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Preface

Risaprogramminglanguage and a software environment for data analysis and statistics.
It is a GNU project, which means that it is free, open source software. It is growing
exponentially by most measures—most estimates count over a million users, and it has
over 4,000 add-on packages contributed by the community, with that number increasing
by about 25% each year. The Tiobe Programming Community Index of language pop-
ularity places it at number 24 at the time of this writing, roughly on a par with SAS and
MATLAB.

R is used in almost every area where statistics or data analyses are needed. Finance,
marketing, pharmaceuticals, genomics, epidemiology, social sciences, and teaching are
all covered, as well as dozens of other smaller domains.

About This Book

Since Ris primarily designed to let you do statistical analyses, many of the books written
about R focus on teaching you how to calculate statistics or model datasets. This un-
fortunately misses a large part of the reality of analyzing data. Unless you are doing
cutting-edge research, the statistical techniques that you use will often be routine, and
the modeling part of your task may not be the largest one. The complete workflow for
analyzing data looks more like this:

Retrieve some data.
Clean the data.

Explore and visualize the data.

Model the data and make predictions.

A

Present or publish your results.

Xiii
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Of course at each stage your results may generate interesting questions that lead you to
look for more data, or for a different way to treat your existing data, which can send you
back a step. The workflow can be iterative, but each of the steps needs to be undertaken.

The first part of this book is designed to teach you R from scratch—you don’t need any
experience in the language. In fact, no programming experience at all is necessary, but
if you have some basic programming knowledge, it will help. For example, the book
explains how to comment your code and how to write a for loop, but doesn’t explain
in great detail what they are. If you want a really introductory text on how to program,
then Python for Kids by Jason R. Briggs is as good a place to start as any!

The second part of the book takes you through the complete data analysis workflow in
R. Here, some basic statistical knowledge is assumed. For example, you should under-
stand terms like mean and standard deviation, and what a bar chart is.

The book finishes with some more advanced R topics, like object-oriented program-
ming and package creation. Garrett Grolemund’s Data Analysis with R picks up where
this book leaves off, covering data analysis workflow in more detail.

A word of warning;: this isn’t a reference book, and many of the topics aren’t covered in
great detail. This book provides tutorials to give you ideas about what you can do in R
and let you practice. There isn’t enough room to cover all 4,000 add-on packages, but
by the time you've finished reading, you should be able to find the ones that you need,
and get the help you need to start using them.

What s in This Book

This is a book of two halves. The first half is designed to provide you with the technical
skills you need to use R; each chapter is a short introduction to a different set of data
types (for example, Chapter 4 covers vectors, matrices, and arrays) or a concept (for
example, Chapter 8 covers branching and looping).

The second half of the book ramps up the fun: you get to see real data analysis in action.
Each chapter covers a section of the standard data analysis workflow, from importing
data to publishing your results.

Here’s what you'll find in Part I, The R Language:

o Chapter 1, Introduction, tells you how to install R and where to get help.
o Chapter 2, A Scientific Calculator, shows you how to use R as a scientific calculator.

o Chapter 3, Inspecting Variables and Your Workspace, lets you inspect variables in
different ways.

o Chapter 4, Vectors, Matrices, and Arrays, covers vectors, matrices, and arrays.

xiv | Preface
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Chapter 5, Lists and Data Frames, covers lists and data frames (for spreadsheet-like
data).

Chapter 6, Environments and Functions, covers environments and functions.
Chapter 7, Strings and Factors, covers strings and factors (for categorical data).

Chapter 8, Flow Control and Loops, covers branching (1f and else), and basic
looping.

Chapter 9, Advanced Looping, covers advanced looping with the apply function
and its variants.

Chapter 10, Packages, explains how to install and use add-on packages.

Chapter 11, Dates and Times, covers dates and times.

Here are the topics covered in Part II, The Data Analysis Workflow:

Chapter 12, Getting Data, shows you how to import data into R.
Chapter 13, Cleaning and Transforming, explains cleaning and manipulating data.

Chapter 14, Exploring and Visualizing, lets you explore data by calculating statistics
and plotting.

Chapter 15, Distributions and Modeling, introduces modeling.
Chapter 16, Programming, covers a variety of advanced programming techniques.

Chapter 17, Making Packages, shows you how to package your work for others.

Lastly, there are useful references in Part III, Appendixes:

Appendix A, Properties of Variables, contains tables comparing the properties of
different types of variables.

Appendix B, Other Things to Do in R, describes some other things that you can do
in R.

Appendix C, Answers to Quizzes, contains the answers to the end-of-chapter
quizzes.

Appendix D, Solutions to Exercises, contains the answers to the end of chapter pro-
gramming exercises.

Which Chapters Should | Read?

If you have never used R before, then start at the beginning and work through chapter
by chapter. If you already have some experience with R, you may wish to skip the first
chapter and skim the chapters on the R core language.

Preface | xv
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Each chapter deals with a different topic, so although there is a small amount of de-
pendency from one chapter to the next, it is possible to pick and choose chapters that
interest you.

I recently discussed this matter with Andrie de Vries, author of R For Dummies. He
suggested giving up and reading his book instead!

Conventions Used in This Book

The following font conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, file and pathnames, and file extensions.

Constant width
Used for code samples that should be copied verbatim, as well as within paragraphs
to refer to program elements such as variable or function names, data types, envi-
ronment variables, statements, and keywords. Output from blocks of code is also
in constant width, preceded by a double hash (##).

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

There is a style guide for the code used in this book at http://4dpiecharts.com/r-code-
style-guide.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Goals, Summaries, Quizzes, and Exercises

Each chapter begins with a list of goals to let you know what to expect in the forthcoming
pages, and finishes with a summary that reiterates what you've learned. You also get a
quiz, to make sure you've been concentrating (and not just pretending to read while
watching telly). The answers to the questions can be found within the chapter (or at the

1. Andrie’s book covers much the same ground as Learning R, and in many ways is almost as good as this work,
so I won't be offended if you want to read it too.

xvi | Preface
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end of the book, if you want to cheat). Finally, each chapter concludes with some exer-
cises, most of which involve you writing some R code. After each exercise description
there isa number in square brackets, denoting a generous estimate of how many minutes
it might take you to complete it.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://cran.r-project.org/web/packages/learningr.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Learning R by Richard Cotton (O'Reilly).
Copyright 2013 Richard Cotton, 978-1-449-35710-8”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers
Safa rl expert content in both book and video form from the world’s lead-
BooksOntine  jng authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/learningR.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
Introduction

Congratulations! You've just begun your quest to become an R programmer. So you
don’t pull any mental muscles, this chapter starts you off gently with a nice warm-up.
Before you begin coding, we’re going to talk about what R is, and how to install it and
begin working with it. Then you’ll try writing your first program and learn how to get

help.

Chapter Goals

After reading this chapter, you should:

o Know some things that you can use R to do
« Know how to install R and an IDE to work with it
o Be able to write a simple program in R

« Know how to get help in R

What s R?

Just to confuse you, R refers to two things. There is R, the programming language, and
R, the piece of software that you use to run programs written in R. Fortunately, most of
the time it should be clear from the context which R is being referred to.

R (the language) was created in the early 1990s by Ross Ihaka and Robert Gentleman,
then both working at the University of Auckland. It is based upon the S language that
was developed at Bell Laboratories in the 1970s, primarily by John Chambers. R (the
software) is a GNU project, reflecting its status as important free and open source soft-
ware. Both the language and the software are now developed by a group of (currently)
20 people known as the R Core Team.
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http://www.it-ebooks.info/

The fact that R’s history dates back to the 1970s is important, because it has evolved over
the decades, rather than having been designed from scratch (contrast this with, for
example, Microsoft’s NET Framework, which has a much more “created™ feel). As with
life-forms, the process of evolution has led to some quirks and inconsistencies. The
upside of the more free-form nature of R (and the free license in particular) is that if
you don’t like how something in R is done, you can write a package to make it do things
the way that you want. Many people have already done that, and the common question
now is not “Can I do this in R?” but “Which of the three implementations should I use?”

Ris an interpreted language (sometimes called a scripting language), which means that
your code doesn’t need to be compiled before you run it. It is a high-level language in
that you don’t have access to the inner workings of the computer you are running your
code on; everything is pitched toward helping you analyze data.

R supportsa mixture of programming paradigms. Atits core, it isan imperative language
(you write a script that does one calculation after another), but it also supports object-
oriented programming (data and functions are combined inside classes) and functional
programming (functions are first-class objects; you treat them like any other variable,
and you can call them recursively). This mix of programming styles means that R code
can bear a lot of similarity to several other languages. The curly braces mean that you
can write imperative code that looks like C (but the vectorized nature of R that we’ll
discuss in Chapter 2 means that you have fewer loops). If you use reference classes, then
you can write object-oriented code that looks a bit like C# or Java. The functional pro-
gramming constructs are Lisp-inspired (the variable-scoping rules are taken from the
Lisp dialect, Scheme), but there are fewer brackets. All this is a roundabout way of saying
that R follows the Perl ethos:

There is more than one way to do it.
— Larry Wall

Installing R

If you are using a Linux machine, then it is likely that your package manager will have
R available, though possibly not the latest version. For everyone else, to install R you
must first go to http://www.r-project.org. Don’t be deceived by the slightly archaic web-
site;? it doesn't reflect on the quality of R. Click the link that says “download R” in the
“Getting Started” pane at the bottom of the page.

1. Intelligently designed?

2. Alook in the Internet Archive’s Wayback Machine suggests that the front page hasn’t changed much since
May 2004.
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Once you've chosen a mirror close to you, choose a link in the “Download and Install
R” pane at the top of the page that’s appropriate to your operating system. After that
there are one or two OS-specific clicks that you need to make to get to the download.

If you are a Windows user who doesn't like clicking, there is a cheeky shortcut to the
setup file at http://<CRAN MIRROR>/bin/windows/base/release.htm.

Choosing an IDE

If you use R under Windows or Mac OS X, then a graphical user interface (GUI) is
available to you. This consists of a command-line interpreter, facilities for displaying
plots and help pages, and a basic text editor. It is perfectly possible to use R in this way,
but for serious coding you'll at least want to use a more powerful text editor. There are
countless text editors for programmers; if you already have a favorite, then take a look
to see if you can get syntax highlighting of R code for it.

If you aren’t already wedded to a particular editor, then I suggest that you'll get the best
experience of R by using an integrated development environment (IDE). Using an IDE
rather than a separate text editor gives you the benefit of only using one piece of software
rather than two. You get all the facilities of the stock R GUI, but with a better editor, and
in some cases things like integrated version control.

The following sections introduce five popular choices, but this is by no means an ex-
haustive list (a few additional suggestions follow). It is worth trying several IDEs; a
development environment is a piece of software that you could be spending thousands
of hours using, so it's worth taking the time to find one? that you like. A few additional
suggestions follow this selection.

Emacs + ESS

Although Emacs calls itself a text editor, 36 years (and counting) of development have
given it an unparalleled number of features. If you've been programming for any sub-
stantial length of time, you probably already know whether or not you want to use it.
Converts swear by its limitless customizability and raw editing power; others complain
that it overcomplicates things and that the key chords give them repetitive strain injury.
There is certainly a steep learning curve, so be willing to spend a month or two getting
used to it. The other big benefit is that Emacs is not R-specific, so you can use it for
programming in many languages. The original version of Emacs is (like R) a GNU
project, available from http://www.gnu.org/software/emacs/.

3. You don't need to limit yourself to just one way of using R. I have IDE commitment issues and use a mix of
Eclipse + StatET, RStudio, Live-R, Tinn-R, Notepad++, and R GUI. Experiment, and find something that
works for you.
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Another popular fork is XEmacs, available from http://www.xemacs.org/.

