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ABSTRACT 

Online inertia tensor measurement of a vehicle suspended on a six degree of freedom Stewart Platform is performed 
via a recursive least squares algorithm. Inertia tensor parameters are updated online while the platform simultaneously 
rotates about its yaw, pitch and roll axes. Position control of the Stewart Platform is achieved by controlling each of the 
leg lengths within a decoupled PID loop after solving the desired joint lengths through inverse kinematics. An 
accelerometer mounted on the movable platform provides real time acceleration data and load cells on each leg provide 
the force data.  Thus the governing dynamic equations of the upper platform are cast in a least squares form and the six 
independent entries of the inertia tensor are estimated recursively in order to gain speed and save memory. In 
simulations fast convergence to actual values are obtained for all parameters of interest.      
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STEWART PLATFORMU ÜZERİNDE ÇEVRİMİÇİ ARAÇ EYLEMSİZLİK TENSÖRÜ ÖLÇÜMÜ İÇİN BİR 

YÖNTEM 

ÖZET 

Altı serbestlik dereceli bir Stewart Platformu üzerine sabitlenmis bir taşıtın ardışık en küçük kareler yöntemiyle 
eylemsizlik tensörünün ölçümü gerçekleştirilmiştir. Eylemsizlik tensörü parametreleri  araç aynı anda üç dönme ekseni 
etrafında hareket ederken çevrimiçi olarak güncellenmektedir. Stewart platformunun konum kontrolü her bir bacağı ters 
kinematik probleminin çözümü sonucunda istenilen boya ayrı bir PID denetleyicisi kullanılmak suretiyle 
gerçekleştirilir. Hareketli platform üzerine monte edilen bir ivme ölçer gerçek ivmelenme verisini, her ayaktaki kuvvet 
sensörleri ise kuvvet verisini sağlar. Netice olarak üst platformun dinamik denklemleri en küçük kareler biçiminde 
yazılmış ve eylemsizlik tensörünün altı bağımsız değiskeni hız kazanmak ve hafıza tasarrufu sağlamak amacıyla ardışık 
olarak en küçük kareler yöntemiyle tahmin edilmilştir. Benzetimler sonucunda ilgili tüm değerlerin gerçek değerlerine 
hızla yakınsadığı görülmüştür.  

 
Anahtar kelimeler: Stewart platformu, eylemsizlik tensörü, çevrimiçi ardışık parametre tahmini 
 
 

1. INTRODUCTION 

Experimental research on vehicle dynamics and 
vehicle control depends tightly on the knowledge of 
vehicle parameters. While, the main challenge resides in 
the determination of tire parameters, another aspect of the 
problem consists in having a good knowledge of the 
vehicle inertial parameters. A number of studies have 

appeared in the literature concerning the online 
determination of the latter. In [1], recursive least squares 
are used to determine mass and road grade during driving 
conditions. In [2], a methodology based on multiple 
models and switching for real-time estimation of center 
of gravity (CG) position of an automotive vehicle is 
presented. While in [3], an active steering controller is 
designed so as to be robust against changes in vehicle CG 
and yaw moment of inertia. The importance of 



 

determining inertial parameters during driving is obvious: 
vehicle dynamics controllers must quickly adapt 
themselves to new operating conditions and ensure 
vehicle stability at all times. However, it is also clear that 
on board parameter estimation algorithms need good 
initial guesses for inertial parameters. Various industrial 
apparatus exist such as the VIMF (vehicle inertia 
measurement facility) [4] produced by S.E.A., 
Incorporated (SEA), and the VIMM (vehicle inertial 
measurement machine) [5] produced by ika. The former 
consists of a set of various experimental setups for the 
separate computation of yaw, roll and pitch inertias. The 
latter is a three degree of freedom testing table where all 
inertial parameters are claimed to be rapidly determined. 

The Stewart platform has been widely used as a 
simulation platform in both the automotive and aerospace 
industries. In this paper, we propose a new application 
area and demonstrate the relative technical simplicity of 
adding an inertial parameter estimation unit to the system.  
In Section 2, kinematics of the Stewart platform are 
presented. The PID position control law is described in 
Section 3. Section 4 deals with the equations of motion 
for the upper platform. The estimation of the  inertia 
tensor is given in Section 5. Finally, conclusions are 
made in Section 6. 

