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Abstract

In predictive 3-D mesh geometry coding, the position of each vertex is predicted from the previously coded neighboring vertices and
the resultant prediction error vectors are coded. In this work, the prediction error vectors are represented in a local coordinate system in
order to cluster them around a subset of a 2-D planar subspace and thereby increase block coding efficiency. Alphabet entropy con-
strained vector quantization (AECVQ) of Rao and Pearlman is preferred to the previously employed minimum distortion vector quan-
tization (MDVQ) for block coding the prediction error vectors with high coding efficiency and low implementation complexity.
Estimation and compensation of the bias in the parallelogram prediction rule and partial adaptation of the AECVQ codebook to the
encoded vector source by normalization using source statistics, are the other salient features of the proposed coding system. Experimen-
tal results verify the advantage of the use of the local coordinate system over the global one. The visual error of the proposed coding
system is lower than the predictive coding method of Touma and Gotsman especially at low rates, and lower than the spectral coding
method of Karni and Gotsman at medium-to-high rates.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Within the last 10 years, general and restricted access to
3-D objects over communication networks for visualization
purposes has gained widespread interest. Polygonal meshes
are the primary representation tools used for the visualiza-
tion of 3-D objects in the various application areas such as
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manufacturing, entertainment, defense industry, computer
aided design and architecture. Recent multimedia stan-
dards such as VRML (Virtual Reality Markup Language)
and MPEG-4 (Motion Pictures Expert Group-4) have
embodied polygonal mesh coding and representation tools.

Typically, the encoding of polygonal meshes is per-
formed in three distinct parts: connectivity coding concisely
represents the topological information about the arrange-
ments and relations of faces and edges interconnecting
the vertices of a mesh. Geometry (vertex coordinate) cod-
ing concisely represents the coordinate values of the verti-
ces. Property coding describes features such as texture
coordinates and material attributes. A comprehensive
review of the recent developments in geometry and connec-
tivity coding may be found in [2].
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1.1. Previous work in geometry coding and related

connectivity coding

Considerably more bits are needed to losslessly repre-
sent the vertex coordinate values of a polygonal mesh than
to losslessly represent its connectivity. Despite this fact,
most prominent earlier mesh compression methods [11–
17] have emphasized connectivity coding. The state of the
art in connectivity coding can compress most meshes down
to the range of 1–3 bits/vertex.

The earliest notable work of [11] on lossy geometry com-
pression employs simple linear prediction to exploit the
correlation between the neighboring vertex coordinate val-
ues. The coordinates are prequantized to 16 bits precision
and their delta differences are entropy coded at 10 bits/
coordinate resolution to achieve 5.5–7.5 bits/coordinate
rate. Since such rates were still fairly significant with
respect to the lossless compression rates in connectivity
coding, a need emerged for more advanced lossy geometry
compression schemes.

More advanced linear prediction schemes of [12,15,22]
form the prediction as a linear combination of previously
coded vertices. The widely popular parallelogram predic-
tion rule of [15,22] forms the prediction as the fourth cor-
ner of a parallelogram with the other three being the
three previously coded vertices. In [15], this prediction is
corrected by a curvature estimate. In a local coordinate sys-
tem similar to the one employed here, [23] derives a higher
order prediction for the normal component from the tan-
gential components. Linear prediction is also employed in
the geometry compression methods of [13,14,24] for pro-
gressive transmission of multiresolution meshes. The cur-
rent work adopts the parallelogram prediction rule of
[15,22] for single resolution polygonal mesh coding.

In predictive coding of the vertex coordinates, the enco-
der and decoder need to agree on a vertex traversal order.
The order of vertex processing in connectivity coding is
commonly used for this purpose. Single resolution triangu-
lar mesh connectivity coding is usually based on a region
growing technique [12,15–17] that inserts a triangle into a
processed region at each generic step. Generalizations to
polygonal meshes may be found in [18–20]. The approach
of [18] determines the optimal location on the boundary
of the processed region for inserting the face and codes
the face’s degree and the valences of its new vertices. With-
out loss of generality to adopting other approaches, the
current work adopts the approach of [18] for determining
the vertex traversal order.

With the advent of [25,29], transform based methods
gained acceptance in mesh geometry coding. The spectral
transform in [25], that generalizes the classical 1-D Fourier
transform to 3-D irregular meshes, is derived from mesh
topology. Compression is achieved by discarding the spec-
tral coefficients that are assumed to have low energy. Nota-
ble extensions for reducing the implementation complexity
and improving the visual quality of [25] are presented in
[26] and [27,28], respectively.
State-of-the-art wavelet transform methods of
[29,30,33,36] treat geometry compression of densely sam-
pled meshes as a surface approximation problem. They
employ a multi-level representation by changing irregular
connectivity to subdivision connectivity. An original irreg-
ular mesh is first simplified to yield a base level coarse
mesh. Starting with the base level mesh, the highly complex
iterative process of subdivision of the mesh at a coarse level
to arrive at the mesh at a finer level, yields the desired res-
olution mesh at the end.

