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Abstract

This paper presents an image adaptive linear filtering method for the reconstruction of the RGB (red, blue, green)

color coordinates of a pixel from the lossy compressed luminance/chrominance color coordinates. In the absence of

quantization noise, the RGB coordinates of a pixel can be perfectly reconstructed by employing a standard, fixed filter

whose support includes only the luminance/chrominance coordinates at the spatial location of the pixel. However, in

the presence of quantization noise, a filter with a larger support, that also spatially extends over the luminance/

chrominance coordinate planes, is capable of exploiting the statistical dependence among the luminance/chrominance

coordinate planes, and thereby yields more accurate reconstruction than the standard, fixed filter. We propose the

optimal (in the minimum mean squared error sense) determination of the coefficients of this adaptive linear filter at the

image encoder by solving a system of regression equations. When transmitted as side information to the image decoder,

the filter coefficients need not incur significant overhead if they are quantized and compressed intelligently. Our

simulation results demonstrate that the distortion of the decompressed color coordinate planes can be reduced by

several tenths of a dB with negligible overhead rate by the application of our image adaptive linear filtering method.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In order to achieve high compression perfor-
mance in color image coding, statistical dependen-
cies among color coordinate planes must be
exploited. Towards this end, the highly correlated
RGB color coordinates can either be jointly coded
by means of vector quantization, or can be
decorrelated by means of a linear coordinate
transformation and the resulting less correlated

coordinate planes can be independently coded.
Vector quantization is performed by grouping
either the color coordinates [1,2,7], or the wavelet
coefficients of the color coordinates [3,4] into
vectors.
Karhunen Loeve Transform (KLT) is the

optimal linear coordinate transformation which
yields uncorrelated transform coefficients. How-
ever, KLT is rarely used for this purpose, since it is
data dependent, and the transformation matrix
needs to be transmitted to the decoder as side
information. Instead, fixed linear coordinate
transformations, yielding highly uncorrelated one
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luminance and two chrominance coordinates
(YUV, YIQ or YCrCb) for each RGB coordinate
triple, are commonly used. In [14], independent
coding of C.I.E. l � a � b color coordinates is
shown to yield higher coding performance than
independent coding of RGB color coordinates.
It has been observed that the luminance and

chrominance coordinates are practically uncorre-
lated, but not statistically independent [5]. This is
especially true for large transition regions of the
image such as the edges, where the magnitude of the
luminance and the chrominance coordinates are
correlated. Therefore, independent coding of the
luminance and chrominance (e.g. YUV) planes
followed by the application of the standard, fixed
filter of [13, p. 67] having the transformation matrix

G ¼

1:000 0:000 1:400

1:000 �0:395 �0:581

1:000 2:032 0:000

2
64

3
75 ð1Þ

for converting the quantized luminance/chromi-
nance (YUV) coordinates back to the RGB

coordinates yields suboptimal reconstruction since
such an approach cannot exploit the statistical
dependencies of spatial detail among the lumi-
nance and chrominance planes. The support of
the standard, fixed filter, G; does not cover the
luminance and chrominance coordinates of the
neighbors of the filtered pixel. On the other hand,
the quantization noise of the high performance
transform based grayscale coding methods of
[9,10] appears predominantly at the high frequency
edges and one can considerably reduce it if these
dependencies are exploited. In [11,12], the spatial
orientation tree of [10] is extended to link the
chrominance and luminance planes as well as the
frequency bands towards this end.
As an alternative to the joint coding of the

luminance and chrominance planes, the applica-
tion of a linear filter with a support that extends
spatially as well as across the luminance and
chrominance coordinate planes, to transform the
(possibly independently) quantized luminance and
chrominance coordinates back to the RGB co-
ordinates, is proposed in this paper. Such a filter
can exploit the statistical dependencies among the
(quantized) luminance and chrominance coordi-

nate planes. Given a region of support for the filter
in the luminance and chrominance planes, the
optimal adaptive linear filter should be designed
to yield a reconstruction error for the RGB co-
ordinates that is statistically orthogonal to the
luminance and chrominance values inside the sup-
port. The approach here is similar to the approach
outlined in [6] for the design of custom subband
synthesis filter banks.
The optimal adaptive linear filter coefficients are