Emacs Speaks Statistics (ESS) is an add-on for Emacs that assists you in writing R code.
Actually, it works with S-Plus, SAS, and Stata, too, so you can write statistical code with
whichever package you like (choose R!). Several of the authors of ESS are also R Core
Team members, so you are guaranteed good integration with R. It is available through
the Emacs package management system, or you can download it from http://ess.r-
project.org/.

Use it ifyou want to write code in multiple languages, you want the most powerful editor
available, and you are fearless with learning curves.

Eclipse/Architect

Eclipse is another cross-platform IDE, widely used in the Java community. Like Emacs,
it is very powerful, and its plug-in system makes it highly customizable. The learning
curve is shallower, though, and it allows for more pointing and clicking than the heavily
keyboard-driven Emacs.

Architect is an R-oriented variant of Eclipse developed by statistics consultancy Open
Analytics. It includes the StatET plug-in for integration with R, including a debugger
that is superior to the one built into R GUI. Download it from http://www.openanalyt
ics.eu/downloads/architect.

Alternatively, you can get the standard Eclipse IDE from http://eclipse.org and use its
package manager to download the StatET plug-in from http://www.walware.de/goto/
statet.

Use it if you want to write code in multiple languages, you don't have time to learn
Emacs, and you don’t mind a several-hundred-megabyte install.

RStudio

RStudio is an R-specific IDE. That means that you lose the ability to code (easily) in
multiple languages, but you do get some features especially for R. For example, the plot
windows are better than the R GUI originals, and there are facilities for publishing code.
The editor is more basic than either Emacs or Eclipse, but its good enough for most
purposes, and is easier to get started with than the other two. RStudio’s party trick is
that you can run it remotely through a browser, so you can run R on a powerful server,
then access it from a netbook (or smartphone) without loss of computational power.
Download it from http://www.rstudio.org.

Use it ifyou mainly write R code, don’'t need advanced editor features, and want a shallow
learning curve or the ability to run remotely.
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Revolution-R

Revolution-R comes in two flavors: the free (as in beer) community edition and the
paid-for enterprise edition. Both take a different tack from the other IDEs mentioned
so far: whereas Emacs, Eclipse, and RStudio are pure graphical frontends that let you
connect to any version of R, Revolution-R ships with its own customized version of R.
Typically this is a stable release, one or two versions back from the most current. It also
has some enhancements for working with big data, and some enterprise-related features.
Download it from http://www.revolutionanalytics.com/products/revolution-r.php.

Use it ifyou mainly write R code, you work with big data or wanta paid support contract,
or you require extra stability in your R platform.

Live-R

Live-R is a new player, in invite-only beta at the time this book is going to press. It
provides an IDE for R as a web application. This avoids all the hassle of installing soft-
ware on your machine and, like RStudio’s remote installation, gives you the ability to
run R calculations from an underpowered machine. Live-R also includes a number of
features for collaboration, including a shared editor and code publishing, as well as some
admin tools for running courses based upon R. The main downside is that not all the
add-on packages for R are available; you are currently limited to about 200 or so that
are compatible with the web application. Sign up at http://live-analytics.com/.

Use it if you mainly write R code, don’t want to install any software, or want to teach a
class based upon R.

Other IDEs and Editors

There are many more editors that you can use to write R code. Here’s a quick roundup
of a few more possibilities:

 JGR [pronounced “Jaguar”] is a Java-based GUI for R, essentially a souped-up ver-
sion of the stock R GUI.

o Tinn-Risafork of the editor TINN that has extensions specifically to help you write
R code.

o SciViews-K, from the same team that makes Tinn-R, is an extension for the Komodo
IDE to work with R.

o Vim-R s a plug-in for Vim that provides R integration.

« NppToR plugs into Notepad++ to give R integration.
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Your First Program

It is a law of programming books that the first example shall be a program to print the
phrase “Hello world!” In R that’s really boring, since you just type “Hello world!” at the
command prompt, and it will parrot it back to you. Instead, we’re going to write the
simplest statistical program possible.

Open up R GUI, or whichever IDE you’ve decided to use, find the command prompt
(in the code editor window), and type:

mean(1:5)

Hit Enter to run the line of code. Hopefully, you’ll get the answer 3. As you might have
guessed, this code is calculating the arithmetic mean of the numbers from 1 to 5. The
colon operator, :, creates a sequence of numbers from the first number, in this case 1,
to the second number (5), each separated by 1. The resulting sequence is called a vector.
mean is a function (that calculates the arithmetic mean), and the vector that we enclose
inside the parentheses is called an argument to the function.

Well done! You've calculated a statistic using R.

)
a In R GUI and most of the IDEs mentioned here, you can press the up
,“:‘ . arrow key to cycle back through previous commands.

How to Get Help inR

Before you get started writing R code, the most important thing to know is how to get
help. There are lots of ways to do this. Firstly, if you want help on a function or a dataset
that you know the name of, type ? followed by the name of the function. To find func-
tions, type two question marks (??) followed by a keyword related to the problem to
search. Special characters, reserved words, and multiword search terms need enclosing
in double or single quotes. For example:

?mean #opens the help page for the mean function

24" #opens the help page for addition

2" #opens the help page for if, used for branching code
?2?plotting #searches for topics containing words like "plotting"

??"regression model"  #searches for topics containing phrases like this

W 8
¥ That # symbol denotes a comment. It means that R will ignore the rest
.“:‘ of the line. Use comments to document your code, so that you can
¢4 remember what you were doing six months ago.
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The functions help and help.search do the same things as ? and ??, respectively, but
with these you always need to enclose your arguments in quotes. The following com-
mands are equivalent to the previous lot:

help("mean"

help("+")

help("if")

help.search("plotting")

help.search("regression model")
The apropos function? finds variables (including functions) that match its input. This
is really useful if you can only half-remember the name of a variable that you've created,
or a function that you want to use. For example, suppose you create a variable a_vector:

a_vector <- c(1, 3, 6, 10)
You can then recall this variable using apropos:

apropos("vector")

## [1] ".__C__vector" "a_vector" "as.data.frame.vector"
## [4] "as.vector" "as.vector.factor" "{s.vector"
## [7] "vector" "Vectorize"

The results contain the variable you just created, a_vector, and all other variables that
contain the string vector. In this case, all the others are functions that are built into R.

Just finding variables that contain a particular string is fine, but you can also do fancier
matching with apropos using regular expressions.

¥ 5
Regular expressions are a cross-language syntax for matching
strings. The details will only be touched upon in this book, but you
need to learn to use them; they’ll change your life. Start at http://
www.regular-expressions.info/quickstart.html, and then try Mi-
chael Fitzgerald’s Introducing Regular Expressions.

A simple usage of apropos could, for example, find all variables that end in z, or to find
all variables containing a number between 4 and 9:

apropos("z$")

## [1] "alpe_d_huez" "alpe_d_huez" "force_tz" "indexTZ" "SSgompertz"
##t [6] "toeplitz" "tz" "unz" "with_tz"

4. apropos is Latin for “A Unix program that finds manpages.”
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apropos("[4-9]")

#t [1] ".__C__s4" ".__T_ xmlToS4:XML" ".parseIS08601"
## [4] ".SQL92Keywords" " . TAOCP1997init" "asS4"

## [7] "assert_1is_64_bit_os" "assert_is_S4" "base64"

## [10] "base64Decode" "base64Encode" "blues9"

## [13] "car9e" "enc2utf8" "fixPre1.8"

## [16] "Harman74.cor" "intToUtf8" "{s_64_bit_os"
##t [19] "is_S4" "1sS54" "seemsS40bject"
## [22] "state.x77" "to.minutes15" "to.minutes5"
## [25] "utf8TolInt" "xmlToS4"

Most functions have examples that you can run to get a better idea of how they work.
Use the example function to run these. There are also some longer demonstrations of
concepts that are accessible with the demo function:

example(plot)

demo() #list all demonstrations

demo(Japanese)
R is modular and is split into packages (more on this later), some of which contain
vignettes, which are short documents on how to use the packages. You can browse all
the vignettes on your machine using browseVignettes:

browseVignettes()

You can also access a specific vignette using the vignette function (but if your memory
is as bad as mine, using browseVignettes combined with a page search is easier than
trying to remember the name of a vignette and which package it’s in):

vignette("Sweave", package = "utils")

The help search operator ?? and browseVignettes will only find things in packages
that you have installed on your machine. If you want to look in any package, you can
use RSiteSearch, which runs a query at http://search.r-project.org. Multiword terms
need to be wrapped in braces:

RSiteSearch("{Bayesian regression}")

)
Y Learning to help yourself is extremely important. Think of a key-
.‘S . word related to your work and try ?, 22, apropos, and RSiteSearch
~ o with it.

There are also lots of R-related resources on the Internet that are worth trying. There
are too many to list here, but start with these:

R has a number of mailing lists with archives containing years’ worth of questions
on the language. At the very least, it is worth signing up to the general-purpose list,

R-help.
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 RSeek is a web search engine for R that returns functions, posts from the R mailing
list archives, and blog posts.

o R-bloggers is the main R blogging community, and the best way to stay up to date
with news and tips about R.

o The programming question and answer site Stack Overflow also has a vibrant R
community, providing an alternative to the R-help mailing list. You also get points
and badges for answering questions!

Installing Extra Related Software

There are a few other bits of software that R can use to extend its functionality. Under
Linux, your package manager should be able to retrieve them. Under Windows, rather
than hunting all over the Internet to track down this software, you can use the installr
add-on package to automatically install these extra pieces of software. None of this
software is compulsory, so you can skip this section now if you want, but it's worth
knowing that the package exists when you come to need the additional software. In-
stalling and loading packages is discussed in detail in Chapter 10, so don’t worry if you
don’t understand the commands yet:

install.packages("installr")  #download and install the package named installr

library(installr) #load the installr package

install.RStudio() #download and install the RStudio IDE

install.Rtools() #Rtools 1s needed for building your own packages

install.git() #git provides version control for your code
Summary

o Risa free, open source language for data analysis.
o It’s also a piece of software used to run programs written in R.
 You can download R from http://www.r-project.org.

» You can write R code in any text editor, but there are several IDEs that make de-
velopment easier.

 You can get help on a function by typing ? then its name.

 You can find useful functions by typing ?? then a search string, or by calling the
apropos function.

o There are many online resources for R.
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Test Your Knowledge: Quiz

Question 1-1
Which language is R an open source version of?

Question 1-2
Name at least two programming paradigms in which you can write R code.

Question 1-3
What is the command to create a vector of the numbers from 8 to 27?

Question 1-4
What is the name of the function used to search for help within R?

Question 1-5
What is the name of the function used to search for R-related help on the Internet?

Test Your Knowledge: Exercises

Exercise 1-1
Visit http://www.r-project.org, download R, and install it. For extra credit, download
and install one of the IDEs mentioned in “Other IDEs and Editors” on page 7. [30]

Exercise 1-2
The function sd calculates the standard deviation. Calculate the standard deviation
of the numbers from 0 to 100. Hint: the answer should be about 29.3. [5]

Exercise 1-3
Watch the demonstration on mathematical symbols in plots, using demo(plot
math). [5]
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CHAPTER 2
A Scientific Calculator

R is at heart a supercharged scientific calculator, so it has a fairly comprehensive set of
mathematical capabilities built in. This chapter will take you through the arithmetic
operators, common mathematical functions, and relational operators, and show you
how to assign a value to a variable.