In normal meshes [33,40], a base point is predicted by
subdivision using vertices in the coarser level, and a line
drawn in a normal direction from the base point is inter-
sected with the original surface to yield a finer level vertex.
Most finer level vertices are expressed in this manner with a
single (normal) coordinate in a local coordinate system.
Normal and tangential coordinates are compressed by
advanced coding tools such as zerotrees and the estima-
tion/quantization algorithm, originally proposed by
[31,32], that can exploit the correlation among them.

Vector quantization (VQ) has also been investigated in
[1,8–10] within the context of 3-D lossy predictive geom-
etry coding. Predictive VQ yields good compression per-
formance at medium to high coding rates by exploiting
the statistical dependencies among the components of
the vertex prediction error vector. Additionally, the map-
ping of the prediction error vectors to the channel indices
by the VQ encoder is very suitable for parallel hardware
implementation and the mapping of these indices to the
reconstruction vectors by the VQ decoder requires low
computational complexity. Predictive VQ may be pre-
ferred to transform based coding in applications where
low complexity is desired along with high reconstruction
fidelity.

In the predictive VQ methods of [8] and [9], the distor-
tion is minimized without a rate constraint. Both [8] and
[9] address the mismatch problem of the actual prediction
error vectors to the codebooks designed in an open loop
way by using the original vertices in prediction. In [8],
the prediction error vectors (model space vectors) are rep-
resented in the local coordinate system and compressed
using minimum distortion vector quantization (MDVQ).
The codebook is transmitted as overhead. To prevent error
overflows due to quantization distortion accumulation in
predictive coding, [8] inserts correction terms into the bit-
stream which are scalar quantized normalized delta differ-
ences of parallelogram prediction errors. In [9], codebook
design is a closed loop iterative process, where in each pass,
the predictions are based on the reconstructed vertices
from the previous pass and the designed codebook is, in
turn, applied to the quantization of the prediction error
vectors used in its design. Assuming that this more optimal
quantization of the prediction error vectors yields better
prediction performance, the convergence of the iterations
is guaranteed. Low complexity pyramid VQ, which saves
from the codebook overhead rate, is also investigated in
[9] for geometry coding.
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Unlike [8] and [9], the proposed VQ method incorpo-
rates a rate constraint. A low complexity variant of the
high performance Alphabet Entropy Constrained Vector
Quantization (AECVQ) method of [5] is employed in this
work. The universally designed codebook is partially
adapted to the prediction error vector source by the nor-
malization of the prediction error vectors prior to code-
book design and encoding. This approach is simpler to
design and implement, and more efficient than the fully
adaptive codebook design approach of [6,9].

1.2. The local coordinate system

The primary contribution of the current work is the uti-
lization of a local coordinate system for efficient vector
quantization of the prediction error vectors in a predictive
VQ based geometry compression system. The local coordi-
nate system clusters these vectors around two quadrants of
a 2-D planar subspace. As a result, their components can
be more efficiently block coded.

The parallelogram prediction is ineffective in certain
cases. Across highly non-convex or non-planar triangle
pairs, the multi-way prediction of each vertex [41], and in
high degree polygon dominated meshes, the high degree
polygonal vertex prediction by setting the highest Fourier
frequency to zero [42], were shown to improve prediction
performance. As a secondary contribution, the current
work proposes a derivative descent technique in the local
coordinate system for low complexity estimation (and
Fig. 1. The geometry encoder (top) an
compensation) of the systematic bias in the parallelogram
prediction rule for triangular mesh coding.

The proposed geometry compression system is depicted
in Fig. 1. Since the transformation for each vertex is
derived from the previously decoded vertices, no side infor-
mation about the transformation is transmitted from the
encoder to the decoder. On the other hand, the bias, esti-
mated by the encoder from the original vertex data, is
transmitted as side information (not shown in the figure)
to the decoder.

The local coordinate system in [8] bears some resem-
blance to the one proposed in this paper. The vertex at
the far end of the triangle, that is a neighbor of the new tri-
angle, is used as the prediction. Since the two edges inci-
dent on this vertex define the basis vectors of the
coordinate system of [8], VQ in this coordinate system sim-
ulates parallelogram prediction. However, the non-orthog-
onality of the coordinate system counteracts the
decorrelation goal of efficient compression schemes. Hence,
the rate-distortion performance reported in [8] is often
short of that of [15].

Similar local coordinate systems have also been explored
in [23,37–40] to boost geometry compression performance.
In [23], the local coordinate system is used to estimate the
bending angle for an improved prediction. In [38], the vec-
tor between the new vertex and the prediction taken to be
one of the two focus (gate) vertices (the origin of the local
coordinate system) is encoded. This prediction is likely to
be inferior to parallelogram prediction which exploits the
d the geometry decoder (bottom).
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correlations between the corresponding dimensions of the
adjacent triangles. In the progressive coder of [39], the vec-
tor formed between the barycenter of a previously coded
patch and the new vertex in the middle of the patch is
coded. Similarly, the multiresolution mesh generation of
[40] represents finer level vertices as 1-D displacements
along the direction of normals from the coarser level faces.
In the local coordinate system employed in [37] for tetrahe-
dral meshes, the z-axis is normal to the gate triangle of the
processed volume, and the new vertex of a tetrahedron bor-
dering the gate triangle is predicted.