determined at the encoder following the compres-
sion and subsequent decompression1 of the lumi-
nance and chrominance coordinate planes and are
transmitted to the decoder as side information. The
decoder can apply the filter to the decompressed
luminance/chrominance planes to reconstruct the
RGB planes. The set of coefficients for a region of
support of reasonable size need not incur substan-
tial overhead if the most significant bits in the
representation of the coefficients are entropy coded.
As depicted in Fig. 1, the optimal adaptive

linear filter for luminance/chrominance to RGB

coordinate transformation can be used in a
postprocessor at the back-end of existing color
image decompression systems. At the decoder, the
postprocessor transforms the reconstructed RGB

planes by means of the standard, fixed filter of [13,
p. 66] to the luminance/chrominance planes and
transforms the luminance/chrominance planes by
means of the optimal adaptive linear filter to get
the improved versions of the reconstructed RGB

planes. The postprocessor does not need to have
any knowledge about the color image compression
and decompression systems in use.
The organization of this paper is as follows. In

Section 2, the optimal adaptive linear filter for
luminance/chrominance to RGB coordinate trans-
formation is described in detail. Section 3 outlines
the lossy coefficient compression technique based
on adaptive arithmetic coding which substantially
reduces the overhead rate requirement for the
transmission of the filter coefficients. Experimental
results are provided in Section 4 followed by

1We assume the integration of the decompression function

into the image encoder. This resembles scalable coding since the

enhancement layer can only be coded after the base layer is

decompressed and subtracted from original image.
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concluding remarks in Section 5. Appendix A
provides an analysis of the estimation gain with
the optimal adaptive linear filter and shows that a
positive gain can be expected only when there is
correlation between adjacent pixels.

2. Optimal filtering of luminance and chrominance

coordinates for reconstruction of RGB coordinates

Let the original RGB coordinate planes and the
reconstructed YUV luminance and chrominance
coordinate planes of a color image be given.
Without loss of generality to other coordinate
systems such as YCrCb, YIQ or KLT, we shall be
using the YUV coordinate system throughout the
remainder of this paper unless otherwise men-
tioned. The original value of the RGB coordinate
zAfR;G;Bg; and the decoded value of the YUV

coordinate gAfY ;U ;Vg at pixel location ði; jÞ are
denoted by xzði; jÞ and rgði; jÞ; respectively. The
optimal linear filter gn

z ; used to reconstruct the
coordinate plane zAfR;G;Bg; should satisfy

gn

z ¼ arg min
gz

X
i;j

jjxzði; jÞ � gTz uði; jÞjj2; ð2Þ

where uði; jÞ is the 3ð2L þ 1Þð2K þ 1Þ dimensional
vector of decoded luminance and chrominance
values of pixels in the ð2L þ 1Þ � ð2K þ 1Þ spatial

support centered at location ði; jÞ: Specifically,

uði; jÞ ¼ ½uTY ði; jÞu
T
U ði; jÞu

T
V ði; jÞ�

T:

In the above, each ð2L þ 1Þð2K þ 1Þ dimensional
subvector uTg ði; jÞ; gAfY ;U ;Vg is defined as a
stack of columns fvTg ði; j � lÞ: l ¼ �L;�L þ
1;y;L � 1;Lg so that

uTg ði; jÞ ¼ ½vTg ði; j � LÞvTg ði; j � L þ 1Þy

vTg ði; j þ L � 1ÞvTg ði; j þ LÞ�T;

where

vTg ðm; nÞ ¼ ½rgðm � K ; nÞrgðm � K þ 1; nÞy

rgðm þ K � 1; nÞrgðm þ K ; nÞ�T

is a column of decoded values of the YUV

coordinate g centered at location ðm; nÞ:
For each RGB coordinate z; the minimization in

Eq. (2) is achieved by requiring the error xzði; jÞ �
gTz uði; jÞ to be orthogonal to uði; jÞ in the statistical
sense. This yields 3ð2L þ 1Þð2K þ 1Þ regression
equations in 3ð2L þ 1Þð2K þ 1Þ unknowns ex-
pressed succinctly as

Ruugn

z ¼ rxzu; ð3Þ

where, for an image of height N pixels and width
M pixels,

Ruu ¼
1

NM

X
i; j

uði; jÞuTði; jÞ
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Fig. 1. YUV to RGB transformation by image adaptive linear filtering can be implemented in a postprocessor at the back end of a

generic color image compression system. The filter coefficients that are determined at the encoder need to be conveyed to the decoder as

side information.

