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Abstract

This paper proposes several enhancements to the Set Partitioning in Hierarchical Trees (SPIHT) image coding

algorithm without changing the original algorithm’s general skeleton. First and foremost, a method for significance

map pruning based on a rate-distortion criterion is introduced. Specifically, the (Type A) sets of wavelet coefficients

with small ratios of estimated distortion reduction to estimated rate contribution are deemed insignificant and

effectively pruned. Even though determining such sets requires the computational complexity of the encoder to increase

considerably with respect to the original SPIHT encoder, the original SPIHT decoder may still be used to decode the

generated bitstream with a low computational complexity. The paper also proposes three low complexity enhancements

by more sophisticated use of the adaptive arithmetic coder. Simulation results demonstrate that all these enhancements

yield modest compression gains at moderate to high rates.

r 2003 Elsevier B.V. All rights reserved.

Keywords: Image coding; Wavelet; SPIHT; Pruning; Arithmetic coding

1. Introduction

Set partitioning in hierarchical trees (SPIHT) algorithm of [15,16] is regarded as a benchmark for lossy
and lossless embedded wavelet-based image coding in recent years due to its salient features such as
resolution and SNR scalability and low computational complexity as well as a rate-distortion performance
matched by only a few other algorithms. SPIHT was an advance over the innovative embedded zerotree
wavelet (EZW) image coding method of [17] which employed a tree representation of zeroes of wavelet
coefficients for the coding of these coefficients. EZW, itself, yielded several dB’s of signal-to-noise ratio
improvement for most real world still images at low bit-rates over the discrete cosine transform (DCT)
based older JPEG still image coding standard. A variant of EZW coding called zero tree entropy (ZTE,
[12,19]) coding has been introduced into the recent MPEG-4 Standard as a texture representation and
coding scheme.
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In recent years, research on SPIHT has been extended to the coding of DCT coefficients [22], coding and
representation of blocks of wavelet coefficients [13], 3-D video [8] and 1-D ECG signals [10]. SPIHT is less
efficient in coding performance than embedded block coding with optimized truncation (EBCOT [20]), the
main wavelet-based image coding algorithm of the new JPEG-2000 standard, but has dramatically lower
computational complexity, since it does not employ any explicit rate-distortion optimization. Wavelet
based image compression methods based on Trellis coded quantization (TCQ, [7,1,23]) that are competitive
with SPIHT on a performance scale have significantly higher complexity than SPIHT. The quadtree and
binary classification schemes of [1,23] that determine which wavelet coefficients should be quantized by
TCQ somewhat reduce this complexity. The rate-distortion optimized embedding (RDE) method of [9] is
reported to achieve better coding performance than SPIHT on certain test images by allocating the
available bits first to the coefficients with the steepest R-D slopes. The two-layer wavelet based algorithm by
Marpe et al. [11] employs precoding in its first layer with zerotree coding of insignificant coefficients and
context based conditional arithmetic coding, and codes the residual image with a wavelet packet basis in its
second layer. The reported several tenths of dB gain over SPIHT comes at the expense of additional
complexity due to the second layer.
The low complexity image coding option of JPEG2000 is called SBHP ([4,14]). SBHP is based on SPECK

[6], a variant of SPIHT that partitions sets of coefficients on a quadtree structure and does not employ
arithmetic coding. Embedded image coding method using ZeroBlocks of wavelet/subband coefficients and
Context modelling (EZBC) of [18] incorporates context-based arithmetic coding to SPECK and is
competitive with EBCOT on an objective quality scale.
In this work, our first challenge was to rate-distortion optimize the significance map (set of significance

decisions ordered by the spatial orientation tree, SOT) generated by the SPIHT algorithm. The significance
decisions for sets of coefficients made by the SPIHT encoding algorithm are not necessarily rate-distortion
optimal since they are based on the lN norm of the set of coefficient magnitudes. The l2 norm should be the
norm to consider when the distortion performance is assessed in terms of mean squared error (MSE). In
[13], the significance decisions for 2� 2 blocks of coefficients are based on the l2 norm, but the rate-
distortion advantage realized is negligible. With reasonable complexity increase on the encoder side,
we propose a set significance decision based on the lN norm to be reversed (node corresponding to the
set in the significance map to be ‘‘pruned’’) if the marginal return (ratio of distortion reduction to
rate contribution) of coding the set is less than a threshold. The method is similar to that of [3]
which successively prunes the nodes with the smallest marginal return from the tree structured codebook,
one at a time.
The significance map pruning method requires the original SPIHT encoder to be run multiple times. The

marginal returns for significant sets can be computed after estimating the rate increases and distortion
reductions in an initial run. After the prunings are performed, a second run generates the actual bitstream,
respecting the significance decision reversals. Computational complexity of the proposed encoder is well
over that of the original SPIHT encoder due to the multiple runs performed.
The three other enhancements discussed in this paper improve the original SPIHT’s coding performance

without increasing the algorithmic and computational simplicity of the encoder or the decoder. These
enhancements do not alter the process of significance decision-making or the uniform quantization of the
significant wavelet coefficients and the resulting quantization values. They only alter the way the sets of
quantization levels are represented in the bitstream and take advantage of the arithmetic coding tool [21] to
exploit trends in the probability models. In the sorting pass of SPIHT, where the significance decisions for
sets of coefficients are made, we propose that the coefficient signs and significance decisions are jointly
arithmetic coded rather than separately coded. We also propose the conditioning of the adaptive arithmetic
coding of the Type B set (descendants of a coefficient excluding its children) significance decisions on the
level of the SOT at which the Type B set is rooted. In the refinement pass of SPIHT, judicious adaptive
arithmetic coding of coefficient magnitude refinement decisions is proposed.
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In Section 2 the original SPIHT algorithm of [15] is reviewed. Section 3 presents the enhancements in
detail. Simulation results demonstrating the effectiveness of the enhancements are presented in Section 4 for
the coding of several still images at various rates. Section 5 presents the conclusions.