Next section outlines the connectivity coding algorithm
of [18] used to determine the vertex traversal order during
geometry coding. After a review of the parallelogram pre-
diction rule of [15,22], Section 3 covers the proposed geom-
etry coding system. The local coordinate transformation is
described and the related clustering of the prediction error
vectors is explained in Section 3.1. Section 3.2 explains the
rate-distortion theoretic performance advantage of block
coding in a local coordinate system. Section 3.3 gives
implementation details of AECVQ. Section 3.4 discusses
the bias in the parallelogram prediction rule along the
y-axis direction of the local coordinate system and its esti-
mation and compensation for a higher coding gain. In Sec-
tion 4, we present simulation results for performance
assessment of the proposed ideas. Here, computational
complexities of the key components of the proposed
method are also reported.
2. Connectivity coding

In the region growing approach of [18], the connectivity
coding approach of [15] for triangular meshes is general-
ized to polygonal meshes. The encoder and the decoder
of the proposed method use its vertex traversal order for
coding vertex valences to synchronize the predictive coding
and decoding of the vertex coordinates. For completeness,
we present it here.

At each generic step, the algorithm of [18] inserts a new
face to one of one or more connected processed regions.
The region, to which the new face is inserted, is bounded
by a list of vertices termed the active boundary. The
boundaries of those connected regions that are not cur-
rently grown reside in a stack. The edge or the set of edges
on the active boundary, that defines the border between the
new face and the processed region to which it is inserted, is
called the focus. After the new face is inserted on the focus,
Fig. 2. Region growing algorithm steps: each new face is added on the focus by
focus becomes the last edge. If one end of the focus is a zero free valence vertex
boundary has ends at vertices with fewer free valences then exit focus moves
its degree is coded, and the valences of its previously
uncoded vertices are coded in a clockwise order where
the last traversed edge of the inserted face becomes the exit
focus. If the exit focus has a zero free valence vertex on one
end, it is widened on that end. Otherwise, if one of the two
edges neighboring the exit focus on the active boundary has
smaller free valence vertices on its ends, the exit focus is
moved to that edge. A more elaborate decision is made
in [18] to move the exit focus.

As a result of the face insertion, the active boundary
may lead to a previously encoded vertex on the active
boundary, or a boundary in the stack. In the first case, if
no more faces can be inserted into that region, the bound-
ary from the top of the stack is popped and becomes the
new active boundary. Otherwise, the boundary is split into
two. One boundary is pushed onto the stack and the other
is designated the new active boundary. In the second case,
the active boundary is merged with the boundary in the
stack.

The coordinates of the previously uncoded vertices of a
new face are predictively coded in the same clockwise order
as their valences. Fig. 2 illustrates the main steps of the
region growing algorithm.

3. The geometry compression system

In linear predictive coding of vertex coordinates, a pre-
diction vector for the currently coded vertex is formed as a
linear combination of the previously coded vertices, the
prediction error vector components are quantized and the
resultant quantization levels are entropy coded.

Predictive coding is susceptible to prediction error drift
and loss of tracking at the decoder in the presence of chan-
nel errors. Nevertheless, linear predictive coding is widely
employed in geometry coding to achieve high compression
efficiency by exploiting the high correlations between the
values of the corresponding coordinates of neighboring
vertices.

The parallelogram prediction of vertex va is formed as
the vector of coordinates

~̂va ¼ ~vb þ ~vc � ~vd ð1Þ

where ~vi, i 2 {b,c,d}, denotes the vector of reconstructed
coordinate values of the ith vertex used in the prediction
of va. The notation ~̂va emphasizes the dependence of the
prediction on the reconstructed rather than the original
coding its degree and the valences of its vertices in a clockwise order. Exit
as in (c) it is widened on that end. If either neighboring edge on the active

to that edge as in (d).



Fig. 4. Sample vector s1 is rotated by h degrees to yield s2 on the x–z plane
which is further rotated by / degrees to yield s3 on the z-axis of the global
coordinate system.
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vertices. If only ~vb and ~vc are the previously coded vertices
of the new face, then ~vd is the first previously coded vertex
in the clockwise direction from the edge ~vb and ~vc in a pre-
viously coded neighboring face. This operation is termed
across prediction [22]. Otherwise, ~vd is between ~vb and ~vc

on the new face. In this case, the operation is termed within
prediction [22]. The first coded vertex of a new face is either
across predicted or within predicted (focus widened), while
its other coded vertices are within predicted. Fig. 3 shows
each type of prediction.

The parallelogram rule works efficiently, if the number
of vertices on a face is three, in the case of across predic-
tion, and four, in the case of within prediction. Another
implicit assumption is that the vertices used in prediction
and the predicted vertex are coplanar. In general, this is
not true due to the surface normal component of the quan-
tization noise in the reconstructed vertices used in predic-
tion and the crease angle between adjacent faces (surface
curvature).
3.1. The local coordinate transformation

The first step of the local coordinate transformation is
the determination of a surface normal vector. This vector
can be determined as the cross product of the two vectors
between the three vertices used in prediction. In polygonal
meshes, where more previously coded vertices of a face
may be available, least squares estimation of the surface
normal vector of the plane that best fits these vertices yields
better coding performance.

Once the surface normal vector is estimated, two rota-
tions that first map the surface normal vector to a vector
in the x–z plane and then map this vector to a vector on
the z-axis of the global coordinate system are determined.
Fig. 4 illustrates these rotations. In the same order, the
two rotations are then applied to all the vertices used in
prediction as well as the predicted vertex to place them in
a new coordinate system.