Chapter Goals

After reading this chapter, you should:

« Be able to use R as a scientific calculator
 Be able to assign a variable and view its value
 Be able to use infinite and missing values

» Understand what logical vectors are and how to manipulate them

Mathematical Operations and Vectors

The + operator performs addition, but it has a special trick: as well as adding two num-
bers together, you can use it to add two vectors. A vector is an ordered set of values.
Vectors are tremendously important in statistics, since you will usually want to analyze
a whole dataset rather than just one piece of data.

The colon operator, :, which you have seen already, creates a sequence from one number
to the next, and the c function concatenates values, in this case to create vectors (con-
catenate is a Latin word meaning “connect together in a chain”).

13
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Variable names are case sensitive in R, so we need to be a bit careful in this next example.
The C function does something completely different to c:!

1:5 + 6:10 #look, no loops!

## [1] 7 9 11 13 15

c(1, 3, 6, 10, 15) + c(0, 1, 3, 6, 10)
## [1] 1 4 9 16 25

A
\
) The colon operator and the c function are used almost every-
J . . . .
:‘s‘ where in R code, so it’s good to practice using them. Try creat-
1) ing some vectors of your own now.

If we were writing in a language like C or Fortran, we would need to write a loop to
perform addition on all the elements in these vectors. The vectorized nature of R’s ad-
dition makes things easy, letting us avoid the loop. Vectors will be discussed more in
“Logical Vectors” on page 20.

Vectorized has several meanings in R, the most common of which is that an operator
or a function will act on each element of a vector without the need for you to explicitly
write a loop. (This built-in implicit looping over elements is also much faster than ex-
plicitly writing your own loop.) A second meaning of vectorization is when a function
takes a vector as an input and calculates a summary statistic:

A
is

sum(1:5)
## [1] 15
median(1:5)
## [1] 3

third, much less common case of vectorization is vectorization over arguments. This
when a function calculates a summary statistic from several of its input arguments.

The sum function does this, but it is very unusual. median does not:

sum(1, 2, 3, 4, 5)
## [1] 15
median(l, 2, 3, 4, 5) #this throws an error

## Error: unused arguments (3, 4, 5)

1. There are a few other name clashes: filter and Filter, find and Find, gamma and Gamma, nrow/ncol and
NROW/NCOL. This is an unfortunate side effect of R being an evolved rather than a designed language.

14
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All the arithmetic operators in R, not just plus (+), are vectorized. The following exam-
ples demonstrate subtraction, multiplication, exponentiation, and two kinds of division,
as well as remainder after division:

c(2, 3, 5,7, 11, 13) - 2 #subtraction

#[1] ¢ 1 3 5 911

-2:2 % -2:2 #multiplication

## [114101 4

identical(2 » 3, 2 ** 3) #we can use * or ** for exponentiation
#though ~ is more common

## [1] TRUE

1:10 / 3 #floating point division

## [1] 0.3333 0.6667 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000 3.3333

1:10 %/% 3 #integer division

# [110011122233

1:10 %% 3 #remainder after division

# [111201201201
R also contains a wide selection of mathematical functions. You get trigonometry (sin,
cos, tan, and their inverses asin, acos, and atan), logarithms and exponents (log and
exp, and their variants log1p and expm1 that calculate log(1 + x) andexp(x - 1) more
accurately for very small values of x), and almost any other mathematical function you

can think of. The following examples provide a hint of what is on offer. Again, notice
that all the functions naturally operate on vectors rather than just single values:

cos(c(0, pt / 4, pi / 2, pl)) #pi is a built-in constant
## [1] 1.000e+00 7.071e-01 6.123e-17 -1.000e+00

exp(pl * 11) + 1 #Euler's formula

## [1] 0+1.225e-161

factorial(7) + factorial(l) - 71 ~ 2 #5041 is a great number

## [1] 0

choose(5, 0:5)

## [1] 1 51010 5 1

To compare integer values for equality, use ==. Don’t use a single = since that is used for
something else, as we’ll see in a moment. Just like the arithmetic operators, == and the
other relational operators are vectorized. To check for inequality, the “not equals” op-
erator is !=. Greater than and less than are as you might expect: > and < (or >= and <=
if equality is allowed). Here are a few examples:
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c(3, 4 -1, 1+ 1+ 1)==3 #operators are vectorized too
## [1] TRUE TRUE TRUE

1:3 1= 3:1

## [1] TRUE FALSE TRUE

exp(1:5) < 100

## [1] TRUE TRUE TRUE TRUE FALSE

(1:5) » 2 >= 16

## [1] FALSE FALSE FALSE TRUE TRUE

Comparing nonintegers using == is problematic. All the numbers we have dealt with so
far are floating point numbers. That means that they are stored in the forma * 2
b, for two numbers a and b. Since this whole form has to be stored in 32 bits, the resulting
number is only an approximation of what you really want. This means that rounding
errors often creep into calculations, and the answers you expected can be wildly wrong.
Whole books have been written on this subject; there is too much to worry about here.
Since this is such a common mistake, the FAQ on R has an entry about it, and it’s a good
place to start if you want to know more.

Consider these two numbers, which should be the same:
sqrt(2) » 2 == 2 #sqrt is the square-root function
## [1] FALSE
sqrt(2) ~ 2 - 2 #this small value is the rounding error
## [1] 4.441e-16

Ralso provides the function all.equal for checking equality of numbers. This provides
a tolerance level (by default, about 1.5e-8), so that rounding errors less than the toler-
ance are ignored:

all.equal(sqrt(2) ~ 2, 2)
## [1] TRUE

If the values to be compared are not the same, all.equal returns a report on the dif-
ferences. If you require a TRUE or FALSE value, then you need to wrap the call to
all.equalin a call to 1sTRUE:

all.equal(sqrt(2) ~ 2, 3)

## [1] "Mean relative difference: 0.5"

isTRUE(all.equal(sqrt(2) ~ 2, 3))

## [1] FALSE
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To check that two numbers are the same, don’t use ==. Instead, use the
. all.equal function.

We can also use == to compare strings. In this case the comparison is case sensitive, so
the strings must match exactly. It is also theoretically possible to compare strings using
greater than or less than (> and <):

<(

"Can”, ”you”, “can", a", ”can", ”as",

"a", "canner", "can", "can", "a", "can?"
) J— llcanll

## [1] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
## [12] FALSE

c("A", "B", "C", "D") < "C"

## [1] TRUE TRUE FALSE FALSE

c("a", "b", "c", "d") < "C" #your results may vary

## [1] TRUE TRUE TRUE FALSE

In practice, however, the latter approach is almost always an awful idea, since the results
depend upon your locale (different cultures are full of odd sorting rules for letters; in

Estonian, “z” comes between “s” and “t”). More powerful string matching functions will
be discussed in “Cleaning Strings” on page 191.

W 8

\

The help pages ?Arithmetic, ?Trig, ?Special, and ?Comparison have
. more examples, and explain the gory details of what happens in edge
% cases. (Try @ ~ 0 or integer division on nonintegers if you are curious.)

Assigning Variables

It’s all very well calculating things, but most of the time we want to store the results for
reuse. We can assign a (local) variable using either <- or =, though for historical reasons,
<- is preferred:

X <- 1:5
y = 6:10

Now we can reuse these values in our further calculations:
X+ 2*y -3
## [1] 10 13 16 19 22
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Notice that we didn't have to declare what types of variables x and y were going to be
before we assigned them (unlike in most compiled languages). In fact, we couldn’t have
declared the type, since no such concept exists in R.

Variable names can contain letters, numbers, dots, and underscores, but they can’t start
with a number, or a dot followed by a number (since that looks too much like a number).
Reserved words like “if” and “for” are not allowed. In some locales, non-ASCII letters
are allowed, but for code portability it is better to stick to “a” to “z” (and “A” to “Z”). The
help page ?make.names gives precise details about what is and isn’t allowed.

The spaces around the assignment operators aren't compulsory, but they help readabil-
ity, especially with <-, so we can easily distinguish assignment from less than:

X <- 3

X < -3

x<-3 #1s this assignment or less than?
We can also do global assignment using <<-. There’ll be more on what this means when
we cover environments and scoping in “Environments” on page 79 in Chapter 6; for now,
just think of it as creating a variable available anywhere:

x <<- exp(exp(1))

There is one more method of variable assignment, via the assign function. It is much
less common than the other methods, but very occasionally it is useful to have a function
syntax for assigning variables. Local (“normal”) assignment takes two arguments—the
name of the variable to assign to and the value you want to give it:

assign("my_local _variable", 9 ~ 3 + 10 ~ 3)
Global assignment (like the <<- operator does) takes an extra argument:
assign("my_global_variable", 1 ~ 3 + 12 ~ 3, globalenv())

Don’t worry about the globalenv bit for now; as with scoping, it will be explained in
Chapter 6.

Using the assign function makes your code less readable compared to
<-, so you should use it sparingly. It occasionally makes things easier
in some advanced programming cases involving environments, but if
your code is filled with calls to assign, you are probably doing some-
thing wrong.

Also note that the assign function doesn’t check its first argument to
see if it is a valid variable name: it always just creates it.

Notice that when you assign a variable, you don’t see the value that has been given to it.
To see what value a variable contains, simply type its name at the command prompt to
print it:
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X

## [1]1 12345

W8
¥ Under some systems, for example running R from a Linux terminal,
.‘.: . you may have to explicitly call the print function to see the value. In
063 this case, type print(x).

If you want to assign a value and print it all in one line, you have two possibilities. Firstly,
you can put multiple statements on one line by separating them with a semicolon, ;.
Secondly, you can wrap the assignment in parentheses, (). In the following examples,
rnorm generates random numbers from a normal distribution, and rlnorm generates
them from a lognormal distribution:?

z <- rnorm(5); z

## [1] 1.8503 -0.5787 -1.4797 -0.1333 -0.2321

(zz <- rlnorm(5))

## [1] 1.0148 4.2476 0.3574 0.2421 0.3163

Special Numbers

To help with arithmetic, R supports four special numeric values: Inf, -Inf, NaN, and
NA. The first two are, of course, positive and negative infinity, but the second pair need
alittle more explanation. NaNis short for “not-a-number,” and means that our calculation
either didn’t make mathematical sense or could not be performed properly. NA is short
for “not available” and represents a missing value—a problem all too common in data
analysis. In general, if our calculation involves a missing value, then the results will also
be missing:

c(Inf + 1, Inf - 1, Inf - Inf)

## [1] Inf Inf NaN

c(1 / Inf, Inf / 1, Inf / Inf)

## [1] 0 Inf NaN

c(sqrt(Inf), sin(Inf))

## Warning: NaNs produced

## [1] Inf NaN

c(log(Inf), log(Inf, base = Inf))

2. Since the numbers are random, expect to get different values if you try this yourself.
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## Warning: NaNs produced

## [1] Inf NaN

c(NA + 1, NA * 5, NA + Inf)

## [1] NA NA NA
When arithmetic involves NA and NaN, the answer is one of those two values, but which
of those two is system dependent:

c(NA + NA, NaN + NaN, NaN + NA, NA + NaN)

## [1] NA NaN NaN NA

There are functions available to check for these special values. Notice that NaN and NA
are neither finite nor infinite, and NaN is missing but NA is a number:

x <- c(0, Inf, -Inf, NaN, NA)
is.finite(x)

## [1] TRUE FALSE FALSE FALSE FALSE
is.infinite(x)

## [1] FALSE TRUE TRUE FALSE FALSE
is.nan(x)

## [1] FALSE FALSE FALSE TRUE FALSE
is.na(x)

## [1] FALSE FALSE FALSE TRUE TRUE

Logical Vectors

In addition to numbers, scientific calculation often involves logical values, particularly
as a result of using the relational operators (<, etc.). Many programming languages use
Boolean logic, where the values can be either TRUE or FALSE. In R, the situation is a little
bit more complicated, since we can also have missing values, NA. This three-state system
is sometimes call troolean logic, although that’s a bad etymological joke, since the “Bool”
in “Boolean” comes from George Bool, rather than anything to do with the word binary.