2. Original SPIHT algorithm

As mentioned in [15], the image is wavelet transformed, and in pass pAf0; 1;y;Pg; the coefficients with
magnitudes exceeding the magnitude threshold

Tp ¼
cmax

2pþ1 ð1Þ

are encoded and transmitted, where

cmax ¼ 2
log2 max

ði; jÞ
cði;jÞj j

l m
;

and cði; jÞ is the coefficient value at position ði; jÞ: The significance decision for a set of coefficients R in pass
p is indicated as

SpðRÞ ¼
1 max

cði; jÞAR
f cði; jÞj jgXTp;

0 otherwise:

8<
:

The coefficients are ordered in hierarchies, called spatial orientation trees. Roots of SOT in the lowest
frequency subband branch successively into higher frequency subbands at the same spatial orientation. The
set of offspring, Oði; jÞ; of an SOT node corresponding to a wavelet coefficient at coordinates ði; jÞ; consists
of the wavelet coefficients of the same spatial orientation in the next (finer resolution) level of the pyramid.
The nodes at the lowest level have no offspring. The set of all descendants of a node corresponding to a
coefficient at coordinates ði; jÞ; is termed a Type A set and is denoted by Dði; jÞ: A Type A set excluding the
offspring of a node corresponding to a coefficient at coordinates ði; jÞ is termed a Type B set and is denoted
by Lði; jÞ;Lði; jÞ ¼ Dði; jÞ 	Oði; jÞ:
Initially, 2� 2 blocks of wavelet coefficients in the lowest frequency subband designate four single

coefficient sets and three Type A sets of three of the four coefficients except the upper left one which does
not have any descendants.
In the sorting phase of each pass a Dði; jÞ is partitioned into an Lði; jÞ and four single coefficient sets

ðk; lÞAOði; jÞ whenever SpðDði; jÞÞ ¼ 1; and an Lði; jÞ is partitioned into four sets fDðk; lÞ : ðk; lÞAOði; jÞg
whenever SpðLði; jÞÞ ¼ 1: Consequently, when SpðLði; jÞÞ ¼ 1; Type A set Dði; jÞ is broken down into four
single coefficient sets ðk; lÞAOði; jÞ and four smaller Type A sets Dðk; lÞ with ðk; lÞAOði; jÞ: The significance
decisions imposed on an SOT of coefficients by this partitioning rule and the smallest magnitude threshold
will be called the significance map which can be conceived as another tree where all nodes correspond to
significant Type A or significant single coefficient sets.
Significance information is stored in three ordered lists, called list of insignificant sets (LIS), list of

insignificant pixels (LIP), and list of significant pixels (LSP). During the sorting pass, the significances (with
respect to Tp) of the coefficients in the LIP are coded and those that become significant are transferred to
the end of the LSP after their signs are coded. Similarly, the significance of the sets in the LIS are coded and
those that become significant are partitioned and removed from LIS. The significances of the resulting four
single coefficient sets are also coded. The significant ones are added to the end of LSP after their signs are
coded. The insignificant ones are appended to LIP. Newly formed Type A and Type B sets are appended to
LIS and evaluated in the same sorting pass.
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In the sorting pass, each significant coefficient is reconstructed at the encoder and the decoder as 71:5Tp

depending on its sign. In each refinement pass, the values of the coefficients in the LSP, except the ones
included in the last sorting pass, are refined. Specifically, the previous reconstruction errors are quantized
by a two level quantizer and values of 70:5Tp are added to the previous reconstruction values of the
coefficients depending on the sign of the quantization levels.
Optionally, the significance decisions for the previously insignificant coefficients of a block of 2� 2

coefficients or the previously insignificant Type A sets rooted in a block of 2� 2 coefficients may be
represented by a single symbol which is arithmetic coded.

3. Enhancements to the SPIHT image coding algorithm

3.1. Significance map pruning based on rate-distortion thresholding

The sorting pass in the SPIHT algorithm can be regarded as a greedy tree (significance map) growing
method where the nodes of the tree correspond to significant Type A sets and significant single coefficient
sets. Nodes are added to this tree as they become significant with respect to the tested magnitude threshold.
This greedy tree growth method enables the earlier bits in the bitstream to be expended on the largest
magnitude coefficients to yield the largest reductions in distortion. However, there is no guarantee that the

distortion reduction per expended bit decreases with the number of coded bits. To see this, let us consider a
previously insignificant Type A set with only four coefficients (smallest Type A set possible). When the
Type A set is found to be significant, four bits are expended to transmit the significance decisions for these
coefficients assuming that symbols are fixed length coded. If all four coefficients are indeed significant
(which is a rare case) then one bit is spent to indicate each significant coefficient. On the other extreme, if
only a single coefficient is significant, then four bits are spent to indicate it. We can extend this example to
the case where the Type A set contains more than four coefficients (i.e. 16, 64,y) and likewise compare the
extreme case of only a single or a few coefficients being significant against the other extreme case of most or
all coefficients being significant. The difference between the number of bits required to indicate each
significant coefficient in these two cases is even larger.
It is also straightforward to see that, for each coefficient that becomes significant in one pass, the