For within prediction in a polygonal face, the direct
application of Eq. (1) in the new coordinate system could
be suboptimal, since it ignores the fact that most mesh gen-
eration applications tend to generate planar faces. In this
case, only the x–y components of the prediction should
Fig. 3. Left: across prediction. Right: within prediction.
be formed by the application of the parallelogram rule in
a 2-D planar subspace. To see why, consider the situation
in which the realizations of the zero mean random variable
for the surface normal component of the quantization error
vector are such that qb,z > 0, qc,z > 0, and qd,z < 0. In this
case, the direct application of Eq. (1) results in a cumula-
tive error vector of qa = qb + qc � qd with respect to
v̂a ¼ vb þ vc � vd so that ~̂va ¼ v̂a þ qa. The surface normal
component of qa is qa,z = qb,z + qc,z � qd,z > 0. However,
the best estimate for the surface normal component should
be E[qa,z] = E[qi,z] = 0 if we assume that the predicted ver-
tex is coplanar with the vertices used in prediction. This
implies that, in the new coordinate system, the z-compo-
nent of the prediction should be set equal to the z-intercept
of the least squares estimated plane subjected to the above
rotations rather than the value predicted by the parallelo-
gram rule.

The prediction error vector is found by subtracting the
prediction vector from the predicted vertex in the new
coordinate system. When the vertices used to form the
prediction as well as the predicted vertex are coplanar, the
z-component of the prediction error vector in the new coor-
dinate system is zero and does not have to be coded. In
general, due to the two reasons stated above, this compo-
nent has a nonzero variance. However, this variance is
smaller than the variances of each of the other two compo-
nents for high resolution mesh models with largely smooth
surfaces. Effectively, the prediction error vectors are clus-
tered around the x–y plane.

Consider a hypothetical flat local mesh surface with
adjacent triangles forming parallelograms. In this case,
the variance of each prediction error vector component is
the sum of the variances of the quantization errors of the
corresponding coordinates of the three reconstructed verti-
ces used in prediction assuming independence of the quan-
tization errors in reconstructed vertices. In a real model,
any curvature of the local surface increases the variance
of the z-component, and any deviation from the ideal par-
allelogram geometry increases the variances of the x–y

components beyond the hypothetical case. However, devi-
ations from ideal parallelogram geometry are much more



Table 1
The variances of prediction error vector components represented in the
global and local coordinate systems (obtained with MDVQ coding with
8192 codevectors)

Bunny (34834 vert.) Horse (19851 vert.) Venus (50002 vert.)

Local w/o bias comp.

r2
X 5.921e � 8 4.512e � 7 9.421e � 6

r2
Y 2.721e � 7 1.780e � 6 1.999e � 5

r2
Z 3.769e � 8 5.475e � 8 6.978e � 7

c2 0.6885 0.4632 0.5066

Local with bias comp.

r2
X 5.835e � 8 4.544e � 7 9.384e � 6

r2
Y 1.617e � 7 3.975e � 7 1.129e � 5

r2
Z 3.737e � 8 5.405e � 8 6.700e � 7

c2 0.8233 0.7077 0.5820

Global

r2
X 1.095e � 7 4.940e � 7 8.310e � 6

r2
Y 9.173e � 8 4.145e � 7 1.185e � 5

r2
Z 9.707e � 8 4.707e � 7 1.020e � 5

c2 0.9973 0.9973 0.9896
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pronounced than the crease angle between adjacent faces
for a high resolution model with a largely smooth surface.
Therefore, one can expect much larger variances for the x

or y components than for the z-component. Table 1 verifies
this claim on several standard triangular mesh models.

For further clustering of the prediction error vectors, a
translation and a third rotation are applied so that the
imaginary line connecting the vertices ~vb, ~vc used in predic-
tion is aligned with the y-axis, each vertex is equidistant
from the x-axis and the third vertex ~vd used in prediction
has a negative x-coordinate. Since the crease angles
between faces are highly unlikely to be larger than 90�,
the predicted vertex is not likely to have a negative x-coor-
dinate if the quantization errors in the coordinates of the
vertices used in prediction are not large. We term the over-
all operation of performing the three rotations plus the
translation for each face the local coordinate

transformation.
3.2. The rate-distortion advantage of the use of the local

coordinate system

The prediction error vector represented in the global
coordinate system exhibits an isotropic distribution with
no component biased towards a higher or a lower variance
than the other two. On the other hand, as discussed above,
the z-component of the prediction error vector in the local
coordinate system is biased to have a lower variance than
the x or y components. In this section, we shall discuss
how the nonuniformity in the variances of the components
of the prediction error vector in the local coordinate system
translates to a coding gain in the light of a rate-distortion
performance bound derived using the Shannon lower
bound [7] for Laplacian sources.