TRUE and FALSE are reserved words in R: you cannot create a variable with either of
those names (lower- or mixed-case versions like True are fine, though). When you start
R the variables T and F are already defined for you, taking the values TRUE and FALSE,
respectively. This can save you a bit of typing, but it can also cause big problems. T and
F are not reserved words, so users can redefine them. This means that it is OK to use
the abbreviated names if you are tapping away at the command line, but not if your code
is going to interact with someone else’s (especially if their code involves Times or
Temperatures or mathematical Functions).
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There are three vectorized logical operators in R:

« ! isused for not.
o &isused for and.

o | is used for or.

(x <- 1:10 >= 5)
## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
'x
## [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
(y <- 1:10 %% 2 == 0)
## [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
X &y
## [1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
x|y
## [1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We can conjure up some truth tables to see how they work (don’t worry if this code
doesn’t make sense yet; just concentrate on understanding why each value occurs in the
truth table):

X <- c(TRUE, FALSE, NA) #the three logical values
xy <- expand.grid(x = x, y = x) #get all combinations of x and y
within( #make the next assignments within xy
XY,
{
and <- x &y
or <-Xx |y
not.y <- ly
not.x <- Ix
}
)
##t X y not.x not.y or and
## 1 TRUE TRUE FALSE FALSE TRUE TRUE
## 2 FALSE TRUE TRUE FALSE TRUE FALSE
## 3 NA TRUE NA FALSE TRUE NA
## 4 TRUE FALSE FALSE TRUE TRUE FALSE
## 5 FALSE FALSE TRUE TRUE FALSE FALSE
## 6 NA FALSE NA TRUE NA FALSE
## 7 TRUE NA FALSE NA TRUE NA
## 8 FALSE NA TRUE NA NA FALSE
## 9 NA NA NA NA NA NA
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Two other useful functions for dealing with logical vectors are any and all, which return
TRUE if the input vector contains at least one TRUE value or only TRUE values, respectively:

none_true <- c(FALSE, FALSE, FALSE)
some_true <- c(FALSE, TRUE, FALSE)
all_true <- c(TRUE, TRUE, TRUE)
any(none_true)

## [1] FALSE
any(some_true)
## [1] TRUE
any(all_true)
## [1] TRUE
all(none_true)
## [1] FALSE
all(some_true)
## [1] FALSE
all(all_true)
## [1] TRUE

Summary

R can be used as a very powerful scientific calculator.
o Assigning variables lets you reuse values.

o R has special values for positive and negative infinity, not-a-number, and missing
values, to assist with mathematical operations.

R uses troolean logic.

Test Your Knowledge: Quiz

Question 2-1
What is the operator used for integer division?

Question 2-2
How would you check if a variable, x, is equal to pi?

Question 2-3
Describe at least two ways of assigning a variable.
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Question 2-4
Which of the five numbers 0, Inf, -Inf, NaN, and NA are infinite?

Question 2-5
Which of the five numbers 0, Inf, -Inf, NaN, and NA are considered not missing?

Test Your Knowledge: Exercises

Exercise 2-1
1. Calculate the inverse tangent (a.k.a. arctan) of the reciprocal of all integers from
1 to 1,000. Hint: take a look at the ?Trig help page to find the inverse tangent
function. You don’t need a function to calculate reciprocals. [5]

2. Assign the numbers 1 to 1,000 to a variable x. Calculate the inverse tangent of
the reciprocal of x, as in part (a), and assign it to a variable y. Now reverse the
operations by calculating the reciprocal of the tangent of y and assigning this
value to a variable z. [5]

Exercise 2-2
Compare the variables x and z from Exercise 2-1 (b) using ==, identical, and
all.equal. For all.equal, try changing the tolerance level by passing a third ar-
gument to the function. What happens if the tolerance is set to 02 [10]

Exercise 2-3
Define the following vectors:

1. true_and_missing, with the values TRUE and NA (at least one of each, in any
order)

2. false_and_missing, with the values FALSE and NA
3. mixed, with the values TRUE, FALSE, and NA
Apply the functions any and all to each of your vectors. [5]
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CHAPTER 3
Inspecting Variables and Your Workspace

So far, we've run some calculations and assigned some variables. In this chapter, we’ll
find out ways to examine the properties of those variables and to manipulate the user
workspace that contains them.

Chapter Goals

After reading this chapter, you should:

o Know what a class is, and the names of some common classes
o Know how to convert a variable from one type to another
o Be able to inspect variables to find useful information about them

o Be able to manipulate the user workspace

Classes

All variables in R have a class, which tells you what kinds of variables they are. For
example, most numbers have class numeric (see the next section for the other types),
and logical values have class logical. Actually, being picky about it, vectors of numbers
are numeric and vectors of logical values are logical, since R has no scalar types. The
“smallest” data type in R is a vector.

You can find out what the class of a variable is using class(my_variable):
class(c(TRUE, FALSE))
## [1] "logical"

It's worth being aware that as well as a class, all variables also have an internal storage
type (accessed via typeof), a mode (see mode), and a storage mode (storage.mode). If
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this sounds complicated, don’t worry! Types, modes, and storage modes mostly exist
for legacy purposes, so in practice you should only ever need to use an objects class
(at least until you join the R Core Team). Appendix A has a reference table showing the
relationships between class, type, and (storage) mode for many sorts of variables. Don’t
bother memorizing it, and don’'t worry if you don't recognize some of the classes. It is
simply worth browsing the table to see which things are related to which other things.

From now on, to make things easier, 'm going to use “class” and “type” synonymously
(except where noted).

Different Types of Numbers

All the variables that we created in the previous chapter were numbers, but R contains
three different classes of numeric variable: numeric for floating point values; integer
for, ahem, integers; and complex for complex numbers. We can tell which is which by
examining the class of the variable:

class(sqrt(1:10))

## [1] "numeric"

class(3 + 11) #"1" creates imaginary components of complex numbers

## [1] "complex"

class(1) #although this is a whole number, it has class numeric

## [1] "numeric"

class(1L) #add a suffix of "L" to make the number an integer

## [1] "integer"

class(0.5:4.5) #the colon operator returns a value that is numeric...

## [1] "numeric"

class(1:5) #unless all its values are whole numbers

## [1] "integer"
Note that as of the time of writing, all floating point numbers are 32-bit numbers (“dou-

ble precision”), even when installed on a 64-bit operating system, and 16-bit (“single
precision”) numbers don’t exist.

Typing .Machine gives you some information about the properties of R's numbers. Al-
though the values, in theory, can change from machine to machine, for most builds,
most of the values are the same. Many of the values returned by .Machine need never
concern you. It’s worth knowing that the largest floating point number that R can rep-
resent at full precision is about 1.8e308. This is big enough for everyday purposes, but
a lot smaller than infinity! The smallest positive number that can be represented is
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2.2e-308. Integers can take values up to 2 ~ 31 - 1, which is a little over two billion,
(ordownto -2 ~ 31 + 1).!

The only other value of much interest is €, the smallest positive floating point number
such that e + 1| != 1. That’s a fancy way of saying how close two numbers can be so
that R knows that they are different. It’s about 2. 2e-16. This value is used by all.equal
when you compare two numeric vectors.

In fact, all of this is even easier than you think, since it is perfectly possible to get away
with not (knowingly) using integers. R is designed so that anywhere an integer is needed
—indexing a vector, for example—a floating point “numeric” number can be used just
as well.

Other Common Classes

In addition to the three numeric classes and the logical class that we’ve seen already,
there are three more classes of vectors: character for storing text, factors for storing
categorical data, and the rarer raw for storing binary data.

In this next example, we create a character vector using the c operator, just like we did
for numeric vectors. The class of a character vector is character:

class(c("she", "sells", "seashells", "on", "the", "sea", "shore"))
## [1] "character"

Note that unlike some languages, R doesn’t distinguish between whole strings and in-
dividual characters—a string containing one character is treated the same as any other
string. Unlike with some other lower-level languages, you don't need to worry about
terminating your strings with a null character (\0). In fact, it is an error to try to include
such a character in your strings.

In many programming languages, categorical data would be represented by integers.
For example, gender could be represented as 1 for females and 2 for males. A slightly
better solution would be to treat gender as a character variable with the choices “female”
and “male” This is still semantically rather dubious, though, since categorical data is a
different concept to plain old text. R has a more sophisticated solution that combines
both these ideas in a semantically correct class—factors are integers with labels:

(gender <- factor(c("male", "female", "female", "male", "female")))

## [1] male female female male female
##t Levels: female male

1. If these limits aren’t good enough for you, higher-precision values are available via the Rmpfr package, and
very large numbers are available in the brobdingnab package. These are fairly niche requirements, though;
the three built-in classes of R numbers should be fine for almost all purposes.
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The contents of the factor look much like their character equivalent—you get readable
labels for each value. Those labels are confined to specific values (in this case “female”
and “male”) known as the levels of the factor:

levels(gender)

## [1] "female" "male"

nlevels(gender)

## [1] 2

Notice that even though “male” is the first value in gender, the first level is “female” By
default, factor levels are assigned alphabetically.

Underneath the bonnet,” the factor values are stored as integers rather than characters.
You can see this more clearly by calling as.integer:

as.integer(gender)
# (1121121

This use of integers for storage makes them very memory-efficient compared to char-
acter text, at least when there are lots of repeated strings, as there are here. If we exag-
gerate the situation by generating 10,000 random genders (using the sample function
to sample the strings “female” and “male” 10,000 times with replacement), we can see
that a factor containing the values takes up less memory than the character equivalent.
In the following code, sample returns a character vector—which we convert into a factor
using as. factor--and object.size returns the memory allocation for each object:

gender_char <- sample(c("female", "male"), 10000, replace = TRUE)
gender_fac <- as.factor(gender_char)
object.size(gender_char)

## 80136 bytes
object.size(gender_fac)

## 40512 bytes

Variables take up different amounts of memory on 32-bit and
64-bit systems, so object.size will return different values in
each case.

For manipulating the contents of factor levels (a common case would be cleaning up
names, so all your men have the value “male” rather than “Male”) it is typically best to

2. Or hood, if you prefer.
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convert the factors to strings, in order to take advantage of string manipulation func-
tions. You can do this in the obvious way, using as.character:

as.character(gender)

## [1] "male"  "female" "female" "male"  "female"
There is much more to learn about both character vectors and factors; they will be
covered in depth in Chapter 7.

The raw class stores vectors of “raw” bytes.> Each byte is represented by a two-digit
hexadecimal value. They are primarily used for storing the contents of imported binary
files, and as such are reasonably rare. The integers 0 to 255 can be converted to raw using
as.raw. Fractional and imaginary parts are discarded, and numbers outside this range
are treated as 0. For strings, as.raw doesn't work; you must use charToRaw instead:

as.raw(1:17)

## [1] 01 62 03 04 05 06 07 08 09 Oa Ob Oc 0d Ge Of 10 11

as.raw(c(pi, 1 + 11, -1, 256))

## Warning: imaginary parts discarded in coercion

## Warning: out-of-range values treated as 0 in coercion to raw

## [1] 03 01 00 00

(sushi <- charToRaw("Fish!"))

## [1] 46 69 73 68 21

class(sushti)

## [1] "raw"
Aswell as the vector classes that we've seen so far, there are many other types of variables;

we’ll spend the next few chapters looking at them.