distortion reduction obtained by indicating a reconstruction value by coding significance and sign
information in that pass is strictly positive. The statistical average of this distortion reduction decreases
with each pass since the magnitude thresholds are halved. However, the average distortion reduction per

expended bit for coefficients that become significant is not guaranteed to decrease with each pass, since, as
exemplified above, each coefficient that becomes significant may be indicated by coding a different number
of bits. Therefore, it may be advantageous to expend the earlier bits in the bitstream to code those
coefficients with large expected rate-distortion advantages even though they may become significant with
respect to the magnitude threshold in late passes.
One possible means to achieve such a goal is to declare a set of coefficients insignificant if the rate-

distortion advantage of coding that set is smaller than a certain rate-distortion threshold l; even when
the largest coefficient magnitude inside the set is larger than the magnitude threshold. Specifically,
after a first run of the SPIHT encoder, we compute the marginal return, DD=DR; for each (single
coefficient set and Type A) set that becomes significant at some point during the run where DD and DR are
the distortion reduction and rate increase, respectively, as a result of coding that set. The sets with
ðDD=DRÞol are deemed insignificant (pruned from the significance map) even though the largest
coefficient magnitudes in these sets may exceed the smallest magnitude threshold, TP of the first
run. During a second run of the SPIHT algorithm, the actual bitstream is generated by observing these
(pruning) decisions.
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The distortion reduction, DD; due to a single coefficient set that becomes significant and gets coded by
sending sign and refinement bits, is strictly positive since the largest distortion is incurred when a single
coefficient set is deemed insignificant and not coded. The distortion reduction, DD; due to a Type A set that
becomes significant and gets coded, is the sum of the distortion reductions for the significant subsets of the
Type A set. Since the smallest subsets are the single coefficient subsets for which the distortion reductions
are positive, the distortion reduction for the Type A set is also positive.
On the other hand, DR; the change in rate due to a set (single coefficient or Type A) that becomes

significant and gets coded, could be either positive, negative or zero. To see this, we decompose DR into
two: The change in rate due to the subsets of the set that become significant and the change in rate due to
the coding of the significance decisions for the set and its neighbors (as shown in Fig. 1, we call two sets
neighbors if they are the children of the same Type A parent set). The latter quantity could be positive,
negative, or zero depending on the rank of the set becoming significant among its neighbors. We can see this
by considering the memoryless and fixed length coding of the significance decisions. First, suppose that a
Type A set is the first one to become significant in a given pass among the four Type A sets rooted in a
block of 2� 2 coefficients. A rate increase will accompany since the Type B set that encompasses the four
Type A sets is split and the significance decisions for the newly formed four Type A sets (including the one
that is significant) are coded by additional bits in this and future passes. Next suppose that a Type A set is
not the first one to become significant in a given pass. A rate decrease will accompany since coding the Type
A set significant in this pass implies that the significance decisions for that Type A set will not be coded in
future passes.
Since DR depends on the rank of the set becoming significant among its neighbors, so does the marginal

return of coding that set. Conversely, the marginal return of pruning a set from a fully grown tree depends
on the rank of the set getting pruned among its neighbors. This also means that with each pruned set the
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Fig. 1. A Type A set rooted at the third level from the bottom is shown as the unshaded region in the first and second levels from the

bottom that is partitioned (by thin solid lines) into 4 single coefficient subsets and 4 smaller Type A subsets (each of which is

partitioned by thin dotted lines into 4 single coefficients subsets). The Type A set has 3 Type A set neighbors indicated by diagonally

hatched and diagonally cross-hatched shaded regions to the right, top and top-right. It also has 4 single coefficient neighbors indicated

by vertically, horizontally and cross-hatched and unhatched shaded regions at the third level from the bottom.
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marginal return of pruning each significant neighbor set as well as each ancestor Type A set changes.
Therefore, when we prune a single coefficient set or a Type A set we should update the marginal returns of
all significant neighbor sets as well as all ancestor Type A sets.
In binary coding mode of SPIHT, the significance of each (single coefficient or Type A) set as well as the

sign of each significant coefficient is represented by coding one bit. It is straightforward to get an exact
estimate of DR for each significant set by simply counting the number of set significance decisions and
number of coefficient signs coded under that set. However, in adaptive arithmetic coding of mode of
SPIHT, the probability models evolve with coded symbols. When the coded symbols are altered as a
consequence of pruning, the probability models are altered as well. This makes it difficult to trace the effect
of each pruning on the DR of sets. Therefore, in adaptive arithmetic coding mode, we estimate DR for each
set as if the significance symbols are binary (memoryless, fixed-length) coded.
Below, the iterative significance map pruning method, that embodies the above ideas, is concisely

presented in pseudo code for a rate-distortion threshold of l and P passes:

for each spatial orientation tree root coordinate pair (p;q) {
do {

lmin’N

for each significant Type A set Dði; jÞ : ði; jÞADðp; qÞ {

compute DDDði;jÞ ¼
X

ðk;lÞAOði;jÞ

DDDðk;lÞ þ
X

ðk;lÞAOði;jÞ

DDcðk;lÞ ð2Þ

//Sum of distortion reductions of its subsets

compute DRDði;jÞ ¼
X

ðk;lÞAOði;jÞ

DRDðk;lÞ þ
X

ðk;lÞAOði;jÞ

DRcðk;lÞ þ *RDði;jÞ ð3Þ

//Sum of rate contributions of its subsets and rate to code the significance decisions for its subsets

compute lDði;jÞ ¼
DDDði;jÞ

DRDði;jÞ
:

if ðlDði;jÞolminÞ{
lmin ¼ lDði;jÞ//save marginal return of the best set candidate
ði
; j
Þ ¼ ði; jÞ//save coordinates of the best set candidate
B ¼ Dði; jÞ//Save type (Type A) of best set candidate

}
}
for each significant coefficient cði; jÞ : ði; jÞADðp; qÞ{

compute lcði; jÞ ¼
DDcði; jÞ

DRcði; jÞ
:

ifðlcði; jÞolminÞ {
lmin ¼ lcði; jÞ //Save marginal return of the best set candidate
ði
; j
Þ ¼ ði; jÞ //Save coordinates of the best set candidate
B ¼ cði; jÞ //Save type (single coefficient) of best set candidate

}
}
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if ðlolminÞ break
Sl;PðBÞ’0//Prune best set by setting significance to zero

DDB’0==Pruned set does not contribute to distortion reduction ð4Þ

DRB’0==Pruned set does not contribute to rate increase ð5Þ

*RDðm;nÞ’ *RDðm;nÞ þ D *RB where ðm; nÞ : ði
; j
ÞAOðm; nÞ ð6Þ

//Update rate for significance decisions of neighbors
for each coefficient fcði; jÞ : ði; jÞAOðm; nÞ;Sl;Pðcði; jÞÞ ¼ 1g {

//Precompute rate updates for significance decisions of neighbors
compute D *Rcði;jÞ //for the prospective pruning of each neighbor single coefficient set

}
for each Type A set fDði; jÞ : ði; jÞAOðm; nÞ;Sl;PðDði; jÞÞ ¼ 1g {

//Precompute rate updates for significance decisions of neighbors
compute D *RDði; jÞ //for the prospective pruning of each neighbor Type A set

}
} while ðlminolÞ //Continue set prunings until all sets with marginal returns less than l are

exhausted
}

In the above, DDcði; jÞ ¼ cði; jÞ2 	 ðcði; jÞ 	 #cði; jÞÞ2 is the increase in squared error distortion as a result of
pruning the coefficient cði; jÞ where #cði; jÞ is the reconstruction of cði; jÞ at the end of the first run. The
corresponding decrease in the number of expended bits is denoted by DRcði; jÞ: The quantities DDDði; jÞ and
DRDði; jÞ are similarly defined for the pruning of Type A set Dði; jÞ: The quantity *RDði; jÞ represents the
number of bits expended to code the significance decisions for the sets whose immediate ancestor (parent) is
Dði; jÞ: Note that the computations performed by Eqs. (2) and (3) to yield DDDði; jÞ and DRDði; jÞ; respectively,
are recursive.
At each iteration of the algorithm, the best (Type A or single coefficient) set B with the smallest marginal

return of lmin; residing at coordinates ði
; j
Þ is pruned by setting Sl;PðBÞ’0 for as long as lminol:Here, the
indicator function Sl;Pð:Þ denotes the significance of its argument with respect to l; the rate-distortion
threshold, and Tp; the magnitude threshold of the final pass of the first run. If lminXl the pruning iterations
are terminated. As set B is pruned, DDB’0; DRB’0 so that the increase in distortion and decrease in rate
for prospective pruning of an ancestor set of set B may be properly computed in the future by means of
Eqs. (2) and (3). The coordinate pair ðm; nÞ denotes the parent of the coordinate pair ði
; j
Þ of the pruned
set B: In order to employ Eq. (3), *RDðm;nÞ; the rate required to code the significance decisions of the sets
whose immediate ancestor (parent) is Dðm; nÞ (neighbors of the pruned set B), also needs to be updated
after set B is pruned. Update of *RDðm;nÞ is achieved by adding a precomputed quantity D *RB to *RDðm;nÞ:
In other words, D *RB is the difference in *RDðm;nÞ before and after the pruning of set B: Furthermore, after
set B is pruned, fD *Rcði; jÞ : ði; jÞAOðm; nÞ;Sl;Pðcði; jÞÞ ¼ 1g; the differences in *RDðm;nÞ before and after
prospective pruning of significant single coefficient sets that are neighbors of set B; and fD *RDði; jÞ :
ði; jÞAOðm; nÞ;Sl;PðDði; jÞÞ ¼ 1g; the differences in *RDðm;nÞ before and after prospective pruning of significant
Type A sets that are neighbors of set B; are precomputed to be used in future iterations.
We can compute D *RB by estimating *RDðm;nÞ before and after the pruning of set B: *RDðm;nÞ; in turn, may be

estimated after the first run from the number of passes, NDði; jÞ; for which Type A set Dði; jÞ is significant,
and the number of passes, Ncði; jÞ; for which single coefficient set cði; jÞ is significant, for all coordinate
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pairs ði; jÞ that are offspring of the coordinate pair ðm; nÞ: Let NCk
¼ k0thmax