U. Bayazit / Signal Processing: Image Communication 18 (2003) 91–101 93



is the 3ð2L þ 1Þð2K þ 1Þ � 3ð2L þ 1Þð2K þ 1Þ cor-
relation matrix estimate and

rxzu ¼
1

NM

X
i;j

xzði; jÞuði; jÞ

is the 3ð2L þ 1Þð2K þ 1Þ dimensional cross-corre-
lation vector estimate.

3. Lossy compression of filter coefficients

The filter coefficients determined by solving
Eq. (3) are conveyed to the decoder as side
information. Simple uniform scalar quantization
of the coefficients allows adequate representation
of the most significant bits of the coefficients to
yield a desirably low overhead rate. Judicious
arithmetic coding of the most significant bits in the
representation can further cut down the overhead
rate.
For each color plane z; the number of filter

coefficients is 3ð2L þ 1Þð2K þ 1Þ: Assuming 4 byte
floating point precision, the overhead rate require-
ment for an image with height N ¼ 512; width
M ¼ 512; filter support height 2L þ 1 ¼ 3; and
filter support width 2K þ 1 ¼ 3 is
0:0099 bits=pixel: Assuming the largest coefficient
magnitude to be bounded by 2, if the magnitude of
each coefficient is represented by uniform quanti-
zation to 11 (most significant) bits, and trans-
mitted along with one sign bit, the overhead rate is
brought down to 0:00372 bits=pixel:
The most significant bits of the coefficient

magnitude up to the leading ‘‘1’’ in the representa-
tion may be adaptive arithmetic coded since the
distribution for these bits is biased towards the ‘‘0’’
bit. However, the magnitudes of the coefficients at
the centers of spatial supports are observed to be
large and the leading 1 occurring in the most
significant bits has a greater likelihood for these
coefficients. Therefore, these coefficients are coded
with a different probability model than the one
used to code the other coefficients. The bits
following the leading 1 in the representation are
not arithmetic coded since the distribution for
these bits is not necessarily biased towards the
0 bit.

4. Experimental setup and results

The YUV to RGB coordinate transformation by
optimal adaptive linear filtering can be implemen-
ted in conjunction with any compression/decom-
pression engine whose internal mechanisms are
unknown. In our simulations, we have utilized the
wavelet transform based SPIHT (Set Partitioning
in Hierarchical Trees) grayscale image coding
method of [9] to compress and decompress the
YUV coordinate planes. SPIHT is not only
competitive with the latest high performance
image coding methods, but also the bitstreams
generated by SPIHT are embedded and the
resulting size of the compressed grayscale image
file can be scaled to any desired precision. This
facilitates rate-distortion optimal rate allocation to
YUV coordinate planes by a method such as [8],
followed by independent coding of each of the
YUV coordinate planes with SPIHT.
Specifically, a bitplane of wavelet coefficients of

a luminance/chrominance plane is coded by
SPIHT only if the ratio of the decrease in
distortion to the increase in rate is more than a
threshold. This strategy closely parallels the BFOS
rate allocation strategy of [8]. We take the
granularity of allocation to be a bitplane for
simplicity of implementation. The performance of
the proposed optimal linear filtering method does
not depend on the rate allocation strategy used.
In our experiments, we have used the 512� 512

color still images Lenna, Peppers and Sailboat
taken from the USC image database. The RGB

planes were converted to the YUV planes by the
standard, fixed filter of [13, p. 66] and the YUV