Arrays contain multidimensional data, and matrices (via the matrix class) are the special
case of two-dimensional arrays. They will be discussed in Chapter 4.

So far, all these variable types need to contain the same type of thing. For example, a
character vector or array must contain all strings, and a logical vector or array must
contain only logical values. Lists are flexible in that each item in them can be a different
type, including other lists. Data frames are what happens when a matrix and a list have
a baby. Like matrices, they are rectangular, and as in lists, each column can have a
different type. They are ideal for storing spreadsheet-like data. Lists and data frames are
discussed in Chapter 5.

3. Itis unclear what a cooked byte would entail.
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The preceding classes are all for storing data. Environments store the variables that store
the data. As well as storing data, we clearly want to do things with it, and for that we
need functions. We've already seen some functions, like sin and exp. In fact, operators
like + are secretly functions too! Environments and functions will be discussed further
in Chapter 6.

Chapter 7 discusses strings and factors in more detail, along with some options for
storing dates and times.

There are some other types in R that are a little more complicated to understand, and
we'll leave these until later. Formulae will be discussed in Chapter 15, and calls and
expressions will be discussed in the section “Magic” on page 299 in Chapter 16. Classes
will be discussed again in more depth in the section “Object-Oriented Programming”
on page 302.

Checking and Changing Classes

Calling the class function is useful to interactively examine our variables at the com-
mand prompt, but if we want to test an object’s type in our scripts, it is better to use the
s function, or one of its class-specific variants. In a typical situation, our test will look
something like:

if(!is(x, "some_class"))
{

#some corrective measure

}
Most of the common classes have their own is.* functions, and calling these is usually
a little bit more efficient than using the general is function. For example:

is.character("red lorry, yellow lorry")

## [1] TRUE

is.logical(FALSE)

## [1] TRUE

is.list(list(a = 1, b = 2))

## [1] TRUE

We can see a complete list of all the is functions in the base package using:

ls(pattern = "~is", baseenv())

## [1] "is.array" "{s.atomic"

## [3] "is.call" "{s.character"
## [5] "is.complex" "{s.data.frame"
## [7] "is.double" "{s.element"

## [9] "is.environment" "{s.expression"
## [11] "is.factor" "{s.finite"
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## [13] "is.function" "is.infintite"

## [15] "is.integer" "{s.language"

## [17] "is.list" "{s.loaded"

## [19] "is.logical" "{s.matrix"

## [21] "is.na" "{s.na.data.frame"
## [23] "is.na.numeric_version" "is.na.POSIXlt"

## [25] "is.na<-" "is.na<-.default"
## [27] "is.na<-.factor" "{s.name"

## [29] "is.nan" "i{s.null"

## [31] "is.numeric" "{s.numeric.Date"
## [33] "is.numeric.difftime" "is.numeric.POSIXt"
## [35] "is.numeric_version" "{s.object"

## [37] "is.ordered" "{s.package_version"
## [39] "is.pailrlist" "{s.primitive"

## [41] "is.qr" "{s.R"

##t [43] "is.raw" "{s.recursive"

## [45] "is.single" "{s.symbol"

##t [47] "is.table" "{s.unsorted"

## [49] "is.vector" "{satty"

## [51] "isBaseNamespace" "{sdebugged"

## [53] "isIncomplete" "{sNamespace"

## [55] "isOpen" "{sRestart"

## [57] "i1sS4" "{sSeekable"

##t [59] "isSymmetric" "{sSymmetric.matrix"
## [61] "iSTRUE"

In the preceding example, s lists variable names, "~1s" is a regular expression that

means “match strings that begin with ‘is,” and baseenv is a function that simply returns

the environment of the base package. Don’t worry what that means right now, since
environments are quite an advanced topic; we'll return to them in Chapter 6.

The assertive package* contains more is functions with a consistent naming scheme.

One small oddity is that is.numeric returns TRUE for integers as well as floating
point values. If we want to test for only floating point numbers, then we must use
is.double. However, this isn’'t usually necessary, as R is designed so that floating point
and integer values can be used more or less interchangeably. In the following examples,
note that adding an L suffix makes the number into an integer:

is.numeric(1)
## [1] TRUE
is.numeric(1L)
## [1] TRUE
is.integer(1)

## [1] FALSE

4. Disclosure: I wrote it.
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is.integer(1L)

## [1] TRUE

is.double(1)

## [1] TRUE

is.double(1L)

## [1] FALSE
Sometimes we may wish to change the type of an object. This is called casting, and most
is* functions have a corresponding as* function to achieve it. The specialized as*
functions should be used over plain as when available, since they are usually more
efficient, and often contain extra logic specific to that class. For example, when con-

verting a string to a number, as.numeric is slightly more efficient than plain as, but
either can be used:

X <- "123.456"
as(x, "numeric"

## [1] 123.5
as.numeric(x)

#H [1] 123.5

The number of decimal places that R prints for numbers depends upon
. your R setup. You can set a global default using options(digits =n),
%" where n is between 1 and 22. Further control of printing numbers is
discussed in Chapter 7.

&

In this next example, however, note that when converting a vector into a data frame (a
variable for spreadsheet-like data), the general as function throws an error:
y <- c(2, 12, 343, 34997) #See http://oeis.org/A192892

as(y, "data.frame")
as.data.frame(y)

A
Y In general, the class-specific variants should always be used over stan-
.‘s . dard as, if they are available.

It is also possible to change the type of an object by directly assigning it a new class,
though this isn’t recommended (class assignment has a different use; see the section
“Object-Oriented Programming” on page 302):
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X <- "123.456"
class(x) <- "numeric"
X

## [1] 123.5
is.numeric(x)

## [1] TRUE

Examining Variables

Whenever we've typed a calculation or the name of a variable at the console, the result
hasbeen printed. This happens because R implicitly calls the print method of the object.

W S
N As a side note on terminology: “method” and “function” are basical-
,‘s . lyinterchangeable. Functions in R are sometimes called methods in an
"4k object-oriented context. There are different versions of the print

function for different types of object, making matrices print different-
ly from vectors, which is why I said “print method” here.

So, typing 1 + 1 at the command prompt does the same thing as print(1 + 1).

Inside loops or functions,’ the automatic printing doesn’t happen, so we have to explic-
itly call print:
ulams_spiral <- c(1, 8, 23, 46, 77) #See http://oeis.org/A033951

for(i in ulams_spiral) i #uh-oh, the values aren't printed
for(i in ulams_spiral) print(i)

## [1] 1

## [1] 8

## [1] 23

## [1] 46

## [1] 77
This is also true on some systems if you run R from a terminal rather than using a GUI
or IDE. In this case you will always need to explicitly call the print function.

Most print functions are built upon calls to the lower-level cat function. You should
almost never have to call cat directly (print and message are the user-level equivalents),
but it is worth knowing in case you ever need to write your own print function.®

5. Except for the value being returned from the function.

6. Like in Exercise 16-3, perhaps.
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Both the c and cat functions are short for concatenate, though they
. perform quite different tasks! cat is named after a Unix function.

As well as viewing the printout of a variable, it is often helpful to see some sort of
summary of the object. The summary function does just that, giving appropriate infor-
mation for different data types. Numeric variables are summarized as mean, median,
and some quantiles. Here, the runif function generates 30 random numbers that are
uniformly distributed between 0 and I:

num <- runif(30)
summary(num)

##t Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0211 0.2960 0.5060 0.5290 0.7810 0.9920

Categorical and logical vectors are summarized by the counts of each value. In this next

« »

example, letters is a built-in constant that contains the lowercase values from “a” to

«,_»

z” (LETTERS contains the uppercase equivalents, “A” to “Z”). Here, letters[1:5] uses

« » «_»

indexing to restrict the letters to “a” to “e” The sample function randomly samples these
values, with replace, 30 times:

fac <- factor(sample(letters[1:5], 30, replace = TRUE))

summary(fac)

## abcde
## 67593

bool <- sample(c(TRUE, FALSE, NA), 30, replace = TRUE)
summary(bool)

##  Mode FALSE  TRUE  NA's

## logical 12 11 7
Multidimensional objects, like matrices and data frames, are summarized by column
(we’ll look at these in more detail in the next two chapters). The data frame dfr that we
create here is quite large to display, having 30 rows. For large objects like this,” the head
function can be used to display only the first few rows (six by default):

dfr <- data.frame(num, fac, bool)
head(dfr)

H#Hit num fac bool
## 1 0.47316 b NA
## 2 0.56782 d FALSE
## 3 0.46205 d FALSE
## 4 0.02114 b TRUE

7. These days, 30 rows isn't usually considered to be “big data,” but it’s still a screenful when printed.
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## 5 0.27963 a TRUE
## 6 0.46690 a TRUE

The summary function for data frames works like calling summary on each individual
column:

summary(dfr)

## num fac bool

## Min. :0.0211  a:6  Mode :logical
## 1st Qu.:0.2958 b:7 FALSE:12

## Median :0.5061 c:5 TRUE :11

## Mean :0.5285 d:9 NA's :7

## 3rd Qu.:0.7808 e:3

## Max. :0.9916

Similarly, the str function shows the object’s structure. It isn’t that interesting for vectors
(since they are so simple), but str is exceedingly useful for data frames and nested lists:

str(num)
## num [1:30] 0.4732 0.5678 0.462 0.0211 0.2796 ...
str(dfr)

## 'data.frame': 30 obs. of 3 variables:

## S num : num 0.4732 0.5678 0.462 0.0211 0.2796 ...

## S fac : Factor w/ 5 levels "a","b","c","d",..: 2442114214 ...
## S bool: logi NA FALSE FALSE TRUE TRUE TRUE ...

As mentioned previously, each class typically has its own print method that controls
how it is displayed to the console. Sometimes this printing obscures its internal struc-
ture, or omits useful information. The unclass function can be used to bypass this,
letting you see how a variable is constructed. For example, calling unclass on a factor
reveals that it is just an integer vector, with an attribute called levels:

unclass(fac)

# [1]1244211421433154515122342434234
## attr(,"levels")
## [1] ||all |lb|| llc|| lIdH Ilell

We’'ll look into attributes later on, but for now, it is useful to know that the attributes
function gives you a list of all the attributes belonging to an object:

attributes(fac)

##t Slevels

## [1] "a" "b" "c" "d" "e"
#H

## Sclass

## [1] "factor"
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For visualizing two-dimensional variables such as matrices and data frames, the View
function (notice the capital “V”) displays the variable as a (read-only) spreadsheet. The
edit and fix functions work similarly to View, but let us manually change data values.
While this may sound more useful, it is usually a supremely awful idea to edit data in
this way, since we lose all traceability of where our data came from. It is almost always
better to edit data programmatically:

View(dfr) #no changes allowed
new_dfr <- edit(dfr) #changes stored in new_dfr
fix(dfr) #changes stored in dfr

A useful trick is to view the first few rows of a data frame by combining View with head:
View(head(dfr, 50)) #view first 50 rows

The Workspace

While we’re working, it’s often nice to know the names of the variables that we've created
and what they contain. To list the names of existing variables, use the function 1s. This
is named after the equivalent Unix command, and follows the same convention: by
default, variable names that begin with a . are hidden. To see them, pass the argument
all.names = TRUE:

#Create some variables to find

peach <- 1

plum <- "fruity"

pear <- TRUE

1s()

## [1] "a_vector" "all_true" "bool"

##  [4] "dfr" "fac" "fname"

## [7] "gender" "gender_char" "gender_fac"
## [10] "i" "{nput" "my_local_variable"
## [13] "none_true" "num" "output"

## [16] "peach" "pear" "plum"

## [19] "remove_package" "some_true" "sushi"

## [22] "ulams_spiral” "x" "xy"

## [25] "y" "z" "zz"

ls(pattern = "ea"
## [1] "peach" "pear"

For more information about our workspace, we can see the structure of our variables
using ls.str. This is, as you might expect, a combination of the 1s and str functions,
and is very useful during debugging sessions (see “Debugging” on page 292 in Chap-
ter 16). browseEnv provides a similar capability, but displays its output in an HTML
page in our web browser:

browseEnv()
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After working for a while, especially while exploring data, our workspace can become
quite cluttered. We can clean it up by using the rm function to remove variables:

rm(peach, plum, pear)
rm(list = 1s()) #Removes everything. Use with caution!