ði; jÞ:ði; jÞAOðm;nÞ
fNcði; jÞg and NDk

¼
k0thmax

ði; jÞ:ði; jÞAOðm;nÞ
fNDði; jÞg: We employ the following formula to estimate *RDðm;nÞ:

*RDðm;nÞ ¼ 4ðmaxfNC1
;ND1

g 	 NC1
þ ðNC1

> 0ÞÞ þ 3ðNC1
> 0Þ ðNC1

	 NC2
	 ðNC2

¼¼ 0ÞÞ

þ 2ðNC2
> 0Þ ðNC2

	 NC3
	 ðNC3

¼¼ 0ÞÞ þ ðNC3
> 0Þ ðNC3

	 NC4
	 ðNC4

¼¼ 0ÞÞ

þmaxf0;NC1
	 ND1

þ ðND1
> 0Þg

þ ðND1
> 0Þð4þ 3ðND1

	 ND2
	 ðND2

¼¼ 0ÞÞ þ 2ðND2
> 0ÞðND2

	 ND3
	 ðND3

¼¼ 0ÞÞ

þ ðND3
> 0ÞðND3

	 ND4
	 ðND4

¼¼ 0ÞÞÞ:

In the above, the first two lines account for the number of bits expended to represent the significance
decisions for the 4 single coefficient sets. The third line adds the contribution of the number of bits needed
to code the significance decisions for the Type B sets. The final line is due to the number of bits needed to
code the significance decisions for the Type A sets. The above estimate becomes exact when the set
significance decisions are memoryless, fixed-length coded.
Finally, we address the choice for l; the rate-distortion threshold for pruning the sets. Ideally, l should be

such that the desired rate is achieved. However, given P passes in the first run, the value of l is restricted by
the quantizer step size, Tp; used in the Pth refinement pass. An estimate for the marginal return of the
P 	 1th refinement pass can be formed as the ratio of the expected value of DD to the expected value of DR

for the P 	 1th refinement pass. This ratio is approximately T2
P if the quantizer distortion is modelled by a

random variable uniformly distributed within the range 	TP;TP½ 
 for the P 	 1th refinement pass, and
within the range 	2TP; 2TP½ 
 for the P 	 2th refinement pass. If the refinement bits are arithmetic coded
this ratio is expected to be slightly larger. Note that l should not significantly exceed T2

P; otherwise coding
the P 	 1th refinement pass is suboptimal. We cannot remove the P 	 1th refinement pass without
removing the Pth pass completely. On the other hand, any value for l significantly smaller than T2

P is also
suboptimal since one can do better in this case by further pruning sets with marginal returns up to T2

P:
Hence, given a target number of bits for encoding the image, we perform the first run with the
smallest number of integral passes, P; such that the number of generated bits just exceeds the target number
of bits. The generated significance map is pruned with l ¼ T2

P: Next, we perform the second run of SPIHT
with P passes. If the target number of bits can be achieved we stop. Otherwise, we increment P and repeat
the above procedure for the new P starting with the first run. This way the final bitstream can achieve
the target number of bits by employing the maximal value for l which is optimal for the P 	 1th refine-
ment pass.

3.2. Joint coding of coefficient signs and significances

As stated in [20], adjacent coefficients (of the same subband) in the low-pass filtering direction tend to
have positively correlated signs and adjacent coefficients (of the same subband) in the high-pass filtering
direction tend to have negatively correlated signs. These correlation properties may be exploited by joint
coding the signs as well as significances of a 2� 2 block of coefficients.
Each previously insignificant coefficient of the horizontally and vertically oriented subbands (i.e.

LH,HL,LLLH,y) can be classified as one of insignificant, or positively signed significant, or negatively
signed significant. The sign/significance classes for the previously insignificant coefficients of the 2� 2 block
may be mapped by means of a predetermined scan order to a single symbol that is arithmetic coded. There
can be 3m symbols for m previously insignificant coefficients in a 2� 2 block. Of these 3m symbols, those
corresponding to the above mentioned positive or negative correlations between signs tend to occur more
frequently.
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Joint arithmetic coding of coefficient signs and significances is applied only in the horizontally and the
vertically oriented subbands. The coefficient signs are independently fixed length coded in the diagonally
oriented subbands. The scan orders for the horizontally and vertically oriented subbands are depicted in
Fig. 2. The first coefficient scanned in each block contributes 2� 3m; 3m or 0 to the symbol value and last
coefficient visited contributes 2, 1 or 0 to the symbol value depending on class. These scan orders are used for
mA 1; 2; 4f g: For m ¼ 3 the scan order used is different. In this case, the significance and sign information of
the coefficient which is diagonally opposite the previously significant coefficient is coded last.
As depicted in Fig. 3, the m0 ¼ 4	 m previously significant coefficients designate the context for

conditioning the adaptive arithmetic coder in the following manner: One arithmetic model (Model 0) is
used when m0 ¼ 0: When m0 ¼ 1; one arithmetic model (Model 1) is used for all

4

m0

 !
¼ 4

possible ways of finding one significant coefficient in the 2� 2 block. When m0 ¼ 2 there exist

4

m0

 !
¼ 6

unique ways of finding two significant coefficients in the 2� 2 block. In this case, there is no need to
distinguish between the two possibilities each of finding the two significant coefficients as vertical neighbors,
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(a) Horizontally oriented

subbands (m=1,2,4)