planes were separately coded by SPIHT. Table 1
reports the number of bitplanes coded by the rule
stated in the previous paragraph and the rate
allocated to each of the luminance and chromi-
nance planes. For each image, the rate-distortion
threshold used for rate allocation is also tabulated
in the first column. The reconstructed YUV planes
are transformed to RGB planes by the application
of the optimal adaptive YUV to RGB transforma-
tion filter and the application of the standard, fixed
YUV to RGB transformation filter of Eq. (1).
We have also considered the performance of
the method of independent application of an
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intraplane adaptive spatial filter to each of the
reconstructed YUV planes prior to the application
of the standard, fixed YUV to RGB transforma-
tion filter. The intraplane adaptive spatial filter for
each YUV plane is similarly designed by solving
a set of regression equations involving only the
original and reconstructed values of that YUV

plane.
Table 2 reports the PSNRs of the RGB planes

reconstructed with the optimal adaptive linear

filter, those reconstructed with the standard, fixed
filter, as well as those reconstructed with the
combination of the intraplane adaptive spatial
filter and the standard, fixed filter. Three sets of
filter support dimensions were considered for the
optimal adaptive linear filter: K ¼ L ¼ 0; K ¼ L ¼
1; K ¼ L ¼ 2: For K ¼ L ¼ 0 and K ¼ L ¼ 2; we
only report the PSNRs obtained by employing
filter coefficients which are lossy compressed by
representing each coefficient by one sign bit and

Table 2

PSNR of color planes reconstructed by the application of the standard, fixed, optimal adaptive interplane, and adaptive intraplane

filters to decompressed YUV planes

Lenna Peppers Sailboat

R G B R G B R G B

Standard 37.6507 36.4945 33.4416 34.3874 35.9378 33.1241 34.3996 35.4310 32.0051

Adaptive interplane 37.6516 36.4926 33.4254 34.3873 35.9397 33.1181 34.4091 35.4320 32.0116

K ¼ L ¼ 0
(compressed coef.)

Adaptive interplane 38.0251 36.5568 33.7123 34.4456 35.9685 33.4033 34.6727 35.4897 32.2351

K ¼ L ¼ 1
(compressed coef.)

Adaptive interplane 38.0430 36.5819 33.7119 34.4475 35.9687 33.4072 34.6757 35.4970 32.2397

K ¼ L ¼ 1
(floating precision)

Adaptive interplane 38.1080 36.6532 33.8265 34.6381 36.0310 33.4649 34.7826 35.5780 32.3322

K ¼ L ¼ 2
(compressed coef.)

Adaptive intraplane 37.7312 36.4860 33.4468 34.3905 35.9039 33.1774 34.4682 35.3993 32.0610

K ¼ L ¼ 1
(compressed coef.)

Table 1

Number of bitplanes coded and rate allocated to each YUV component

Y U V

Lenna l ¼ 25 No. levels 10 8 8

Rate 0.71014 0.18854 0.32660

Peppers l ¼ 25 No. levels 10 8 10

Rate 0.86270 0.27945 0.66116

Sailboat l ¼ 50 No. levels 10 8 9

Rate 1.48477 0.51282 1.14926
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11 most significant bits of the magnitude where the
most significant bits up to the leading 1 were
arithmetic coded. For K ¼ L ¼ 1; we also report
the PSNRs obtained by employing filter coeffi-
cients at full, 32 bit floating precision.
The coefficients of the optimal adaptive YUV to

RGB transformation filter with filter support
dimensions K ¼ L ¼ 0 turns out to be almost
identical to the standard, fixed YUV to RGB

transformation filter. This is manifested by the
PSNR results for the reconstructed RGB planes
reported in the third and fourth rows of Table 2.
Likewise, the adaptive intraplane filters applied
independently to the YUV planes do not yield
notable performance gain. On the other hand, the
PSNR gain of the optimal adaptive linear filter is
modest for K ¼ L ¼ 1: This gain comes at the
expense of an increase in computational complex-
ity for the accumulation of the statistics, rxzu and
Ruu; and an increase in the overhead rate for the
transmission of the filter coefficients. Further
PSNR gain, with K ¼ L ¼ 2 as the support
dimensions of the optimal adaptive linear filter,
is accompanied by nearly 8 fold increase in
computational complexity with respect to the K ¼
L ¼ 1 case due to accumulation of the statistics,

