
Cluster Based Sensor Scheduling in a Target
Tracking Application with Particle Filtering

Özgür Özfidan
R&D Department
PAVO Electronic

Gebze, Kocaeli, Turkey
ozgur.ozfidan@pavo.com.tr

Uluǧ Bayazıt
Electronics Engineering

Işık University
Istanbul, Turkey

bayazit@isikun.edu.tr

Hakan A. Çırpan
Electrical-Electronics Engineering

Istanbul University
Istanbul, Turkey

hcirpan@istanbul.edu.tr

Abstract— In multi-sensor applications management of sensors
is necessary for the classification of data they produce and for
the efficient use of sensors as well. One of the important aspects
in sensor management is the sensor scheduling. By scheduling
the sensors, serious reductions can be achieved in the cost of
bandwidth, power, and computation. In this work a simple
solution for the problem of sensor scheduling in a multi-sensor
target tracking application is presented. Due to non-linearity
of the problem itself, proposed solution is presented in the
framework of non-linear Bayesian estimation.

I. INTRODUCTION

In the last decades there has been a considerable growth in
the semiconductor technology. With the advances in this field,
the size of measuring devices are now smaller and smaller
and their prices are quite low when compared to the past.
Consequently, these devices can now be deployed in various
places where their small form factor is a major advantage.
This give rise to a big interest to the sensor networks and
technology. Sensor networks have found application areas both
in military and civil environments. In multi-sensor networks,
multiple measurement devices, namely sensors, are employed
in an area of interest to collect data, and share this data with
a data fusion center directly, or by forwarding through their
neighbors. Thus, we need to effectively control the sensors and
interpret the information they send us. Effective utilization of
sensors brings some other issues into our consideration: Opera-
tional costs and sensor lifetime. Operational costs include cost
of bandwidth, power and computation while sensor lifetime
is an issue directly related to the power consumption of the
device. A powerful method for the effective utilization of
sensors is to schedule them in a smart way. Sensor scheduling
is performed to save the resources and improve the overall
system performance.

Bayesian techniques have lately been extensively used in
Target tracking applications[1]. Due to non-linearity and pos-
sibly non-gaussianity of the problem, Sequential Monte Carlo
(SMC) Methods [5], [6], are widely used for target tracking

This research has been funded by the The Scientific & Technological
Research Council of Turkey (TÜBİTAK), Project No: 104E130 and also
supported in part by the Research Fund of the University of Istanbul. Project
number: 513/05052006.

applications in Multi-Sensor systems. In a multi sensor envi-
ronment, different approaches in sensor management such as
information driven [2] and Cluster based techniques[3], [4],
have previously been proposed.

In this paper, we present a novel sensor scheduling method
based on partitioning the sensors into clusters. Our clustering
algorithm depends on associating each slave sensor to its
nearest master node. Initially, we assumed a totally random
deployment strategy into the region of interest. After grouping
the sensors, we used the information collected by the sensors
in the same cluster to track the position of our target.Block
diagram in Fig. 1 describes such a tracking scenario.

II. DESCRIPTION OF TRACKING SCENARIO

In this section, we introduce a general model for our
tracking scenario. We consider the task of tracking a moving

: target: slave sensors : master nodes

Fig. 1. General Tracking Scenario: Target moves in the region of interest.
Black triangle and circles represent the sensors in the active cluster. Arrows
indicate the master node that each slave report.

vehicle through our two dimensional stationary sensor field

under surveillance while conserving power by minimizing
the number of active sensors. Before we run our tracking
algorithm there is a set-up procedure which works as follows
: First, we randomly distribute both the slave sensors and the
master nodes into our region of interest. Master nodes are
basically responsible for communicating with the data fusion
center. Remaining sensors will be called slaves. Slave sensors
report the position of the target to their master periodically
or if there is no target detected, they report this situation as
well . After randomly distributing both type of sensors, we
associate each slave with a master by running our master-
slave association algorithm. Basic criteria for this process
is the Cartesian distance between the master nodes and the
slave sensors. Each slave is associated with its closest master.
Another practical real world constraint that we take into
account at this point is the service capacity of a master node.
Maximum number of slaves that we can associate with each
master is defined. During the set-up process if this limit is
exceeded for a master, than the remaining slaves are associated
with another master. If we summarize our assumptions:

• Target moves with a constant velocity
• Initial position of the target is known
• Target state to be tracked consists of its two dimensional

position and velocity
• There are randomly distributed M stationary master

nodes
• There are randomly distributed S stationary slave sensors
• Each slave sensor is associated with a master
• Maximum number of slaves that can be associated with

a master is C
• At each time step there is only one active master com-

municating with the sink
• All masters can communicate with each other
• Slaves can communicate with their associated master

node only

The driving force behind this scenario is the limiting con-
ditions of the physical world. Above scenario, for instance,
can be exactly achieved by throwing the sensors away from a
plane. Since the average communication time and the power
consumption of the master nodes will be much more than the
slaves, they can be equipped with longer life batteries and
higher output transmit power RF communication ICs. That
means we can differentiate master and slave sensors before
the setup process and distribute both type of sensors in a
completely random fashion. Number of master nodes and the
number of slaves that each master can give service is a matter
of optimization.

Another advantage of this scenario is the efficient use of
bandwidth when compared with the case each sensor sends
the target position individually to the sink. By limiting the
output transmission power of the slaves, possible interference
problem between the neighboring clusters can be overcome.

As mentioned before, our main objective is to accurately
track the target while minimizing the number of active sensors.
Only the active sensors provide observation about target po-

sition, otherwise they are configured to remain in sleep mode
to reduce the power consumption. Thus, activation of sensors
within a specified distance from the current target position
estimate is quite important. Several different formulations of
this problem are possible as target of interest moves through
our randomly distributed sensors. Our approach at this point
is simply to compare the current position estimate of the
target with the position of each master node at every time
step and to activate the associated slaves of the closest master
for the next epoch. Here, we are using the assumption that
master nodes are always active and thus leadership can be
immediately transferred from one master to another. Every
master can activate its own slaves whenever needed.

III. TRACKING AND SCHEDULING

In this section, we introduce a general model for our multi-
sensor, single target system. Target velocity is assumed to be
constant during the tracking phase. Sensors are assumed to
be range only sensors. After running our clustering algorithm
we employ particle filter to estimate the position of our target
based on reported range information by the slave sensors in
the same cluster.

A. System Dynamics

Now we define the system and observation models for our
target in a detailed manner. For the 2-dimensional case, state
vector Xk at time step k contains four elements: positions in
the x and y directions and velocities in the x and y directions:

Xk = [xk, yk, ẋk, ẏk]T (1)

Kinematics for the target can be written as

xk = xk−1 + ẋk−1∆t +
1
2
ẍk−1∆t2 +

1
3

...
xk−1∆t3 (2)

yk = yk−1 + ẏk−1∆t +
1
2
ÿk−1∆t2 +

1
3

...
y k−1∆t3 (3)

where ∆t is the time difference between state transitions or
simply the sampling period. The parameters ẍk and ÿk repre-
sent the acceleration in the x and y directions, respectively.
Finally,

...
xk and

...
y k are to represent the variations in the

acceleration in two directions again. We model the acceleration
components using random noise. Assuming target moves with
a constant velocity, using (2) and (3), the state equation can
be written as

Xk = FXk−1 + Q1/2Vk−1 (4)

where

F =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 (5)

Q = q




∆t3/3 0 ∆t2/2 0
0 ∆t3/3 0 ∆t2/2

∆t2/2 0 ∆t 0
0 ∆t2/2 0 ∆t


 (6)

where Q is the state error covariance matrix and models the
acceleration terms in the x and y directions. The vector Vk is
a Gaussian random vector of zero mean, unit variance and
independent components. Finally, q is used to control the
intensity of the process noise.