(c) Vertically oriented

subbands (m=1,2,4)

0

x

x

x

(d) Vertically oriented

subbands (m=3)

(b) Horizontally oriented

subbands (m=3)

xx

x 0

Fig. 2. Scan orders used for mapping coefficient sign/significance classes to a single symbol. For horizontally oriented subbands, the

scan order in (a) is used when m ¼ 1; 2; 4: The sign and significance of the first visited coefficient determines the most significant ternary
digit of the coded symbol. The sign and significance of the last visited coefficient determines the least significant ternary digit of the

coded symbol. For example, when m ¼ 2 and the upper left and lower right coefficients are previously insignificant, the upper right

coefficient yields the most significant ternary digit and the lower left coefficient yields the least significant ternary digit. With the

convention that insignificance is assigned 2, +ve significance is assigned 1, and 	ve significance is assigned 0, if the upper right

coefficient is deemed+ve significant and the lower left one insignificant, then the coded symbol will be (12)3 in this case. For m ¼ 3; the
scan order is slightly changed to allow the coefficient diagonally opposite the previously significant coefficient to yield the most

significant ternary digit, as shown in (b). For vertically oriented subbands, the top-right and bottom-left coefficients are interchanged

prior to using scan order in (c) when m ¼ 1; 2; 4; and using scan order in (d) when m ¼ 3:
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Fig. 3. In a 2� 2 block of coefficients, m0 ¼ 4	 m represents the number of previously significant coefficients. Each previously

significant coefficient is shown as ‘‘x’’. The remaining coefficients, each of which is shown as ‘‘0’’, are coded for significance and sign by

employing 3msymbols. The configurations on the same row are coded using one of the arithmetic models indicated on the left. The

exact arithmetic model used is based on the knowledge of the signs of pair(s) of coefficients (each pair indicated by arrows) matching or

not matching. For m0 ¼ 1; 2; 3 the sign of the shaded coefficient is taken as a reference (i.e. if a coefficient deemed significant in the

current pass has a sign that matches the shaded coefficient’s sign the ternary digit encoded into the symbol is 1, otherwise it is 0).
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horizontal neighbors or diagonal neighbors in the 2� 2 block. However, since one must distinguish
between the two possibilities of the signs of the two significant coefficients matching and not matching,
6 arithmetic models (Models 2–7) are used when m0 ¼ 2: Finally, for m0 ¼ 3 there exist 4

m0

	 

¼ 4

possible ways of finding three significant coefficients in the 2� 2 block. Again there is no need to distinguish
between these ways, but one must distinguish among the four possibilities of the signs of the vertically
adjacent coefficients matching and not matching, and the signs of the horizontally adjacent
coefficients matching and not matching. Hence, when m0 ¼ 3; the total number of arithmetic models
used is 4 (Models 8–11).
When m0 ¼ 0; the signs of the coefficients deemed significant in the current pass are coded by taking the

positive sign as reference. When m0 ¼ 1; the signs of the coefficients deemed significant in the current pass
are coded by taking the sign of the single previously significant coefficient as reference. When m0 ¼ 2; the
signs of the coefficients deemed significant in the current pass are coded by taking as reference the sign of
the previously significant coefficient which is first encountered in the scan order. Finally, when m0 ¼ 3; the
sign of the coefficient deemed significant in the current pass is coded by taking as reference the sign of the
previously significant coefficient which is diagonally opposite.

3.3. Different arithmetic models for Type B sets rooted at different pyramid levels

Since, in general, the entropy of a random variable upper bounds its conditional entropy, the entropy of
the significance decisions for the Type B set Lði; jÞ can be expected to decrease when conditioned on the level
of the SOT lði; jÞ at which the coordinate pair ði; jÞ is located (Type B set is rooted), i.e.

HðSpðLði; jÞÞÞZHðSpðLði; jÞÞjlði; jÞÞ:

We have determined that the statistical dependence between lði; jÞ and SpðLði; jÞÞ; the symbol representing
the significance decision for the Type B set, is strong enough and can be exploited by the use of a separate
arithmetic model for each level of the SOT. The increase in overhead due to the initialization of more than
one arithmetic model is more than offset by the reduction in entropy (due to conditioning) at moderate to
high coding rates.
To justify the claim of strong statistical dependence, we show in Fig. 4 histograms of the relative

significance/insignificance frequencies of Type B sets rooted at each of the six levels of the SOT at the end of
the 10th pass for the Lenna 512� 512 monochrome image. Type B sets rooted at higher levels (small level
index in Fig. 4) of the SOT are more likely to be significant.
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Fig. 4. Number of significant and insignificant Type B sets rooted at each of the six levels of the SOT at the end of 10 passes on