and further increase in the overhead rate. Finally,
it is observed that filter coefficient compression
yields negligible loss in PSNR gain.
Table 3 reports the overhead rates that corre-

spond to the entries of Table 2. It is observed that
arithmetic coding works better for compressing a
large number of coefficients such as in the K ¼
L ¼ 2 case for the optimal adaptive linear filter.
This is desirable, since the full precision overhead
rate required for transmitting filters with a large
number of coefficients is considerable.
The ratio of decrease in mean squared error to

the overhead rate incurred due to the application
of the optimal adaptive linear filter is far larger
than l; the rate-distortion threshold used in rate
allocation during compression of the coordinate
planes. For instance, this ratio is 962.94 for the
K ¼ L ¼ 1 optimal adaptive linear filter with lossy
compressed coefficients applied to the YUV

coordinate planes of Lenna image which were
allocated rate with threshold l ¼ 25:
In Fig. 2, we show a cropped section of the

original 24 bit color Lenna image and its recon-
structions after the compression and decompres-
sion of the YUV planes with SPIHT, and the
subsequent YUV to RGB transformation with the
standard, fixed filter and the optimal adaptive
linear filter ðK ¼ L ¼ 2Þ: Since transform based
high performance image coding methods like
SPIHT coarsely quantize the high frequency
coefficients, the quantization noise manifests itself
at high frequency details like the edges. Therefore,
the optimal adaptive linear filter, that exploits
dependencies of spatial detail among luminance
and chrominance planes, can yield several tenths
of a dB gain in the reconstruction of the RGB

planes over the standard, fixed filter for a modest
overhead rate. In Fig. 3, we show the difference
plane between the reconstruction error amplitude
planes obtained with the optimal adaptive linear
filter and the reconstruction error amplitude plane
obtained with the standard fixed filter for each of
the RGB planes of Lenna image. For the most
part, the optimal adaptive linear filter yields better
reconstruction than the standard fixed filter at the
edges. We note, however, that the independent
application of adaptive intraplane filters (not
shown in this figure) to the YUV coordinate

Table 3

Overhead rate for the transmission of filter coefficients for the

YUV to RGB transformation methods

Lenna Peppers Sailboat

Standard 0 0 0

Adaptive interplane 0.0005379 0.0005341 0.0005379

K ¼ L ¼ 0

Adaptive interplane 0.003021 0.002781 0.002758

K ¼ L ¼ 1
(compressed coef.)

Adaptive interplane 0.009888 0.009888 0.009888

K ¼ L ¼ 1
(floating precision)

Adaptive interplane 0.006939 0.006916 0.006569

K ¼ L ¼ 2

Adaptive intraplane 0.001022 0.0009918 0.001003

K ¼ L ¼ 1
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planes cannot exploit the interplane statistical
dependencies, and therefore, does not yield a
marked reconstruction quality advantage over
the standard fixed filter.
In Tables 4–6, results similar to those reported

in Tables 1–3, are tabulated for the case where the
coordinate system used to decorrelate the color
planes is KLT instead of the YUV. The standard
way to use the KLT coordinate system is to design
the filter for RGB-KLT transform at the encoder
and compress and transmit the filter coefficients
to the decoder at a nonzero overhead rate. The
symmetric KLT–RGB transform is then performed
using the same coefficients at the decoder. Even
though this method of reconstructing RGB com-
ponents is image adaptive it is suboptimal.

Our proposed optimal adaptive linear filter
design method improves the performance for
KLT at the expense of some computational
complexity and negligible overhead rate increase.
In this case, the encoder determines the KLT–RGB

filter coefficients for a support that extends
spatially as well as across the KLT component
planes in order to minimize the mean squared
reconstruction error. These coefficients are com-
pressed and transmitted instead of the coefficients
of the symmetric filter.