Prediction error vector components are commonly
modeled by Laplacian pdfs. Even though an analytical
closed form formulation for the rate-distortion function
with squared error criterion for an i.i.d. source with a
Laplacian pdf does not exist, Shannon lower bound [7,
p.92] yields valuable insight into the performance of prac-
tical codecs. Let component n of the prediction error vector
be modelled as a scalar source with variance r2

n. For distor-
tion Dn in component n, the lower bound on rate may be
written as

RL;nðDnÞ ¼
1

2
log

er2
n

pDn
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; 0 6 Dn 6

er2
n

p
ð2Þ

Then, a lower bound on the average rate as a function of
the component distortions may be obtained as
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c2 ¼
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and r2 ¼ 1
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The inequality follows from the relation between the geo-
metric and arithmetic means. When Dn = D,
RL(DX,DY,DZ) is minimized with respect to DX, DY, DZ

over the constraint set 1
3

P
n:n2X ;Y ;ZDn ¼ D to yield the equal-

ity case of the inequality in Eq. (4). The quantity c2 as-
sumes values in the interval [0, 1] and measures the
nonuniformity of the component variances. The closer
the component variances are to their arithmetic mean,
r2 ¼ 1

3

P
n:n2X ;Y ;Zr

2
n, the closer c2 will be to 1.

Let us assume for a moment that the prediction error
vector has zero mean. In this case, since the prediction
error vector norm does not change as a result of the ortho-
normal local coordinate transformation, r2 will be the
same in the global and local coordinate systems. However,
the c2 parameter is smaller for the local coordinate system
where the component variances are nonuniform. There-
fore, Eq. (4) suggests that, for a given average distortion
D, the rate can be expected to be lower when the prediction
error vectors are represented in the local coordinate system
than in the global coordinate system.

Since the prediction error vector components are virtu-
ally memoryless, Eq. (2) with Dn = D and r2

X > r2
Z and

r2
Y > r2

Z suggests that these components may be scalar
quantized by allocating fewer bits to the z-component than
to each of the other two components. Vector quantization
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of the prediction error vector, discussed in the next section,
is an alternative strategy that can realize the advantage of
block coding in the local coordinate system.

3.3. AECVQ and partial codebook adaptation

In ECVQ [4], the problem of minimization of distortion
D subject to rate R 6 Rmax is posed equivalent to the prob-
lem of minimization of the cost functional J = D + k R.
For a given k, this minimization is achieved by joint opti-
mization of the codebook of reproduction codevectors,
source vector to codevector index mapping and entropy
codeword length for each codevector index. The codebook
for the nth entropy constraint kn is initialized with the final
codebook for the (n-1)th entropy constraint kn�1

(kn�1 < kn).
In the AECVQ approach of [5], the codebook design

process is considerably simplified with negligible coding
performance loss by fixing the reproduction codevectors
as MDVQ codevectors rather than optimizing them for
the constraint parameter k as in [4]. The iterative design
in [5] jointly optimizes the source vector to codevector
index mapping and the entropy codeword length for each
index.

Since the source distribution is generally not avail-
able, the traditional design approaches of [4] and [5]
involve iterative optimization of the components of the
encoder by employing a set of training vectors. While
this works fine for coding a (test) source whose distribu-
tion matches exactly the distribution from which the
training vectors are drawn, any distribution mismatch
between the training and test sources results in inferior
performance at low coding rates. The reason for this
is a fixed entropy constrained source vector to codevec-
tor index mapping designed using index probabilities
estimated from the training source. For acceptable
ECVQ or AECVQ performance at low coding rates,
the index probabilities should be estimated from the
encoded (test) source. To meet this requirement, the tra-
ditional design approaches would run the iterative opti-
mizations over numerous encoding passes. Since this is
undesirable, the proposed approach uses a single encod-
ing pass.
Fig. 5. Codevector distribution (left) fairly well covers the prediction
Let C = {yi: i = 1, . . . ,N} be a MDVQ codebook of size
N. In the proposed approach, the prediction error vector x

is assigned to codevector yk by the entropy constrained
assignment rule according to

x! yk if k ¼ arg min
j
½dðx; yjÞ � klog2pðyjÞ� ð5Þ

where d(x,yj) is taken as the Euclidean distance between x

and yj, and �log2p(yk) is the optimal codeword length of
codevector yk. The index k is adaptively arithmetic coded
[21].

The entropy codeword lengths can be estimated from
codevector index frequencies. These frequencies are based
on previously coded indices, so that the decoder can track
these estimates without the need for the encoder to trans-
mit them as side information. The index frequencies are ini-
tially set equal to 10 for the large models and 1 for the
smaller models. The frequency of each coded index is
incremented.

The designed codebook is partially adapted to the
encoded source by normalization of the prediction error
data prior to codebook design and encoding. Specifically,
after their (small) mean vector is subtracted from the pre-
diction error vectors, the resultant error vector components
are divided by their standard deviation. After decoding, the
reconstructed normalized prediction error vectors are
inverse normalized. Since the statistics can be obtained
exactly only after actual encoding, they are estimated in
an initial pass where the predictions are based on original
vertices. This partial codebook adaptation approach is
much simpler to implement and more effective than the
ACL (asymptotic closed loop) based iterative closed loop
codebook design approach of [6,9] that matches the code-
books to the encoded prediction error vectors. In order
for the ACL codebooks to match the encoded source, they
need to be transmitted with an overhead rate which could
be large for meshes with as many as 30000 vertices. On
the other hand, the overhead rate for the statistics used
in normalization for partial codebook adaptation is
negligible.