Lenna512. Sets rooted at the higher levels (Levels 1–4) are more likely to be significant than those rooted at the lower ones (Levels 5–6).
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3.4. Exploitation of the nonuniformity in the probability mass function of the successive approximation

quantizer by arithmetic coding

The probability mass function of the wavelet coefficients peaks at zero magnitude and declines with
magnitude. The probabilities of the output levels of the successive approximation quantizer used in the
refinement pass are therefore unequal. To support this claim, the frequencies of the lowest reconstructed
coefficient magnitudes for the Lenna512 image at the end of the 10th pass are shown in Fig. 5. If we
examine an adjacent pair of magnitude frequencies we see that there is a bias towards the larger magnitude.
Since the successive approximation quantizer of the last pass distinguishes between the two magnitudes of
each pair, the output of the successive approximation quantizer is biased towards the level corresponding to
the larger magnitude.
In order to take advantage of this, the bi-level output of the successive approximation quantizer may be

arithmetic coded. Specifically as shown in Fig. 6, if the sign of the reconstructed coefficient is positive,
Symbol 0 is coded to refine the reconstruction value by adding 	Tp=2 and Symbol 1 is coded to refine the
reconstruction value by adding Tp=2: If the sign of the reconstructed coefficient is negative, Symbol 0 is
coded to refine the reconstruction value by adding Tp=2 and Symbol 1 is coded to refine the reconstruction
value by adding 	Tp=2: This ensures that the high probability level is coded with Symbol 0 for a negative
refinement and the low probability level is coded with Symbol 1 for a positive refinement in magnitude.
Successive approximation quantization is a simple way of implementing uniform quantization. When the

output indices of a uniform quantizer are entropy coded, the rate-distortion performance is equivalent to
the rate distortion performance of an optimal quantizer even at low rates [5]. Therefore, one cannot expect
to achieve significantly better scalar quantization performance by increasing the complexity of successive
approximation quantization beyond the entropy coding of the quantizer output indices.

4. Experimental results

This section presents the coding results obtained with the SPIHT algorithm incorporating the proposed
enhancements mentioned in the previous section and compares them with the corresponding coding results
obtained with the original SPIHT algorithm. Coding tests have been performed on the monochrome, 8 bpp,
512� 512 ‘Lenna’, ‘Barbara’ and ‘Goldhill’ images. A 6-level pyramidal subband decomposition with 9/7
tap biorthogonal filters and mirror extension at the edges has been employed as in [17]. The bit-rates are
calculated from the actual size of the compressed files. Distortion is computed from reconstructed pixel
intensity values at 8 bpp precision.
Table 1 compares the PSNR vs. Rate performance of the original SPIHT algorithm with the original

SPIHT algorithm incorporating the significance map pruning method of Section 3.1 for the three still
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10th pass for Lenna512. (Reconstruction level i has magnitude ði þ 0:5ÞTp:)
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images. The results in this table were obtained by binary coding of significance symbols and coefficient
signs. As described in the last paragraph of Section 3.1, the SPIHT algorithm executes an integral number
of passes, P; reported in column 2 in the first run such that when the significance map is pruned with the
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Table 1

PSNR vs. Rate for original SPIHT and original SPIHT with the enhancement of Section 3.1 (binary coding)

Number of passes Rate MSE

Original SPIHT Original SPIHT+3.1

Lenna512 11 1.0 39.98 40.02

10 0.5 36.84 36.87

9 0.25 33.70 33.73

8 0.125 30.72 30.76

Barbara 10 1.0 36.42 36.46

9 0.5 31.25 31.27

8 0.25 27.31 27.35

7 0.125 24.62 24.98

Goldhill 10 1.0 36.00 36.10

9 0.5 32.71 32.76

9 0.25 30.22 30.23

8 0.125 28.27 28.30

maxcmaxc− 0

8
maxc

8
maxc−

(a)

(b)
1001

)0|( >cSP )0|( ≤ cSP

)(cP

SS

c

Fig. 6. (a) Illustration of the probability mass function for the reconstructed coefficients at the end of 3 passes ðp ¼ 3Þ: Probabilities
decline with magnitude. (b) Symbols are assigned to the output of the bilevel quantizer used in the refinement pass based on the sign of

the reconstruction values (S:Symbol). High probability level is coded with S ¼ 0 for a negative and low probability level is coded with

S ¼ 1 for a positive refinement in magnitude.
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rate-distortion threshold l ¼ T2
P; the target number of bits is just exceeded. By observing the pruning

decisions, the actual bitstream is generated in the second run up to the bit-rate reported in column 3. For
the most part, we observe a gain of about 0.04 dB. However, there are cases for which the improvement is as
much as 0.36 dB. Table 2 compares the PSNR vs. Rate performance of the original SPIHT algorithm with
the original SPIHT algorithm incorporating the enhancements of Section 3.2–3.4 for the three still images.
Since all of these three enhancements utilize the arithmetic coding tool, binary coding was not an option to
consider here. In this table, the PSNR gain with the enhancements of Section 3.2–3.4 is seen to increase by
increasing rate. There is very little or no PSNR gain at very low rates since all the enhancements increase
the number of arithmetic models. The initial distribution of the symbol frequencies in an arithmetic model
is uniform, and the first few bits are inefficiently coded with each arithmetic model. For example, with the
enhancement of Section 3.4, as many as 34 ¼ 81 arithmetic models are employed when all 4 coefficients of a
2� 2 block are previously insignificant and need to be jointly coded. The original SPIHT algorithm
employs only 24 ¼ 16 arithmetic models in this case. This enhancement can therefore yield an advantage
only at moderate to high rates (>0.25 bpp).
Table 3 compares the PSNR vs. Rate performance of the original SPIHT algorithm with the original