5. Conclusions

In this paper, we have first introduced an
optimal adaptive linear filter design method based
on the statistics estimated from lossy compressed
luminance and chrominance coordinate planes and
the original color coordinates planes for convert-
ing the reconstructed luminance and chrominance
coordinates to reconstructed RGB coordinates.
Given the filter support, the adaptive linear filter is
optimal in the minimum mean squared error sense.
The method can be used in a postprocessor at the
back end of color image compression systems for
reducing the distortion of the lossy compressed
image. The image adaptive design of the filter
necessitates the transmission of the coefficients
to the decoder as side information. We have also

Fig. 2. (a) Original cropped section of Lenna. (b) Cropped section reconstructed with standard YUV to RGB transformation filter. (c)

Cropped section reconstructed with optimal adaptive YUV to RGB transformation filter ðK ¼ L ¼ 2Þ: The quantization noise that
manifests itself at the high frequency details such as the edges is seen to be reduced by the optimal adaptive linear filter. The Y ; U and

V coordinate planes of the coded picture were allocated rates of 0.16992, 0.02539 and 0:03906 bpp; respectively. The R; G and B

component planes were reconstructed at PSNRs of 32.072, 30.721 and 29:306 dB; respectively, with the standard fixed filter, and at
PSNRs of 32.459, 30.966 and 29:756 dB; respectively, with the optimal adaptive linear filter. The overhead rate for the compressed
coefficients of the optimal adaptive linear filter was 0:0097 bpp:

Table 4

Number of bitplanes coded and rate allocated to each KLT

component

Component KL � 1 KL � 2 KL � 3

Lenna l ¼ 100 No. levels 6 8 9

Rate 0.09436 0.25110 0.55264

Peppers l ¼ 100 No. levels 8 9 9

Rate 0.48312 0.28900 0.446900

Sailboat l ¼ 100 No. levels 8 8 10

Rate 0.46674 0.47385 1.19843
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outlined a simple yet effective strategy for com-
pressing the filter coefficients by arithmetic coding
in order to keep the overhead rate low.
Experimentally, the ratio of the objective

reconstruction quality gain obtained by the
application of the optimal adaptive linear filter in
place of the standard, fixed filter in YUV to RGB

transformation to the overhead rate expended
turned out to be significantly larger than the
marginal return of further (independently) coding
the YUV planes. This makes the optimal adaptive
linear filtering method a viable alternative to any

coding approach that exploits the statistical
dependencies of spatial detail among color co-
ordinate planes.

Appendix A

The optimal adaptive linear filter has a filter
support that is spatially centered at the location of
the target pixel whose luminance and chrominance
values are estimated and spans all coordinate
planes. The filter support covers the decompressed

Fig. 3. Grayscale difference planes between the reconstruction error amplitude planes obtained with the optimal adaptive linear filter

and the corresponding reconstruction error amplitude planes obtained with the standard, fixed filter ((a) blue, (b) green, (c) red).

Lighter areas indicate smaller and darker areas indicate larger reconstruction error amplitude obtained with optimal adaptive linear

filter than with standard fixed filter. (All difference values have been scaled by multiplication with a factor of 3.)
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luminance and chrominance coordinates of the
target pixel as well as its neighbors. In this
appendix, we show that the optimal adaptive
linear filter yields PSNR gain with respect to the

standard, fixed filter. This gain is due to the
correlations between the luminance and chromi-
nance coordinates of the target pixel and the
luminance and chrominance coordinates of its
neighbors. Since the correlation coefficient be-
tween the luminance (or corresponding chromi-
nance) coordinates of two contiguous pixels is
rather high ðrE0:9Þ for most natural images,
excluding the neighbors’ luminance and chromi-
nance coordinates from the filter’s support is not
desirable.
To facilitate our analysis here, we decompose

the optimal adaptive linear filter into two parts
(i.e. the overall transformation matrix is the
product of two matrices). The first part recon-
structs improved luminance and chrominance
coordinates from the decompressed values of the
luminance and chrominance coordinates. The
second part is the standard, fixed filter of Eq. (1)
that converts the improved luminance and chro-
minance coordinates to the final reconstruction
values for the RGB coordinates. Hence, the first
part may be obtained by post-multiplying the
transformation matrix of the optimal adaptive
linear filter by the inverse of the transformation