Fig. 5 shows that for low as well as high rates, the pre-
diction error vector clouds are covered well by the codevec-
tor clouds due to normalization.
error vector clouds at high (middle) as well as low (right) rates.
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3.4. Exploiting the parallelogram prediction error vector bias

In this section, we discuss an effective technique to
improve the parallelogram prediction rule in triangular
mesh coding and the use of the local coordinate system
for its computationally efficient implementation. General-
ization to polygonal meshes is not straightforward and is
not attempted in this work.

The parallelogram prediction rule carries a bias in the
local y-coordinate value of the predicted vertex. From a
large number of models, we note that the event of the
actual local y-coordinate value exceeding the local y-coor-
dinate value of the parallelogram prediction in absolute
value has a probability significantly smaller than 0.5. This
could be because the mesh generation applications tend to
avoid the skinny triangles that result when this event hap-
pens. Skinny triangles could lead to degenerate triangles
when the vertex coordinates are quantized. Based on the
notion that relative positions of the vertices scale with
the local geometry, a substantial reduction in the y-com-
ponent variance of the prediction error vector can be
obtained when the y-coordinate value is predicted as a
fixed fraction of the value predicted by the parallelogram
rule.

Let this new prediction for the y-coordinate value of the
nth coded vertex be expressed as ð1þ dyÞ~̂vn;y in the local
coordinate system. Here dy~̂vn;y is the correction to the par-
allelogram prediction. Note that the correction scales with
the y-coordinate value of the parallelogram prediction. dy

can be estimated to minimize the variance of the y-compo-
nent of the prediction error vector. A fast, but effective
method on large mesh models is to employ derivative des-
cent whose generic update step is

dnþ1
y ¼ dn

y þ ln � �n � ~̂vn;y ð6Þ

where �n is the final prediction error for the nth coded ver-
tex due to the employment of ð1þ dn

yÞ~̂vn;y as the most likely
y-coordinate.

As with all gradient descent schemes, the choice for l is

not too critical and setting ln ¼ 0:001
1
n

Pn

i¼1
ðvi;yÞ2

ensures a fast

enough convergence to the local minimum without
oscillatory behaviour for a large set of tested models.

The bias is also estimated in the initial pass with predic-
tions based on original vertices. In the second pass, dN

y , the
estimate at the end of the first pass, is used to predict the y-
coordinates of all vertices in the local coordinate system.

For the test models Bunny, Horse and Venus Head, the
derivative descent scheme described above estimated signif-
icant bias values of dy = �0.3689, dy = �0.9823 and
dy = �0.8694, respectively, in the local y-coordinate. Again
referring to Table 1, one notes that the compensation of the
bias results in a considerable reduction in the y-component
variance of the prediction error vector. The variances of the
other two components are only slightly affected. Quite fre-
quently this translates to a coding gain.
Since the bias is only in the local y-coordinate, the
local coordinate system provides a convenient setting
to estimate and compensate for this bias. On the other
hand, bias estimation and compensation in the global
coordinate system requires a projection of the parallelo-
gram prediction onto the line connecting the vertices
~vb and ~vc.

Below, we summarize the codebook design and encod-
ing processes. The decoding process is very much similar
to the decoding process except that the error vector is not
computed.

AECVQ codebook design:

1. For each mesh in the training set {
a. Initialize the bias to zero.
b. For each vertex in the mesh, in the order dictated by

connectivity coding {
i. Determine the local coordinate system (l.c.s.):

• Determine the normal vector by the cross
product rule or the Least Squares algorithm
using the original coordinates of other vertices
of the same face.
ii. Represent all vertices of the face in the l.c.s. by
applying the two rotations

iii. Form the initial prediction by the parallelogram
rule using original vertices.

iv. Modify the y-coordinate of the prediction by the
bias and obtain the prediction error vector.

v. Update the bias by the derivative descent rule of
Eq. (6) using the y-component of the error vector
and the initial prediction.
}

c. Normalize the prediction error vectors of the mesh

by using their statistics.

}
2. Design an MDVQ codebook by the LBG algorithm [3]

using the normalized prediction error vectors.

Encoding of a test mesh:

1. Run step 1. of the design process on the test mesh to get
its statistics and bias.

2. For each vertex in the test mesh,in the order dictated by
connectivity coding {
a. Determine the local coordinate system (l.c.s.):

• Determine the normal vector by the cross product
rule or the Least Squares algorithm using the
reconstructed coordinates of other vertices of the
same face.
b. Represent all vertices of the face in the l.c.s. by apply-
ing the two rotations.

c. Form the initial prediction by the parallelogram rule
using reconstructed vertices.

d. Modify the y-component of the prediction vector by
the bias and obtain the error vector.
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e. Normalize the error vector by using the statistics.
f. Encode the normalized error vector.

• Apply the rate constrained mapping of Eq. (5) to
determine the codevector.

• Arithmetic encode the codevector index.
Update the probability model of the arithmetic
encoder.

g. Inverse normalize the codevector to get the recon-

structed error vector.

h. Add the reconstructed error vector to the modified
prediction vector to get the reconstructed vertex in
the l.c.s.

i. Represent the reconstructed vertex in the global coor-
dinate system by applying the inverse rotations.
Fig. 6.
}

4. Experimental results

Primary purpose of the simulations is to compare the VQ
rate-distortion performance in the global and the local coor-
dinate systems. Of secondary interest is the advantage of the
use of AECVQ over MDVQ, partial codebook adaptation
by normalization over ACL based full codebook adapta-
tion, and the advantage of estimation and compensation
of parallelogram prediction bias for triangular mesh models.