2. KINEMATICS OF THE STEWART PLATFORM 

Parallel mechanisms are essentially robots in which 
the linkages are connected to a base and a moving 
platform. Prismatic joints change the link lengths at the 
joints. According to another definition parallel 
mechanisms are chains whose only few joints are 
actuated. Most celebrated of such mechanisms is the 
modified version of the mechanism originally developed 
by Stewart [6]. In literature this mechanism is called the 
Stewart Platform Mechanism (SPM) and it has six 
controllable degrees of freedom. A typical SPM has six 
length adjustable legs connecting two rigid platforms one 
of which is fixed to the earth. Legs can either be formed 
by pistons and cylinders or by a series of elements linked 
by joints.  The lower connecting points can either be co-
planar or they can lie on different planes altogether. For 
the latter case, extra sensors are needed. Therefore in 
literature, first case is commonly investigated.  Upper 
platform has six degrees of freedom with respect to the 
base. If constant lengths are assigned to the legs 
mechanism becomes a structure. Geometrically speaking 
each leg is a plane tangent to the circle passing through 
three vertices of the platform [7].   

It was through Gough’s proposal that the mechanism 
gained its fully parallel form. Therefore it is sometimes 
referred to as the Gough-Stewart platform. Since Stewart 
has first proposed to use this mechanism as a flight 
simulator it is more common to use the name SPM. Hunt 
has proposed to use this mechanism as a robotic 
manipulator.  

Forward kinematic problem of the Stewart involves 
finding the rotation and translation of the upper platform 

with respect to the base when the leg lengths are known. 
In other words one needs to find the rotation matrix that 
maps the vectors from the upper platforms coordinate 
frame to a coordinate frame fixed on earth. Forward 
kinematic problem is important because one needs to 
know all the possible orientations of the mechanism at a 
given set of leg lengths. On the other hand the inverse 
kinematic problem involves finding the desired leg 
lengths when the translation and rotation of the upper 
platform are known. Inverse relation between serial and 
parallel mechanisms manifests itself here too. In serial 
mechanisms forward kinematic problem is trivial and the 
inverse problem is hard. Conversely in parallel 
mechanisms the inverse problem is easy and the forward 
problem is hard to solve. In order to follow a prescribed 
orbit in real time, by looking at the online dynamics of 
inverse kinematics, one can conclude that the forward 
kinematics has more than one solution [8-10]. There 
exists more than one configuration for a single entry of 
leg lengths. On the other hand inverse kinematics has a 
unique solution. In other words the desired orientation of 
the upper platform can only be formed by a single entry 
of leg lengths.  

 A schematic view of a 6-6 Stewart platform is shown 
in Figure 1. One can start the kinematic analysis by fixing 
two coordinate frames; one {B} fixed to the center of 
immobile base, the other {P} fixed at the center of the 
circle defined by the vertices of the movable platform.  

Polar angles of the vertices of upper and lower 
platforms can be similarly expressed as follows (1-2) 
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Position of a reference point P with respect to 

coordinate frame {P} is given as follows (3). 
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Similarly position of a reference point B with respect 

to coordinate frame {B} is given as follows (4). Here r 
denotes the radius of the base and upper platform 
depending on the subscript. 
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We also let Op denote the position of the platform 

center with respect to the base. From inverse kinematics 
[5] necessary leg lengths are obtained from the following 
mathematical relationship (5).  
 



�� � ������ ��� ���

	������ ��� ���
	 

 
(5) 

 
In the above equation  ���� is the rotation matrix 

which transforms from the stationary base coordinate 
system to the platform coordinate system.  
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Figure 1. Vehicle Mounted on the Platform 
 
Multiplication of individual components gives 

����(7). 
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3. PID POSITION CONTROL 
Desired trajectory signal to the platform is defined to 

provide zero translation and to give simultaneous roll, 
pitch and yaw motions at a chosen amplitude and 
frequency for each of these rotational components (8). 
This approach avoids zero or small entries in the 
regression matrix. 