Table 5

PSNR of color planes reconstructed by the application of the standard, fixed, optimal adaptive interplane, and adaptive intraplane

filters to decompressed KLT planes

Lenna Peppers Sailboat

R G B R G B R G B

Standard (symmetric) 36.7165 35.1167 33.2964 32.8115 33.7747 33.5703 32.3889 32.5100 32.4323

Adaptive interplane 36.7210 35.1190 33.3042 32.8122 33.7826 33.5790 32.3936 32.5232 32.4426

K ¼ L ¼ 0

Adaptive interplane 37.0434 35.2869 33.5475 32.8278 33.8688 33.6691 32.5181 32.6282 32.5493

K ¼ L ¼ 1
(compressed coef.)

Adaptive interplane 37.0674 35.2873 33.5472 32.8285 33.8726 33.6690 32.5242 32.6290 32.5494

K ¼ L ¼ 1
(floating precision)

Adaptive interplane 37.1672 35.3831 33.6125 32.9268 33.9366 33.7415 32.6092 32.7849 32.6246

K ¼ L ¼ 2

Adaptive intraplane 36.8279 35.1395 33.2705 32.8067 33.7834 33.5993 32.4359 32.5440 32.4316

K ¼ L ¼ 1

Table 6

Overhead rate for the transmission of filter coefficients for the

KLT to RGB transformation methods

Lenna Peppers Sailboat

Standard 0.0004959 0.0005035 0.0004959

Adaptive interplane 0.0004959 0.0005035 0.0004959

K ¼ L ¼ 0

Adaptive interplane 0.002846 0.002621 0.002583

K ¼ L ¼ 1
(compressed coef.)

Adaptive interplane 0.009888 0.009888 0.009888

K ¼ L ¼ 1
(floating precision)

Adaptive interplane 0.006649 0.006523 0.006424

K ¼ L ¼ 2

Adaptive intraplane 0.001022 0.001011 0.001019

K ¼ L ¼ 1
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matrix of the standard, fixed filter. We analyze the
mean squared error in the luminance/chrominance
coordinate space yielded by the first part which is
identical to the mean squared error in the RGB

coordinate space yielded by the optimal adaptive
linear filter due to the orthogonality of the
standard, fixed filter.
Let Xg and #Xg be the original luminance or

chrominance coordinate of the target pixel, and its
best linear estimate, respectively. Without loss of
generality, we consider a single neighbor of the
target pixel. Observation vector U is written as

U ¼ ðUT
1 ^UT

2 Þ
T;

which consists of U1; the vector of luminance and
chrominance coordinates of the target pixel con-
taminated with additive quantization noise and
U2; the vector of luminance and chrominance
coordinates of the target pixel’s neighbor con-
taminated with additive quantization noise. The
noise is assumed to be white and independent of
the luminance and chrominance coordinates,2 and
the data and noise are assumed to have zero mean.
The estimation error can then be expressed as

e ¼ E½ðXg � #XgÞXg� ¼ rXgXg � rXgU r�1UU rUXg ;

where rXgXg is the variance of Xg; rXgU is the vector
of correlation values between Xg and each
component of U ; and r�1UU is the inverse of the
correlation matrix for U : The vector rXgU can be
partitioned as

rXgU ¼ rTUXg
¼ ðrTXgU1

^rTXgU2
ÞT:

Similarly, r�1UU can be partitioned as

r�1UU ¼

R1^R2

??