Summary

o All variables have a class.

« You test if an object has a particular class using the is function, or one of its class-
specific variants.

» You can change the class of an object using the as function, or one of its class-
specific variants.

o There are several functions that let you inspect variables, including summary, head,
str, unclass, attributes, and View.

o Lslists the names of your variables and 1s. str lists them along with their structure.

 rmremoves your variables.

Test Your Knowledge: Quiz

Question 3-1
What are the names of the three built-in classes of numbers?

Question 3-2
What function would you call to find out the number of levels of a factor?

Question 3-3
How might you convert the string “6.283185” to a number?

Question 3-4
Name at least three functions for inspecting the contents of a variable.

Question 3-5
How would you remove all the variables in the user workspace?

Test Your Knowledge: Exercises

Exercise 3-1
Find the class, type, mode, and storage mode of the following values: Inf, NA, NaN,
nn X [5]
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Exercise 3-2
Randomly generate 1,000 pets, from the choices “dog,” “cat,” “hamster,” and “gold-
fish,” with equal probability of each being chosen. Display the first few values of the
resultant variable, and count the number of each type of pet. [5]

Exercise 3-3
Create some variables named after vegetables. List the names of all the variables in
the user workspace that contain the letter “a” [5]

38 | Chapter3:Inspecting Variables and Your Workspace

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4
Vectors, Matrices, and Arrays

In Chapters 1 and 2, we saw several types of vectors for logical values, character strings,
and of course numbers. This chapter shows you more manipulation techniques for
vectors and introduces their multidimensional brethren, matrices and arrays.

Chapter Goals

After reading this chapter, you should:

 Be able to create new vectors from existing vectors
o Understand lengths, dimensions, and names

 Be able to create and manipulate matrices and arrays

Vectors

So far, you have used the colon operator, :, for creating sequences from one number to
another, and the c function for concatenating values and vectors to create longer vectors.
To recap:

8.5:4.5 #sequence of numbers from 8.5 down to 4.5

## [1] 8.5 7.5 6.5 5.5 4.5

c(1, 1:3, c(5, 8), 13) #values concatenated into single vector

##[1] 1 1 2 3 5 813
The vector function creates a vector of a specified type and length. Each of the values

in the result is zero, FALSE, or an empty string, or whatever the equivalent of “nothing”
is:
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vector("numeric", 5)

#H [1] 00000

vector("complex", 5)

## [1] 0+01 0+01 0+01 0+01 0+01
vector("logical", 5)

## [1] FALSE FALSE FALSE FALSE FALSE
vector("character", 5)

## [1] oo

vector("list", 5)

## [[1]]
## NULL
#H

## [[2]]
## NULL
#it

## [[3]]
## NULL
#H

## [[4]]
## NULL
#it

## [[5]]
## NULL

In that last example, NULL is a special “empty” value (not to be confused with NA, which
indicates a missing data point). We’ll look at NULL in detail in Chapter 5. For convenience,
wrapper functions exist for each type to save you typing when creating vectors in this
way. The following commands are equivalent to the previous ones:

numeric(5)

# (1100000

complex(5)

## [1] 0+01 0+01 0+01 0+01 0+01
logical(s)

## [1] FALSE FALSE FALSE FALSE FALSE
character(5)

#o[1] oo

As we'll see in the next chapter, the 1ist function does not work the
. same way. list(5) creates something a little different.
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Sequences

Beyond the colon operator, there are several functions for creating more general se-
quences. The seq function is the most general, and allows you to specify sequences in
many different ways. In practice, though, you should never need to call it, since there
are three other specialist sequence functions that are faster and easier to use, covering
specific use cases.

seq.intletsus create a sequence from one number to another. With two inputs, it works
exactly like the colon operator:

seq.int(3, 12) #same as 3:12

# [1] 3 4 5 6 7 8 910 11 12

seq.int is slightly more general than :, since it lets you specify how far apart inter-
mediate values should be:

seq.int(3, 12, 2)

#[1] 3 5 7 911

seq.int(0.1, 0.01, -0.01)

## [1] 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
seq_len creates a sequence from 1 up to its input, so seq_len(5) is just a clunkier way

of writing 1:5. However, the function is extremely useful for situations when its input
could be zero:

n<-0

1:n #not what you might expect!
#H (1] 10

seq_len(n)

## integer(0)

seq_along creates a sequence from 1 up to the length of its input:

pp <- c("Peter", "Piper", "picked", "a", "peck", "of", "pickled", "peppers")
for(i in seq_along(pp)) print(pp[i])

## [1] "Peter"

## [1] "Piper"

## [1] "picked"

## [1] "a"
## [1] "peck"
## [1] "of"

## [1] "pickled"
## [1] "peppers"

For each of the preceding examples, you can replace seq.int, seq_len, or seq_along
with plain seq and get the same answer, though there is no need to do so.
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Lengths

I've just sneakily introduced a new concept related to vectors. That is, all vectors have
a length, which tells us how many elements they contain. This is a nonnegative inte-
ger' (yes, zero-length vectors are allowed), and you can access this value with the length
function. Missing values still count toward the length:

length(1:5)

## [1] 5

length(c(TRUE, FALSE, NA))

## [1] 3

One possible source of confusion is character vectors. With these, the length is the
number of strings, not the number of characters in each string. For that, we should use

nchar:

sn <- c("Sheena", "leads", "Sheila", "needs")
length(sn)

## [1] 4
nchar(sn)
## [1]1 6 56 5

It is also possible to assign a new length to a vector, but this is an unusual thing to do,
and probably indicates bad code. If you shorten a vector, the values at the end will be
removed, and if you extend a vector, missing values will be added to the end:

poincare <- c¢(1, 0, 0, 0, 2, 0, 2, 0) #See http://oeis.org/A051629

length(poincare) <- 3
poincare

# [1]1 100

length(poincare) <- 8
poincare

# [1] 1 0 0 NA NA NA NA NA

Names

A great feature of R’s vectors is that each element can be given a name. Labeling the
elements can often make your code much more readable. You can specify names when
you create a vector in the form name = value.Ifthe name ofan elementis avalid variable
name, it doesn’'t need to be enclosed in quotes. You can name some elements of a vector
and leave others blank:

1. Lengths are limited to 2431-1 elements on 32-bit systems and versions of R prior to 3.0.0.
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c(apple = 1, banana = 2, "kiwi fruit" = 3, 4)

#Hit apple banana kiwl fruit
#t 1 2 3 4

You can add element names to a vector after its creation using the names function:

X <- 1:4

names(x) <- c("apple", "bananas", "kiwil fruit", "")
X

#Hit apple bananas kiwi fruit

#H 1 2 3 4

This names function can also be used to retrieve the names of a vector:
names(x)
#Ht [1] “apple" "bananas" "kiwil fruit" ""

If a vector has no element names, then the names function returns NULL:

names(1:4)

## NULL

Indexing Vectors

Oftentimes we may want to access only part ofa vector, or perhaps an individual element.
This is called indexing and is accomplished with square brackets, [ ]. (Some people also
call it subsetting or subscripting or slicing. All these terms refer to the same thing.) R has
a very flexible system that gives us several choices of index:

o Passing a vector of positive numbers returns the slice of the vector containing the
elementsat thoselocations. The first positionis 1 (not 0, as in some other languages).

o Passing a vector of negative numbers returns the slice of the vector containing the
elements everywhere except at those locations.

o Passingalogical vector returns the slice of the vector containing the elements where
the index is TRUE.

 For named vectors, passing a character vector of names returns the slice of the
vector containing the elements with those names.
Consider this vector:
X <- (1:5) ~ 2
##[1] 1 4 916 25
These three indexing methods return the same values:
x[c(1, 3, 5)]

x[e(-2, -4)]
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x[c(TRUE, FALSE, TRUE, FALSE, TRUE)]
## [1] 1 925
After naming each element, this method also returns the same values:

names(x) <- c("one", "four", "nine", "sixteen", "twenty five")
x[c("one", "nine", "twenty five")]

#Hit one nine twenty five
#t 1 9 25

Mixing positive and negative values is not allowed, and will throw an error:
x[c(1, -1)] #This doesn't make sense!
## Error: only 0's may be mixed with negative subscripts

If you use positive numbers or logical values as the index, then missing indices corre-
spond to missing values in the result:

x[c(1, NA, 5)]

#Hit one <NA> twenty five
#t 1 NA 25

x[c(TRUE, FALSE, NA, FALSE, TRUE)]

## one <NA> twenty five
#H 1 NA 25

Missing values don’t make any sense for negative indices, and cause an error:
x[c(-2, NA)] #This doesn't make sense either!
## Error: only 0's may be mixed with negative subscripts

Out of range indices, beyond the length of the vector, don’t cause an error, but instead
return the missing value NA. In practice, it is usually better to make sure that your indices
are in range than to use out of range values:

x[6]

## <NA>
## NA

Noninteger indices are silently rounded toward zero. This is another case where R is
arguably too permissive. If you find yourself passing fractions as indices, you are prob-
ably writing bad code:

x[1.9] #1.9 rounded to 1

## one
# 1

x[-1.9] #-1.9 rounded to -1

it four nine sixteen twenty five
#it 4 9 16 25
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Not passing any index will return the whole of the vector, but again, if you find yourself
not passing any index, then you are probably doing something odd:

x[1]

#Hit one four nine sixteen twenty five
#t 1 4 9 16 25

The which function returns the locations where a logical vector is TRUE. This can be
useful for switching from logical indexing to integer indexing:

which(x > 10)

it sixteen twenty five
#it 4 5

which.min and which.max are more efficient shortcuts for which(min(x)) and
which(max(x)), respectively:
which.min(x)

## one
# 1

which.max(x)

## twenty five
#Ht 5

Vector Recycling and Repetition

So far, all the vectors that we have added together have been the same length. You may
be wondering, “What happens if I try to do arithmetic on vectors of different lengths?”

If we try to add a single number to a vector, then that number is added to each element
of the vector:

1:5+1
## [1]1 23456
1+ 1:5
## [1]1 23456

When adding two vectors together, R will recycle elements in the shorter vector to match
the longer one:

1:5 + 1:15
# [1] 2 4 6 810 7 9 11 13 15 12 14 16 18 20

If the length of the longer vector isn't a multiple of the length of the shorter one, a
warning will be given:
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1:5 + 1:7
## Warning: longer object length is not a multiple of shorter object length
# [1] 2 4 6 810 7 9

It must be stressed that just because we can do arithmetic on vectors of different lengths,
it doesn’t mean that we should. Adding a scalar value to a vector is okay, but otherwise
we are liable to get ourselves confused. It is much better to explicitly create equal-length
vectors before we operate on them.