The observation vector can simply be related to the state
vector as

Zk = dk + R1/2nk. (7)

dk is an L x 1 vector whose elements are the Cartesian distance
between the target and the position of each slave sensor used
to generate observations at time step k, where L is the number
of slaves in the corresponding cluster. The ith element of dk

is
dik = ||xk − si||, i = 1,L. (8)

where xk is the target position and si is the position of ith
sensor in the corresponding cluster. R denotes the measure-
ment error covariance matrix and nk is an L x 1 vector whose
elements are generated by a Gaussian random variable of zero
mean and unit variance.

At this point, detection quality of our range only Infrared
(IR) sensors need to be examined carefully. Intuitively, it
can be said that Signal to Noise Ratio (SNR) will decrease
with increasing slave-target distance. Defining Received and
Transmitted Signal Powers as Pr and Pt respectively, we can
write

Pr = KPt. (9)

K represents both the attenuation due to the channel charac-
teristics and the reflection depending on the target material.
Then, SNR can simply be expressed as

SNR = Pr/σ2. (10)

We emphasize that ambient light and the environmental ther-
mal fluctuations are the major noise sources together with the
shot noise for the IR sensors in our application. This situation
can be modeled in the observation vector above, by increasing
the variance of measurement error with sensor-target distance.
Furthermore, if we assume that the noise components for each
sensor are independent, R becomes an LxL diagonal matrix
whose elements are directly proportional to the slave-target
distance, where L is the number of slaves in the active cluster.

Rii ∝ ||xk − si|| (11)

B. Clustering

For the maneuvering target tracking application we can
assume our region of interest under surveillance is quite a large
area and only a small portion of deployed sensors can provide
useful information at a specific time instance. That is why,
clustering the range only sensors is one of the most reasonable
strategy that can be applied. By clustering, we can reduce the
spatial coverage of sensors considerably, which means higher
quality of data reported by each sensor.

Now we present unbalanced clustering algorithm for the
efficient data collection. As mentioned before, initially both
Master nodes and Slave sensors are distributed into the region
of interest randomly.

S ≡ Number of slave sensors
M ≡ Number of master nodes
C ≡ Max service capacity of a master
m ≡ Master nodes
s ≡ Slave sensors

Calculate distance from all slaves to all masters
for i = 1, 2, · · · , M

for j = 1, 2, · · · , S
D[i, j] = ||mi − sj ||

end
end

Assign each slave to its closest master
for j = 1, 2, · · · , S

[mindist, i] = min(D[:, j])
if capacity of ith master is smaller than C

Assign slave j to master i
else

Assign slave j to another master
end

end

TABLE I

MASTER-SLAVE ASSOCIATION ALGORITHM

C. Particle Filtering

Since we know the initial position of our target, we start fil-
tering with the data reported by the slaves in the cluster whose
master is closest to this initial position. Given p(Xk|Xk−1) and
p(Zk|Xk) Generic Particle Filter and Resampling algorithms
[1] are used to recursively estimate the state of moving target.

for i = 1, 2, · · · , N
-Draw xi

k ∼ q(xk|xi
k−1, zk)

-Assign the particle a weight ωi
k

end
Calculate total weight: t = sumN

i=1ωi
k

for i = 1, 2, · · · , N
-Normalize: ωi

k = t−1ωi
k

end
Calculate N̂eff using (14)
if N̂eff < NT

-Resample the particles
end

TABLE II

GENERIC PARTICLE FILTER ALGORITHM

We approximate the posterior density p(Xk|Z1:k) at time
step k by a set of particles {xi

k, i = 1, 2,N} and associated
weights {ωi

k, i = 1, 2,N} where
∑N

i=1 ωi
k = 1. We use the

prior distribution as the importance density thus, draw the par-
ticles from a proposal distribution q(xi

k|xi
k−1) = p(xi

k|xi
k−1)

and assign each particle a weight using the weight update
equation ωi

k ∝ ωi
k−1p(zk|xi

k). Approximation to the posterior
density is then

p(xk|z1:k) ≈
N∑

i=1

ωi
kδ(xk − xi

k) (12)