R3^R4

2
64

3
75:

If

rUU ¼

rU1U1 ^ rU1U2

? ?

rU2U1 ^ rU2U2

2
64

3
75;

with rUiUj
defined as the cross-correlation matrix

of vectors Ui and Uj ; then the blocks of r�1UU

may be related to the blocks of rUU as

R1 ¼ r�1U1U1
þ r�1U1U1

rU1U2ðrU2U2 � rTU1U2r
�1
U1U1

rU1U2 Þ
�1

� rTU1U2r
�1
U1U1

;

R2 ¼ �r�1U1U1
rU1U2ðrU2U2 � rTU1U2r

�1
U1U1

rU1U2 Þ
�1;

R3 ¼ �ðrU2U2 � rTU1U2r
�1
U1U1

rU1U2Þ
�1rTU1U2r

�1
U1U1

;

R4 ¼ ðrU2U2 � rTU1U2r
�1
U1U1

rU1U2 Þ
�1;

where rU2U1 ¼ rTU1U2 for rUU to be a real symmetric
correlation matrix. The expected estimation error
can then be expressed as

e ¼ rXgXg � rXgU r�1UU rUXg

¼ rXgXg � rTXgU1
r�1U1U1

rXgU1

� ðrTXgU2
� rTXgU1

r�1U1U1
rU1U2 Þ

� ðrU2U2 � rTU1U2r
�1
U1U1

rU1U2Þ
�1

� ðrXgU2 � rTU1U2r
�1
U1U1

rXgU1Þ:

In the above equation, the term ðrTXgU2
�

rTXgU1
r�1U1U1

rU1U2ÞðrU2U2 � rTU1U2r
�1
U1U1

rU1U2Þ
�1ðrXgU2 �

rTU1U2r
�1
U1U1

rXgU1Þ is due to the inclusion of the
contaminated coordinates of the neighbors into
the observation vector U and therefore corre-
sponds to the gain of the optimal adaptive linear
filter with K ¼ L > 0 over the gain with K ¼ L ¼
0: Since r�1U1U1

; rU2U2 are real symmetric matrices,
ðrU2U2 � rTU1U2r

�1
U1U1

rU1U2 Þ
�1 is also real symmetric.

Since the above term is a quadratic form, the gain
must be greater than or equal to zero. Therefore,
we conclude that incorporating the neighbor’s
contaminated coordinates into the observation
vector U can help reduce the estimation error.
To gain further insight, let us assume that the

data is wide sense stationary and that the ratio of
the correlation between a coordinate of the target
pixel and a coordinate of its neighbor to the
correlation between corresponding coordinates of
the target pixel is given by r: One can then express
rXgU and rUU as

rXgU ¼ rTUXg
¼ ðrTXgU1

^rTXgU2
ÞT ¼ ðrTXgU1

^rrTXgU1
ÞT;

rUU ¼

rU1U1 ^ rU1U2

? ?

rU2U1 ^ rU2U2

2
64

3
75 ¼

rZZ ^ rrZZ

? ?

rrZZ ^ rZZ

2
64

3
75

þ Diag½s2NY
;s2NU

;s2NV
; s2NY

;s2NU
;s2NV

�;2 In reality, the quantization noise is signal dependent.
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where rZZ is the correlation matrix of luminance
and chrominance coordinates before contamina-
tion with quantization noise and s2Ng

is the
variance of the quantization noise added to
luminance/chrominance coordinate g: If there is
no quantization noise, then rU1U2 ¼ rrZZ ; rU1U1 ¼
rU2U2 ¼ rZZ ; hence rXgU2 � rTU1U2r

�1
U1U1

rXgU1 ¼ 0; but
rU2U2 � rTU1U2r

�1
U1U1

rU1U2 ¼ ð1� r2ÞrZZ so that the
estimation error

e ¼ rXgXg � rTXgU1
r�1U1U1

rXgU1

is that achieved by the optimal adaptive linear
filter with K ¼ L ¼ 0 (and also the standard,
fixed filter of Eq. (1)). Likewise, when r ¼ 0;
but noise is present, we have rU1U2 ¼ 0; rXgU2 ¼ 0;
hence rXgU2 � rTU1U2r

�1
U1U1

rXgU1 ¼ 0; rU2U2 � rTU1U2
�r�1U1U1

rU1U2 ¼ rZZ so that the estimation error is
again that achieved by the standard, fixed filter.
On the other hand, when there is luminance/
chrominance coordinate quantization and the
correlation between contiguous pixels’ coordinates
is nonzero, optimal adaptive linear filter can
reduce estimation error.
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