The rep function is very useful for this task, letting us create a vector with repeated
elements:

rep(1:5, 3)

## [1]123451234512345
3)

## [1]1111222333444555

rep(1:5, each

rep(1:5, times = 1:5)

## [1] 122333444455555
rep(1:5, length.out = 7)

# (1] 1234512

Like the seq function, rep has a simpler and faster variant, rep. int, for the most com-
mon case:

rep.int(1:5, 3) #the same as rep(1:5, 3)
## [11123451234512345

Recent versions of R (since v3.0.0) also have rep_len, paralleling seq_len, which lets
us specify the length of the output vector:

rep_len(1:5, 13)
## [1] 1234512345123

Matrices and Arrays

The vector variables that we have looked at so far are one-dimensional objects, since
they have length but no other dimensions. Arrays hold multidimensional rectangular
data. “Rectangular” means that each row is the same length, and likewise for each col-
umn and other dimensions. Matrices are a special case of two-dimensional arrays.

Creating Arrays and Matrices

To create an array, you call the array function, passing in a vector of values and a vector
of dimensions. Optionally, you can also provide names for each dimension:
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(three_d_array <- array(
1:24,
dim = c(4, 3, 2),
dimnames = list(
c("one", "two", "three", "four"),
c("ein", "zwel", "drei"),
c("un", "deux")

)
b))
## , , un
##t
#Hit ein zwel drei
## one 1 5 9
## two 2 6 10
## three 3 7 11
##t four 4 8 12
##t
## , , deux
##t
#Hit ein zwel drei

## one 13 17 21
## two 14 18 22
## three 15 19 23
##t four 16 20 24

class(three_d_array)
## [1] "array"

The syntax for creating matrices is similar, but rather than passing a dim argument, you
specify the number of rows or the number of columns:

(a_matrix <- matrix(
1:12,
nrow = 4, #ncol = 3 works the same
dimnames = list(

c("one", "two", "three", "four"),
c("ein", "zweil", "drei")

)
)
it ein zwel dretl
## one 1 5 9
## two 2 6 10
## three 3 7 11
##t four 4 8 12

class(a_matrix)
## [1] "matrix"

This matrix could also be created using the array function. The following two-
dimensional array is identical to the matrix that we just created (it even has classmatrix):
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(two_d_array <- array(
1:12,
dim = c(4, 3),
dimnames = list(

c("one", "two", "three", "four"),
c("ein", "zwel", "drei")

)
))
## ein zwel dreil
## one 1 5 9
## two 2 6 10
## three 3 7 11
## four 4 8 12

identical(two_d_array, a_matrix)
## [1] TRUE

class(two_d_array)

## [1] "matrix"

When you create a matrix, the values that you passed in fill the matrix column-wise. It
is also possible to fill the matrix row-wise by specifying the argument byrow = TRUE:

matrix(
1:12,
nrow = 4,
byrow = TRUE,
dimnames = list(
c("one", "two", "three", "four"),
c("ein", "zweil", "drei")

)
)
it eln zwel dretl
## one 1 2 3
## two 4 5 6

## three 7 8 9
## four 10 11 12

Rows, Columns, and Dimensions

For both matrices and arrays, the dim function returns a vector of integers of the di-
mensions of the variable:

dim(three_d_array)
## [1] 4 3 2
dim(a_matrix)

## [1] 4 3
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For matrices, the functions nrow and ncol return the number of rows and columns,
respectively:

nrow(a_matrix)

# [1] 4

ncol(a_matrix)

## [1] 3
nrow and ncol also work on arrays, returning the first and second dimensions, respec-
tively, but it is usually better to use dim for higher-dimensional objects:

nrow(three_d_array)

## [1] 4

ncol(three_d_array)

## [1] 3

The length function that we have previously used with vectors also works on matrices
and arrays. In this case it returns the product of each of the dimensions:

length(three_d_array)
# [1] 24
length(a_matrix)

## [1] 12

We can also reshape a matrix or array by assigning a new dimension with dim. This
should be used with caution since it strips dimension names:

dim(a_matrix) <- c(6, 2)

a_matrix

#it [,1] [,2]
#t [1,] 1 7
## [2,] 2 8
#t [3,] 3 9
## [4,] 4 10
## [5,] 5 11
## [6,] 6 12

nrow, ncol, and dim return NULL when applied to vectors. The functions NROW and NCOL
are counterparts to nrowand ncol that pretend vectors are matrices with a single column
(that is, column vectors in the mathematical sense):

identical(nrow(a_matrix), NROW(a_matrix))
## [1] TRUE
identical(ncol(a_matrix), NCOL(a_matrix))

## [1] TRUE
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recaman <- c(0, 1, 3, 6, 2, 7, 13, 20)
nrow(recaman)

## NULL

NROW(recaman)

## [1] 8

ncol(recaman)

## NULL

NCOL(recaman)

## [1] 1

dim(recaman)

Row, Column, and Dimension Names

In the same way that vectors have names for the elements, matrices have rownames and
colnames for the rows and columns. For historical reasons, there is also a function
row.names, which does the same thing as rownames, but there is no corresponding
col.names, so it is better to ignore it and use rownames instead. As with the case of nrow,
ncol, and dim, the equivalent function for arrays is dimnames. The latter returns a list
(see “Lists” on page 57) of character vectors. In the following code chunk, a_matrix has
been restored to its previous state, before its dimensions were changed:

rownames(a_matrix)

## [1] "one" "two" "three" "four"
colnames(a_matrix)

## [1] "ein" "zwel" "dreil"

dimnames(a_matrix)

## [[1]]

## [1] "one" "two" "three" "four"
#H

## [[2]]

## [1] "ein" "zwel" "dreil"

rownames(three_d_array)

## [1] "one"  "two" "three" "four"
colnames(three_d_array)

## [1] "ein" "zwel" "dreil"

dimnames(three_d_array)
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## [[1]]
## [1] "one" "two" "three" "four"
##t

## [[2]]
## [1] "ein" "zwel" "drei"
#i#

## [[3]1]
## [1] "un"  "deux"

Indexing Arrays

Indexing works just like it does with vectors, except that now we have to specify an index
for more than one dimension. As before, we use square brackets to denote an index,
and we still have four choices for specifying the index (positive integers, negative inte-
gers, logical values, and element names). It is perfectly permissible to specify the indices
for different dimensions in different ways. The indices for each dimension are separated
by commas:

a_matrix[1, c("zwel", "dreil")] #elements in 1st row, 2nd and 3rd columns

##t zwel drei
##t 5 9

To include all of a dimension, leave the corresponding index blank:
a_matrix[1, ] #all of the first row

## ein zwel dreil
#Ht 1 5 9

a_matrix[, c("zwel", "drei")] #all of the second and third columns

##t zweil drei
## one 5 9
## two 6 10
## three 7 11
## four 8 12
Combining Matrices

The c function converts matrices to vectors before concatenating them:

(another_matrix <- matrix(
seq.int(2, 24, 2),
nrow = 4,
dimnames = list(
c("five", "six", "seven", "eight"),
c("vier", "funf", "sechs")
)
)
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#Hit vier funf sechs

#t five 2 10 18
## six 4 12 20
## seven 6 14 22
## eight 8 16 24

c(a_matrix, another_matrix)

# [1] 1 2 3 4 5 6 7 8 9101112 2 4 6 8 10 12 14 16 18 20 22
## [24] 24

More natural combining of matrices can be achieved by using cbind and rbind, which
bind matrices together by columns and rows:

cbind(a_matrix, another_matrix)

## ein zwel dreil vier funf sechs
## one 1 5 9 2 10 18
## two 2 6 10 4 12 20
## three 3 7 11 6 14 22
## four 4 8 12 8 16 24

rbind(a_matrix, another_matrix)

i ein zwel drel
## one 1 5 9
## two 2 6 10
## three 3 7 11
## four 4 8 12
#t five 2 10 18
## six 4 12 20
## seven 6 14 22
## eight 8 16 24
Array Arithmetic

The standard arithmetic operators (+, -, \*, /) work element-wise on matrices and
arrays, just they like they do on vectors:

a_matrix + another_matrix

i ein zwel dreil
## one 3 15 27
## two 6 18 30
## three 9 21 33
## four 12 24 36

a_matrix * another_matrix

## ein zwel dreil
## one 2 50 162
## two 8 72 200
## three 18 98 242
## four 32 128 288
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When performing arithmetic on two arrays, you need to make sure that they are of an
appropriate size (they must be “conformable,” in linear algebra terminology). For ex-
ample, both arrays must be the same size when adding, and for multiplication the num-
ber of rows in the first matrix must be the same as the number of columns in the second
matrix:

(another_matrix <- matrix(1:12, nrow = 2))
a_matrix + another_matrix  #adding nonconformable matrices throws an error

If you try to add a vector to an array, then the usual vector recycling rules apply, but the
dimension of the results is taken from the array.

The t function transposes matrices (but not higher-dimensional arrays, where the con-
cept isn’t well defined):

t(a_matrix)

it one two three four
## ein 1 2 3 4
## zwel 5 6 7 8

## dret 9 10 11 12

For inner and outer matrix multiplication, we have the special operators %*% and %0%.
In each case, the dimension names are taken from the first input, if they exist:

a_matrix %*% t(a_matrix) #inner multiplication

##t one two three four
## one 107 122 137 152
## two 122 140 158 176
## three 137 158 179 200
## four 152 176 200 224

1:3 %0% 4:6 #outer multiplication

#it [,11 [,2] [,3]
# [1,] 4 5 6
# [2,] 8 10 12
## [3,] 12 15 18

outer(1:3, 4:6) #same

#it [,1] [,2] [,3]
# [1,] 4 5 6
#[2,] 8 10 12
## [3,] 12 15 18

The power operator, #, also works element-wise on matrices, so to invert a matrix you
cannot simply raise it to the power of minus one. Instead, this can be done using the
solve function:?

2. gr.solve(m) and chol2inv(chol(m)) provide alternative algorithms for inverting matrices, but solve
should be your first port of call.
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(m <- matrix(c(1, 0, 1, 5, -3, 1, 2, 4, 7), nrow = 3))

#it [,1] [,2] [,3]
#[1,] 1 5 2
# [2,] 0 -3 4
#[3,] 1 1 7

mA" -1

## [,1] [,21 [,3]
## [1,] 1 0.2000 0.5000
## [2,] Inf -0.3333 0.2500
## [3,] 1 1.0000 0.1429

(inverse_of_m <- solve(m))

#it [,1] [,2] [,3]
## [1,] -25 -33 26
## [2,] 4 5 -4
#[3,] 3 4 -3

m %*% inverse_of_m
#H [,1]1 [,2] [,3]
## [1,] 1 0 0

#[2,] 0o 1 0
#[3,] o0 0o 1

Summary

o seq and its variants let you create sequences of numbers.
o Vectors have a length that can be accessed or set with the length function.

 You can name elements of vectors, either when they are created or with the names
function.

 You can access slices of a vector by passing an index into square brackets. The rep
function creates a vector with repeated elements.

o Arrays are multidimensional objects, with matrices being the special case of
two-dimensional arrays.

o nrow, ncol, and dim provide ways of accessing the dimensions of an array.

o Likewise, rownames, colnames, and dimnames access the names of array dimensions.
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Test Your Knowledge: Quiz

Question 4-1
How would you create a vector containing the values 0, 0.25, 0.5, 0.75, and 1?

Question 4-2
Describe two ways of naming elements in a vector.

Question 4-3
What are the four types of index for a vector?

Question 4-4
What is the length of a 3-by-4-by-5 array?

Question 4-5
Which operator would you use to perform an inner product on two matrices?

