilibrium for a rigid body
- Concept of the free-body diagram for a rigid body
- Solve rigid-body equilibrium problems using the equations of equilibrium

Chapter Outline

1. Conditions for Rigid Equilibrium
2. Free-Body Diagrams
3. Equations of Equilibrium

5.1 Conditions for Rigid-Body Equilibrium

In contrast to the forces on a particle, the forces on a rigid-body are not usually concurrent and may cause rotation of the body (due to the moments created by the forces).

Forces on a particle

For a rigid body to be in equilibrium, the net force as well as the net moment about any arbitrary point O must be equal to zero.
$\sum F=0$ (no translation)
and $\sum M_{O}=0$ (no rotation)
Forces on a rigid body

5.2 Free Body Diagrams

For analyzing an actual physical system, first we need to create an idealized model (above right).

Then we need to draw a free-body diagram (FBD) showing all the external (active and reactive) forces.

Finally, we need to apply the equations of equilibrium to solve for any unknowns.

5.2 Free Body Diagrams

Idealized model

1. Draw an outlined shape. Imagine the body to be isolated or cut "free" from its constraints and draw its outlined shape.
2. Show all the external forces and couple moments. These typically include: a) applied loads, b) support reactions, and c) the weight of the body.

5.2 Free Body Diagrams

Idealized model

3. Label loads and dimensions on the FBD: All known forces and couple moments should be labeled with their magnitudes and directions. For the unknown forces and couple moments, use letters like A_{x}, A_{y}, M_{A}. Indicate any necessary dimensions.

5.2 Free Body Diagrams

Support reactions in 2-D

roller

smooth pin or hinge

fixed support

Common types of supports
As a general rule, if a support prevents translation of a body in a given direction, then a force is developed on the body in the opposite direction.

Similarly, if rotation is prevented, a couple moment is exerted on the body in the opposite direction.

5.3 Equations of Equilibrium

- For equilibrium of a rigid body in 2D,

$$
\Sigma F_{x}=0 ; \Sigma F_{y}=0 ; \Sigma M_{O}=0
$$

- $\sum F_{x}$ and $\sum F_{y}$ represent sums of x and y components of all the forces
- $\sum M_{O}$ represents the sum of the couple moments and moments of the force components

5.3 Equations of Equilibrium

Procedure for Analysis

Free-Body Diagram

- Force or couple moment having an unknown magnitude but known line of action can be assumed
- Indicate the dimensions of the body necessary for computing the moments of forces

5.3 Equations of Equilibrium

Procedure for Analysis

Equations of Equilibrium

- Apply $\sum \mathrm{M}_{\mathrm{O}}=0$ about a point O
- Unknowns moments of are zero about O and a direct solution the third unknown can be obtained
- Orient the x and y axes along the lines that will provide the simplest resolution of the forces into their x and y components
- Negative result scalar is opposite to that was assumed on the FBD

Example

Given: The $4-k N$ load at B of the beam is supported by pins at A and C.

Find: The support reactions at A and C.
Plan:

1. Put the x and y axes in the horizontal and vertical directions, respectively.
2. Determine if there are any two-force members.
3. Draw a complete FBD of the boom.
4. Apply the E-of-E to solve for the unknowns.

Solution

FBD of the beam:

Note: Upon recognizing CD as a two-force member, the number of unknowns at C are reduced from two to one. Now, using E-o-f E, we get,

$$
\begin{aligned}
\left(+\sum \mathrm{M}_{\mathrm{A}}\right. & =\mathrm{F}_{\mathrm{C}} \sin 45^{\circ} \times 1.5-4 \times 3=0 \\
\mathrm{~F}_{\mathrm{C}} & =11.31 \mathrm{kN} \text { or } 11.3 \mathrm{kN} \\
\rightarrow+\sum \mathrm{F}_{X} & =\mathrm{A}_{X}+11.31 \cos 45^{\circ}=0 ; \quad \mathrm{A}_{X}=-8.00 \mathrm{kN} \\
\uparrow+\sum \mathrm{F}_{Y} & =\mathrm{A}_{Y}+11.31 \sin 45^{\circ}-4=0 ; \quad \mathrm{A}_{Y}=-4.00 \mathrm{kN}
\end{aligned}
$$

Note that the negative signs means that the reactions have the opposite directions to that shown on FBD.

Example

Determine the horizontal and vertical components of reaction for the beam loaded. Neglect the weight of the beam in the calculations.

Solution on whiteboard