Initialize the CDF: c1 = 0
for i = 2, · · · , N

-Construct CDF: ci = ci−1 + ωi
k

end
Start at the bottom of the CDF: i = 1
Draw a starting point: u1 ∼ U [0, N−1]
for j = 1, 2, · · · , N

-Move along the CDF: uj = u1 + N−1(j − 1)
-while uj > ci

∗i = i + 1
-end
-Assign sample: xj∗

k = xi
k

-Assign weight: ωj
k = N−1

-Assign parent: ij = i
end

TABLE III

RESAMPLING ALGORITHM

And finally the state estimation is

x̂k ≈
N∑

i=1

ωi
kxi

k. (13)

Since variance of weights increase continuously, resampling is
necessary in order to avoid degeneracy. Measure of degeneracy
can be approximated by

N̂eff =
1∑N

i=1(ω
i
k)2

. (14)

(13) can be thought of as an MMSE Estimator which is op-
timum for gaussian densities. The estimation error covariance
matrix is obtained by

P̂k =
N∑

i=1

ωi
k(xi

k − x̂k)(xi
k − x̂k)T (15)

D. Sensor Scheduling

In this section, we develop a sensor scheduling method
for our randomly distributed sensors. Note that sensors were
initially partitioned into clusters by running Master-Slave
association algorithm given in Table 1. In our work we apply
the Closest Point Activate (CPA) policy by comparing the
Cartesian distance between the Master of each cluster and the
estimated target position at each time step k and activate the
corresponding cluster for the next time epoch.

Cost function is

Ci
k = ‖x̂k − mi‖ (16)

where x̂k is the estimated target position at time step k. Finally
our scheduling decision is that we choose the master node for
which the cost function is minimized

mopt = argminiC
i
k (17)

Then, the corresponding master node takes the leadership and
activates its associated slaves immediately. For the next time
step, we use the observation vector obtained by this new sensor
set.

IV. SIMULATIONS AND RESULTS

In this section, we discuss an example of target tracking
using our proposed sensor scheduling algorithm. For the
same scheduling algorithm, we also compared the results of
proposed non-linear Bayesian estimation method described in
section 3.3, Particle Filter (PF), with the method of Unscented
Kalman Filter (UKF)[7]. For the simulations, the trajectory for
a target was generated in a 2-dimensional cartesian coordinate
system. Initially, 64 master nodes and 256 slave sensors were
distributed randomly in the area x = (-8000,8000) and y =
(-8000,8000). Then, our Master-Slave Association algorithm
was applied. Maximum number of slaves that a master can
give service was assumed to be 5. Sampling period, ∆t was

-3500 -3000 -2500 -2000 -1500 -1000 -500 0 500
-500

0

500

1000

1500

2000

2500

3000

3500

4000

X-axis

Y
-
a

x
is

-780 -760 -740 -720 -700 -680 -660 -640 -620 -600

-70

-60

-50

-40

-30

-20

-10

0

10

20

X-axis

Y
-
a
x
is

A Detail

A

Fig. 2. True and Estimated trajectories with PF. Blue and red lines represent
the true and estimated trajectories

chosen to be 2 seconds, which generates the state covariance
matrix in (6) as.

Q =




2.67 0 2 0
0 2.67 0 2
2 0 2 0
0 2 0 2


 (18)

The process noise intensity factor q was taken as 0.01 and the
initial position of target was taken to be (x, y) = (0, 0). For
the particle filter algorithm we used a total of 200 particles and
1000 time steps. Resampling applied when N̂eff is below the
threshold 40. UKF parameters α and β were set to be 0.05
and 2, respectively.

During the tracking phase, at each time step k, we have
updated measurement error covariance matrix R by calculating
the distance between each slave and the target position.