Let the vector of smoothness values of the vertex
coordinates be specified by the Laplacian
Visual distortion (Evis)–Rate (bpv) curves, Top: Al (3618 vertices), Bo
SðviÞ ¼ vi �
P

j2NðiÞ
l�1
ij vjP

j2NðiÞ
l�1
ij

where lij = i vi � vj i and N(i) is the

valence of the ith vertex. A smoothness value measures
how well a vertex is predicted as the weighted average of
the vertices surrounding it. As in [25], we use
Evis ¼ 1

2M ðMq þ SqÞ as the visual distortion criterion.

Mq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1 k vi � v̂i k 2

q
is the norm of the geometric dis-

tance between the original and reconstructed vertex coordi-

nate values, Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1 k SðviÞ � Sðv̂iÞ k 2

q
is the norm of

the distance between the original and the reconstructed
smoothness values of the coordinates, and M is the number
of model vertices. The importance of incorporating
smoothness into the visual distortion criterion is empha-
sized in [28] where it is suggested that Sq should perhaps
have a substantially larger weight than Mq, despite lack
of evidence as to what it should be.

The simulations have been conducted on two sets of
models. The first set contains mostly small models from
http://www.cs.unc.edu/isenburg/pmc/ with polygonal
faces. Six models (Beethoven, Cow, Cupie, Raptor, Snake
and Wolf) were included in the training set. The second
set contains larger triangular mesh models. Eleven models
(Dinosaur, Feline, Femur, Fibula, Fish, Head, Rabbit,
Skull1, Skull2, Tibia, and Woman) were included in the
training set.

The initial highest rate AECVQ data point was obtained
by designing and encoding with MDVQ codebooks of
2048 and 8192 codevectors, for the first and second sets,
ttom-left: Lion (16302 vertices), Bottom-right: Triceratops (2832 vertices).

http://www.cs.unc.edu/isenburg/pmc/


Fig. 7. Visual distortion (Evis) vs. Rate (bpv) curves, Top: Bunny (34834 vertices), Bottom-left: Horse (19851 vertices), Bottom-right: Venus Head (50002
vertices).

Table 2
Rate (bpv of original mesh) and Hausdorff distance (wrt. b.box diag.)
obtained with the proposed method and Normal Mesh Compression
(NMC) method of [33] employing the loop wavelet transform (with
flatness threshold of 0.01 during inverse transform)

Bunny 34834 vert.

Proposed
Rate (bpv) 10.080 6.836 4.338 2.841
Hausdorff dist. 0.002637 0.001496 0.001893 0.005615

NMC
Rate (bpv) 11.554 4.665 2.368 1.220
Hausdorff dist. 0.005350 0.005370 0.005332 0.007420

Horse 48485 vert.

Proposed
Rate (bpv) 9.685 4.826 4.045 2.439
Hausdorff dist. 0.004005 0.005157 0.004375 0.005738

NMC
Rate (bpv) 8.294 3.344 1.694 0.870
Hausdorff dist. 0.003854 0.003981 0.004057 0.005189

Venus 50002 vert.

Proposed
Rate (bpv) 11.111 8.055 4.597 2.275
Hausdorff dist. 0.001170 0.001080 0.002559 0.008122

NMC
Rate (bpv) 8.055 3.256 1.656 0.856
Hausdorff dist. 0.003258 0.003583 0.003797 0.004424

The number of bits reported for NMC includes the number of bits for TG
coding of coarsest level.

Fig. 8. Venus Head—Top-left: Original. Top-right: AECVQ coded at
7.729 bpv in the local coordinate system with bias compensation. Bottom-
left: NMC [33] coded at 8.055 bpv. Bottom-right: TG [15] coded at
7.750 bpv. (Smooth rendering by virtue 3-D optimizer.)
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Fig. 9. Bunny Top-left: Original. Top-right: AECVQ coded at 5.688 bpv
in the local coordinate system with bias compensation. Bottom-left: NMC
[33] coded at 11.554 bpv. Bottom-right: TG [15] coded at 5.738 bpv.
(Smooth rendering by virtue 3-D optimizer.)
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respectively. The initial MDVQ codebook size had to be
constrained so that the average frequency per probability
model bin in arithmetic coding would not be small. For
models larger than those tested here, larger initial codebook
sizes can be used in order to achieve higher coding rates.

The visual distortion vs. rate curves displayed in Fig. 6
for the coding of the three polygonal test models, Al, Lion
and Triceratops show that the AECVQ coding perfor-
mance is better when the prediction error vectors are repre-
sented in the local coordinate system than in the global
coordinate system. A second comparison based on Fig. 6
reveals that AECVQ coding with partial adaptation of
the codebook via normalization by the statistics of the
encoded model yields far better compression performance
than MDVQ coding employing full codebook adaptation
via the ACL algorithm of [9]. Since the highest rate point
(k = 0) on the AECVQ curve corresponds to MDVQ, a
substantial part of the gain is due to the use of partial code-
book adaptation.