SPIHT algorithm incorporating the enhancements of Section 3.1–3.4 combined. The results in this table
were obtained by arithmetic coding of significance symbols and coefficient signs. Note that even though the
estimates of DR and *RDðm;nÞ terms are not exact (estimates based on binary coding), a comparison with
Table 1 results reveals a performance gain similar to that obtained for binary coding significance symbols
and coefficient signs.
Original ‘Barbara’ image is shown as the top-left image in Fig. 7. A region of interest of high detail is

demarked by a grey box and a blow up of this region is shown in the top-right image of Fig. 7. The
reconstruction of this region with the original SPIHT algorithm, and with the SPIHT algorithm
incorporating all four enhancements are shown in the bottom-left and bottom-right images, respectively, of
Fig. 7. Although not conspicuous at first glance, there are at least three areas of detail in this region that are
better reconstructed with all four enhancements turned on.
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Table 2

PSNR vs. Rate for original SPIHT and original SPIHT with the enhancements of Sections 3.2–3.4 incorporated one at a time

(arithmetic coding)

Rate (bpp) PSNR

Original 3.2 3.2 and 3.3 3.2–3.4

Lenna512 0.0625 28.38 28.39 28.40 28.32

0.125 31.10 31.11 31.12 31.10

0.25 34.12 34.15 34.15 34.17

0.5 37.21 37.24 37.25 37.28

1.0 40.41 40.45 40.45 40.47

Barbara 0.0625 23.38 23.39 23.40 23.36

0.125 24.93 24.93 24.94 24.92

0.25 27.65 27.67 27.67 27.66

0.5 31.69 31.78 31.79 31.79

1.0 36.91 37.00 37.01 37.07

Goldhill 0.0625 26.73 26.74 26.74 26.73

0.125 28.48 28.50 28.50 28.51

0.25 30.56 30.59 30.60 30.62

0.5 33.13 33.15 33.16 33.21

1.0 36.55 36.59 36.59 36.65
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Fig. 7. Top-Left: Original Barbara and a region of interest marked as a grey box, Top-Right: Detail inside region of interest for the

original image, Bottom-Left: Reconstruction with SPIHT inside region of interest (Rate=0.5bpp), Bottom-Right: Reconstruction

with SPIHT with all enhancements turned on inside region of interest (Rate=0.5bpp).

Table 3

PSNR vs. Rate for original SPIHT and original SPIHT with the enhancements of Sections 3.1–3.4 combined (arithmetic coding)

Number of passes Rate MSE

Original SPIHT Original SPIHT with 3.1–3.4

Lenna512 11 1.0 40.41 40.50

10 0.5 37.21 37.34

9 0.25 34.12 34.24

8 0.125 31.10 31.17

Barbara 10 1.0 36.91 37.22

9 0.5 31.69 31.83

8 0.25 27.65 27.72

7 0.125 24.93 24.93

Goldhill 10 1.0 36.55 36.75

9 0.25 30.56 30.61

9 0.5 33.13 33.22

8 0.125 28.48 28.56
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5. Discussion

The R-D optimized significance map pruning method is perhaps the most controversial contribution to
the original algorithm given the added complexity on the encoder side. However, we note that the decoder
side complexity does not change with this enhancement since the generated bitstream can be decoded with
the original SPIHT decoder. This could be useful in applications such as digital picture archiving on a web
site where decoding is time critical but encoding is not. For these applications the slight increase in picture
quality could be well worth the considerable complexity added to the encoding process.
Subband-Block Hierarchical Partitioning (SBHP) coder of [4,14], the low complexity coding option of

JPEG2000, utilizes quadtrees in a way similar to SPIHT utilizes SOT’s. We envision that the R-D optimized
pruning method could be applied to the sets of SBHP (S sets of SPECK [6]) to optimize their significance
decisions for the applications mentioned above.
An idea similar to joint arithmetic coding of signs and significances already exists in EBCOT. This

together with the enhancement of Section 3.3 are also of no use in the SBHP framework where arithmetic
coding is forgone for the sake of low computational complexity. However, EZBC [18], which integrates
adaptive arithmetic coding to SPECK to achieve coding performance rivalling that of EBCOT, could
benefit from the joint arithmetic coding of signs and significances, if this enhancement is adapted to its
coding algorithm.
Our work also demonstrates that entropy coding of refinement bits can yield compression gains contrary

to popular belief. Suitable arithmetic or Huffman coding of the refinement bits may enhance the
performance of EBCOT, EZBC or SBHP coders.

6. Conclusions

In this paper, we have first introduced a method of pruning the significance maps generated by the
SPIHT algorithm for improving its rate-distortion performance. In this method, some of the sets of
coefficients that are deemed significant with respect to the smallest magnitude threshold used in the final
pass of a first run of SPIHT algorithm are deemed insignificant if their marginal returns are below a rate-
distortion threshold. We have also introduced three low complexity enhancements that exploit traits
common to the real world images. Generally speaking, we have made use of the fact that the distribution of
either the symbol data itself or its partitioning into subsets defined by context is largely non-uniform and
can be exploited by the advanced use of arithmetic coding for a coding performance advantage at moderate
to high coding rates. When combined, the enhancements yield modest rate-distortion performance gain for
the test images at various bit-rates.
Although the enhancements proposed in this paper does not bring SPIHT’s performance level on a par

with the performance levels of some of the other wavelet-based image coding algorithms [18,1], similar
performance gains might be obtained when one or more of the enhancements proposed in this paper are
adapted to these algorithms. For example, the enhancements of Section 3.1,3.2 and 3.4 might be applicable
to the EZBC algorithm of [18] which employs a different quadtree structured set partitioning for each
subband.
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