�� � 0 
�� � 0 
�� � 0 

 
 
 

�� � �� sin��� 
�� � �	 sin�	� �� � �
 sin�
� 

 

(8) 

Each of the leg lengths are controlled within a 
decoupled PID loop after solving the desired joint lengths 
through inverse kinematics discussed in the previous 
section. Leg lengths are measured through linear 
transducers mounted on the piston cylinder mechanisms. 
Proportional, integral and derivative gains are fine tuned 
in order to achieve the best time response, the control 
objective consisting in producing leg forces Fxi so that 
actual leg lengths lact i track desired leg lengths ldi (Figure 
2). 

 
Figure 2. Vehicle Mounted on the Platform 
 
 

4. EQUATIONS OF MOTION FOR PLATFORM 
Inertia matrix of a solid body can be expressed as 

follows.  
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Inertia tensor is a 3x3 symmetric matrix (9). 

Therefore it only has six independent components. Since 
translational and rotational motion are decoupled from 
one another it suffices to write only the three governing 
ordinary differential equations (10-12) related to 
rotational motion in order to solve for the inertia matrix. 
By measuring the forces acting on the upper platform 
through each of the six legs one can solve for the three 
components of the torque.  
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(12) 

 
Platform orientation can be obtained by integrating 

the measured accelerations acting on the platform. 
Necessary acceleration data is obtained from the 
accelerometer mounted on the upper platform. 
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5. INERTIA TENSOR ESTIMATION 

If one assigns the unknown entries of the inertia 
tensor to a vector (13) then the equations of motion of the 
upper platform can be cast into a least squares form with 
a parameter vector and a regression matrix (14). Note that 
the quantities appearing in the regression matrix are 
known through force and acceleration measurements.  
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Then equations through (10-12) are essentially of the 

following form (14). 
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Consequently linear parameter estimation problem 

can be written as in the next equation (15). Over hat 
denotes estimated quantities and ε denotes the estimation 
error. Note that the output vector y is chosen as the torque 
vector. Regression matrix φ contains measured (through 
the accelerometer mounted on the platform) rotational 
acceleration and velocity data terms.  
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Unknown parameter vector θ is updated at each 

iteration of the estimation loop. Parameter update law 
[11] is given by the following equation (16). 
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K matrix appearing in (19) is given below (17) 
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P matrix appearing in (17) is given in (18). P is a 

diagonal matrix. Diagonal entries of P indicate the 
variance (thus accuracy) of the estimated quantity. The 
smaller the corresponding entry in P the better the 
corresponding component of θ. 
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Equations (16-18) are updated at each successive 

iteration of the parameter estimation loop in order to 
obtain the current estimate of θ which is denoted by ��
��. 
Results of these estimations are shown in Figures 3-8 for 
each of the six inertia elements. It can be observed that 
for all unknown inertia terms estimated values converge 
rapidly to their exact values. Number of iterations for a 

good convergence is typically less than 100. In 
simulations so far sensor noise effects have not been 
included. With noise effects included one can expect that 
the average number of iterations to increase by one or 
two orders of magnitude depending on the signal to noise 
ratio (SNR) of the measurement processes.   

 
 
Figure 3. Estimation of Ixx 

 
 
Figure 4. Estimation of Iyy 

 

 
 

Figure 5. Estimation of Izz 
 

 
 

Figure 6. Estimation of Ixy 
 



 
 

Figure 7. Estimation of Ixz 
 

 
 

Figure 8. Estimation of Iyz 

6. CONCLUSION 

A novel technique for vehicle inertia measurement is 
demonstrated. This technique has the advantage of 
simultaneously measuring all components of the inertia 
tensor with a single test setup unlike the ones used in 
industry today.  Typical test time is in the order of 
seconds once the vehicle is fixed on the measurement 
platform. Online recursive method is found to be a very 
efficient solution method for the problem of interest. All 
in all the proposed test setup can be claimed to be an 
improvement over the existing industrial ones albeit some 
additional complexity due to the added degrees of 
freedom which nonetheless can be viewed as an 
advantage at the same time.  

Prospective research shall focus on testing sensor 
noise effects extensively as well as the detailed design of 
hydraulics. 
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