R = RcoeffR′ (19)

R′ =
1

dmax
diag([d1, d2,dL]T) (20)

-4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500
-500

0

500

1000

1500

2000

2500

3000

3500

4000

X-axis

Y
-
a

x
is

-780 -760 -740 -720 -700 -680 -660 -640 -620 -600

-70

-60

-50

-40

-30

-20

-10

0

10

20

X-axis
Y

-
a

x
is

A Detail

A

Fig. 3. True and Estimated trajectories with UKF. Blue and red lines represent
the true and estimated trajectories

where
di = ‖x̂k − si‖, i = 1, 2,L (21)

dmax is the normalizing constant and L is the number of slaves
in the active cluster. Constant Rcoeff was set to 100.

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000

−1000

0

1000

2000

3000

4000

5000

Fig. 4. Activated sensors.

True and Estimated target trajectories using Particle Filter
and Unscented Kalman Filter methods are shown in Figures
2 and 3. Activated sensors throughout the tracking phase with
two different Bayesian methods are same and shown in Figure
4. Rms position errors in x and y directions for two methods
are shown in Figures 5 and 6.

0 200 400 600 800 1000
0

50

100

150

Time

p
f
rm

s
 p

o
s
it
io

n
 e

rr
o
r

in
 x

0 200 400 600 800 1000
0

50

100

150

Time

p
f
rm

s
 p

o
s
it
io

n
 e

rr
o
r

in
 y

Fig. 5. rms position errors in x and y directions for PF.

0 200 400 600 800 1000
0

200

400

600

800

Time

u
k
f
rm

s
 p

o
s
it
io

n
 e

rr
o
r

in
 x

0 200 400 600 800 1000
0

100

200

300

Time

u
k
f
rm

s
 p

o
s
it
io

n
 e

rr
o
r

in
 y

Fig. 6. rms position errors in x and y directions for UKF.

V. CONCLUSION

We have presented a recursive Bayesian formulation for
target tracking and proposed a simple sensor scheduling tech-
nique in order to reduce power consumption of the system.
In particular, we have formulated the target tracking problem
using state-space equations. Tracking was considered as a
sequential estimation problem and particle filtering algorithm
was implemented. In order to schedule the sensors in our
region of interest we have compared the position estimate
of our target and the master nodes. We observed that our
scheduling results are still quite satisfactory when we take

into account the decreasing detection quality of range only
IR sensors with increasing distance. It is evident that, over
all power consumption of the system is extremely low when
compared to the case where no scheduling is done.

ACKNOWLEDGMENT

The authors would like to thank Habib Şenol for his
contribution to the paper in the theory of Particle Filter.

REFERENCES

[1] M. S. Arulampalam, S. Maskell, N. Gordon,and T. Clapp, “A Tutorial on
Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,"
IEEE Trans. on Signal Processing., Vol 50,No. 2, Feb. 2002.

[2] F. Zhao, J. Shin, and J. Reich, “Information-Driven Dynamic Sensor Col-
laboration for Tracking Applications," IEEE Signal Processing Magazine,
vol. 15, March 2002.

[3] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh, “Optimal Energy
Aware Clustering in Sensor Networks," Sensors 2002,2,258-269, July
2002.

[4] X. Sheng, Y-H. Hu, “Distributed Particle Filter with GMM Approximation
for multiple target localization and tracking in wireless sensor networks,"
Proc. IEEE/ACM Int. Symp. IPSN, Los Angeles, CA , Apr 2005.

[5] C. Kreucher, K. Kastella, and A. O. Hero, “Multitarget Tracking using
the Joint Multitarget Probabilty Density," IEEE Trans. on Aerospace and
Electronic Systems , vol. 41, No. 4, October 2005.

[6] C. Hue, J.P. Le Cadre, and P. Pérez, “Sequential Monte Carlo Methods
for Multiple Target Tracking and Data Fusion," IEEE Trans. on Signal
Processing., Vol 50,No. 2, Feb. 2002.

[7] S.J.Julier, J.K. Uhlmann, “A new extension of the Kalman Filter to
Nonlinear Systems," Proceedings of Aerosense: The 11th International
Symposium on Aerospace/Defense, Sensing, Simulation and Controls,
Multi Sensor Fusion, Tracking and Resource Management II, SPIE, 1997.