The visual distortion vs. rate curves are displayed in
Fig. 7 for the coding of the triangular test models, Venus
Head, Horse and Bunny. AECVQ coding performance is
Table 3
Average run times for the components of the proposed compression method

AECVQ encoding (8192
codevectors)

AECVQ decoding
codevectors)

Horse (19851 vertices) 21.08 s 1.27 s
Venus Head (50002

vertices)
51.14 s 2.83 s
again distinctly higher in the local coordinate system than
in the global coordinate system. The gap between the two
is especially large at low coding rates. Bias estimation
and compensation yields a small coding gain for the Horse
and Venus Head models at all rates. However, as suggested
by the coding results for the Bunny model, reduction in
prediction error variance (see Table 1) does not necessarily
translate to a coding gain at all rates.

The AECVQ coding in the local coordinate system also
exhibits a performance advantage to the TG predictive
coding method of [15]. The gap is especially significant at
low rates. A 20% gain in bit rate with respect to the TG
method is also reported in [38], but at fairly higher rates
than tested here.

It is also observed from Fig. 7 that the coding perfor-
mance of the proposed method can exceed that of the
KG spectral coding method of [25] at medium to high cod-
ing rates where the fidelity of the coded models is accept-
able for most applications. Note that in the visual
distortion vs. rate curves of [25], prequantization to 12
bit/coordinate followed by entropy coding results in maxi-
mum rates of only about 2–3 bpv. Prequantization to
higher number of bits allows for a wider range of rates,
but yields inferior coding performance due to the inefficient
bit ordering (LSB’s of certain coefficients coded before
MSB’s of others) in coding due to coefficient truncation.

In Table 2, we also provide geometry compression per-
formance comparisons with the Normal Mesh Compres-
sion (NMC) method of [33]. Since [33] treats geometry
compression as a surface approximation problem, we
report the symmetrical Hausdorff distance (measured by
the METRO tool of [34]) between the original and recon-
structed surfaces, as in [35]. The symmetrical Hausdorff
distance between surfaces S and S 0 is

ds S; S0ð Þ ¼ max max
p2S

d p; S0ð Þ;max
p2S0

dðp; SÞ
� �

where dðp; SÞ ¼ min
p02S0
k p� p0 k. At low rates, the perfor-

mance of the wavelet method is always superior to the pro-
posed method. However, at high rates, the proposed
method frequently outperforms the wavelet method since
the remeshing error becomes significant.

In Figs. 8 and 9, we show the original Venus Head and
Bunny models, and the reconstructions obtained with the
proposed method, the TG method and the NMC method.
Unlike the TG method or the proposed method, the NMC
method yields almost perfect results on smooth surfaces at
(8192 Transform + Inv. Tfm
(encoder)

Transform + Inv. Tfm
(decoder)

0.061 s 0.048 s
0.197 s 0.152 s
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high rates. However, remeshing results in large high fre-
quency features to be partially wiped out. Consequently,
the curls on the hair of Venus Head and folds of skin on
the hind leg of Bunny are better reconstructed with the pro-
posed method than the NMC or the TG methods.

In Table 3, we report run times for the key components
of the geometry compression system averaged over several
runs on a Pentium 4, 2.6 GHz system with 1 Gb RAM,
800 MHz FSB. The encoder computational complexity is
mainly due to the search for the optimal codevector
according to Eq. (5) and could be considerably cut down
by a parallel implementation of this search. On the other
hand, the AECVQ decoding complexity, is mainly due to
the large alphabet arithmetic decoding. The table look-up
for mapping the entropy decoded codevector indices to
the codevectors is very fast (several ms). In the case of
polygonal models, the least squares estimation of the sur-
face normal vector takes several minutes for a polygonal
model of the same size as Horse and is not suitable for real-
time operations.

5. Conclusions

In this paper, we have proposed the application of a
local coordinate transformation prior to the predictive
vector quantization of 3-D object mesh geometry. The
rate-distortion advantage of the proposed transformation
is explained by means of a rate-distortion lower bound
for k-tuple (k = 3) coding of i.i.d. sources. The lower
bound is parameterized by a measure of uniformity of
the prediction error vector component variances. Signifi-
cant coding gains are realizable with the local coordinate
transformation since it yields a small uniformity measure.

Partial codebook adaptation via normalization of the
encoded prediction error vector source with its own statis-
tics has substantially lower implementation complexity
than the ACL based full codebook adaptation scheme of
[8,9]. This scheme yields better coding performance than
the ACL based scheme since the ACL based design suffers
from the mismatch of the universal codebook and the
encoded source if the codebook is not transmitted with
an expensive overhead. On the other hand, the overhead
rate required for partial codebook adaptation is very little.

On the average, a slight improvement in triangular mesh
coding performance may be obtained by estimating and
compensating for the bias in the parallelogram prediction
rule. The local coordinate system provides a natural setting
to apply this technique.

Predictive AECVQ coding in a local coordinate system
is a low complexity alternative to the transform based
methods at medium to high rates and the TG predictive
coding method at almost all, but especially low rates.

Possible directions of future research include investigat-
ing structured VQ schemes as well as hybrid of fixed-length
and variable length codes to reduce the computational
complexities at the encoding and decoding sides.
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