Test Your Knowledge: Exercises

Exercise 4-1

The nth triangular number is given by n * (n + 1) / 2. Create a sequence of the
first 20 triangular numbers. R has a built-in constant, letters, that contains the
lowercase letters of the Roman alphabet. Name the elements of the vector that you
just created with the first 20 letters of the alphabet. Select the triangular numbers
where the name is a vowel. [10]

Exercise 4-2

The diag function has several uses, one of which is to take a vector as its input and
create a square matrix with that vector on the diagonal. Create a 21-by-21 matrix
with the sequence 10 to 0 to 11 (i.e., 11, 10, ...,1,0, 1, ..., 11). [5]

Exercise 4-3

By passing two extra arguments to diag, you can specify the dimensions of the
output. Create a 20-by-21 matrix with ones on the main diagonal. Now add a row
of zeros above this to create a 21-by-21 square matrix, where the ones are offset a
row below the main diagonal.

Create another matrix with the ones offset one up from the diagonal.

Add these two matrices together, then add the answer from Exercise 4-2. The re-
sultant matrix is called a Wilkinson matrix.

The eigen function calculates eigenvalues and eigenvectors of a matrix. Calculate
the eigenvalues for your Wilkinson matrix. What do you notice about them? [20]
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CHAPTER 5
Lists and Data Frames

The vectors, matrices, and arrays that we have seen so far contain elements that are all
of the same type. Lists and data frames are two types that let us combine different types
of data in a single variable.

Chapter Goals

After reading this chapter, you should:

 Be able to create lists and data frames

o Beable to use length, names, and other functions to inspect and manipulate these
types

o Understand what NULL is and when to use it

 Understand the difference between recursive and atomic variables

o Know how to perform basic manipulation of lists and data frames

Lists

A list is, loosely speaking, a vector where each element can be of a different type. This
section concerns how to create, index, and manipulate lists.

Creating Lists

Lists are created with the 1ist function, and specifying the contents works much like
the ¢ function that we've seen already. You simply list the contents, with each argument
separated by a comma. List elements can be any variable type—vectors, matrices, even
functions:
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(a_list <- list(
c(1, 1, 2, 5, 14, 42), #See http://oeis.org/A00O108

month.abb,
matrix(c(3, -8, 1, -3), nrow = 2),
asin
))
## [[1]]
# [1] 1 1 2 514 42
##t
## [[2]]
## [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
## [12] "Dec"
##t
## [[3]]
#it [,1] [,2]

# [1,] 3 1
# [2,] -8 -3
#H

## [[4]]

## function (x) .Primitive("asin")

As with vectors, you can name elements during construction, or afterward using the
names function:

names(a_list) <- c("catalan", "months", "involutary", "arcsin"
a_list

## Scatalan

## [1] 1 1 2 5 14 42

##

## Smonths

##  [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
## [12] "Dec"

##

## Sinvolutary

#it [,1]1 [,2]

#t [1,] 3 1

## [2,] -8 -3

##t

## Sarcsin

## function (x) .Primitive("asin")

(the_same_list <- list(

catalan =c(1, 1, 2, 5, 14, 42),

months = month.abb,

involutary = matrix(c(3, -8, 1, -3), nrow = 2),
arcsin = asin

))

## Scatalan

# [1] 1 1 2 514 42
##

## Smonths
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## [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
## [12] "Dec"

##t

## Sinvolutary

#it [,1] [,2]

## [1,] 301

# [2,] -8 -3

#H

## Sarcsin

## function (x) .Primitive("asin")

It isn’t compulsory, but it helps if the names that you give elements are valid variable
names.

It is even possible for elements of lists to be lists themselves:

(main_list <- list(
middle_list = list(
element_in_middle_list = diag(3),
inner_list = list(
element_in_inner_list pit » 1:4,
another_element_in_1inner_list = "a"
)
),
element_in_main_list = log10(1:10)

))

## $middle_list
## Smiddle_listSelement_in_middle_list

#t [,1] [,2] [,3]
#[1,] 1 0 0
#[2,] 0 1 0
#[3,] o o 1
##

## Smiddle_list$inner_list

## Smiddle_list$Sinner_listSelement_in_inner_list

# [1] 3.142

#H

## Smiddle_list$inner_listS$Sanother_element_in_inner_list
## [1] "a"

##t

#H

##t

## Selement_in_main_list

## [1] 0.0000 0.3010 0.4771 0.6021 0.6990 0.7782 0.8451 0.9031 0.9542 1.0000

In theory, you can keep nesting lists forever. In practice, current versions of R will throw
an error once you start nesting your lists tens of thousands of levels deep (the exact

number is machine specific). Luckily, this shouldn't be a problem for you, since real-
world code where nesting is deeper than three or four levels is extremely rare.
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Atomic and Recursive Variables

Due to this ability to contain other lists within themselves, lists are considered to be
recursive variables. Vectors, matrices, and arrays, by contrast, are atomic. (Variables can
either be recursive or atomic, never both; Appendix A contains a table explaining which
variable types are atomic, and which are recursive.) The functions is.recursive and
is.atomic let us test variables to see what type they are:

is.atomic(list())

## [1] FALSE

is.recursive(list())

## [1] TRUE

is.atomic(numeric())

## [1] TRUE

is.recursive(numeric())

## [1] FALSE

List Dimensions and Arithmetic

Like vectors, lists have a length. A list’s length is the number of top-level elements that
it contains:

length(a_list)

## [1] 4

length(main_list) #doesn't include the lengths of nested lists
## [1] 2

Again, like vectors, but unlike matrices, lists don't have dimensions. The dim function
correspondingly returns NULL:

dim(a_list)
## NULL

nrow, NROW, and the corresponding column functions work on lists in the same way as
on vectors:

nrow(a_list)
## NULL
ncol(a_list)
## NULL
NROW(a_list)

#H[1] 4
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NCOL(a_list)

## [1] 1
Unlike with vectors, arithmetic doesn’t work on lists. Since each element can be of a
different type, it doesn’t make sense to be able to add or multiply two lists together. It is

possible to do arithmetic on list elements, however, assuming that they are of an ap-
propriate type. In that case, the usual rules for the element contents apply. For example:

11 <- list(1:5)
12 <- list(6:10)
L[[1]] + 12[[1]1]

## [1] 7 9 11 13 15

More commonly, you might want to perform arithmetic (or some other operation) on
every element of a list. This requires looping, and will be discussed in Chapter 8.

Indexing Lists
Consider this test list:

1 <- list(
first =
second
third

Aswith vectors, we can access elements of the list using square brackets, [ ], and positive
or negative numeric indices, element names, or a logical index. The following four lines
of code all give the same result:

1:2]

## Sfirst
# [1] 1
##

## $second
## [1] 2

3]

## Sfirst
# [1] 1
##

## $second
## [1] 2
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c("first", "second")]

##t Sfirst
## [1] 1
#H

## $second
## [1] 2

1[c(TRUE, TRUE, FALSE)]

##t Sfirst
## [1] 1
#H

## $second
## [1] 2

The result of these indexing operations is another list. Sometimes we want to access the
contents of the list elements instead. There are two operators to help us do this. Double
square brackets ([ [ ]]) canbe given a single positive integer denoting the index to return,
or a single string naming that element:

[l

# [1] 1

[ "first"]]

# [1] 1

The is.1ist function returns TRUE if the input is a list, and FALSE otherwise. For com-
parison, take a look at the two indexing operators:

is.list(1[1])
## [1] TRUE
is. Uist(1[[11])
## [1] FALSE

For named elements of lists, we can also use the dollar sign operator, $. This works
almost the same way as passing a named string to the double square brackets, but has
two advantages. Firstly, many IDEs will autocomplete the name for you. (In R GUI,
press Tab for this feature.) Secondly, R accepts partial matches of element names:

1sfirst
## [1] 1
15 #partial matching interprets "f" as "first"
## [1] 1

To access nested elements, we can stack up the square brackets or passin a vector, though
the latter method is less common and usually harder to read:
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U[["third"]1["beta"]

## Sbeta
#t [1] 3.2

U[["third"]][["beta"]]
## [1] 3.2
[ [c("third", "beta")]]
## [1] 3.2

The behavior when you try to access a nonexistent element of a list varies depending
upon the type of indexing that you have used. For the next example, recall that our list,
1, has only three elements.

If we use single square-bracket indexing, then the resulting list has an element with the
value NULL (and name NA, if the original list has names). Compare this to bad indexing
of a vector where the return value is NA:

(4, 2, 5)]

## S<NA>
## NULL
#it

## $second
#t [1] 2
#H

## S<NA>
## NULL

1[c("fourth", "second", "fifth")]

## S<NA>
## NULL
#H

## $second
# [1] 2
#it

## S<NA>
## NULL

Trying to access the contents of an element with an incorrect name, either with double
square brackets or a dollar sign, returns NULL:

[["fourth"]]
## NULL
1$fourth
## NULL
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Finally, trying to access the contents of an element with an incorrect numerical index
throws an error, stating that the subscript is out of bounds. This inconsistency in be-
havior is something that you just need to accept, though the best defense is to make sure
that you check your indices before you use them:

1411 #this throws an error

Converting Between Vectors and Lists

Vectors can be converted to lists using the function as. list. This creates a list with each
element of the vector mapping to a list element containing one value:

busy_beaver <- c(1, 6, 21, 107) #See http://oeis.org/A060843
as.list(busy_beaver)

## [[1]]
## [1] 1
#H

## [[2]]
## [1] 6
#H

## [[3]]
## [1] 21
#H

## [[4]]
## [1] 107

If each element of the list contains a scalar value, then it is also possible to convert that
list to a vector using the functions that we have already seen (as.numeric, as.charac
ter, and so on):

as.numeric(list(1, 6, 21, 107))

#H 1] 1 6 21 107

This technique won’t work in cases where the list contains nonscalar elements. This is
a real issue, because as well as storing different types of data, lists are very useful for
storing data of the same type, but with a nonrectangular shape:

(prime_factors <- list(

two = 2,

three = 3,

four = c(2, 2),
five = 5,

six = c(2, 3),
seven = 7,

eight = c(2, 2, 2),
nine = c(3, 3),
ten = c(2, 5)

)
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#H#t Stwo
## [1] 2
##t

##t Sthree
## [1] 3
#H

##t Sfour
## [1] 2 2
##t

#it Sfive
## [1] 5
#H

## Ssix

## [1] 2 3
##t

## Sseven
# [1] 7
#H

## Seight
##[1]1 222
##t

## Snine
## [1] 3 3
#H

## Sten

## [1] 2 5

This sort of list can be converted to a vector using the function unlist (it is sometimes
technically possible to do this with mixed-type lists, but rarely useful):

unlist(prime_factors)

i two three fourl four2 five sixl1 six2 seven eightl eight2

#it 2 3 2 2 5 2 3 7 2 2
## eight3 ninel nine2 tenl ten2
#it 2 3 3 2 5

Combining Lists

The c function that we have used for concatenating vectors also works for concatenating
lists:

c(list(a = 1, b = 2), list(3))

##t Sa

## [1] 1
#H

## $Sb

## [1] 2
##t

## [[3]]
## [1] 3
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If we use it to concatenate lists and vectors, the vectors are converted to lists (as though
as.list had been called on them) before the concatenation occurs:

c(list(a = 1, b = 2), 3)

## Sa

## [1] 1
##t

## Sb

## [1] 2
#H

## [[3]]
## [1] 3

It is also possible to use the cbind and rbind functions on lists, but the resulting objects

are very strange indeed. They are matrices with possibly nonscalar elements, or lists

with dimensions, depending upon which way you want to look at them:
(matrix_list_hybrid <- cbind(

list(a = 1, b = 2),
list(c = 3, list(d = 4))

»
#  [,1] [,2]
## a1l 3

#H b2 List,1

str(matrix_list_hybrid)

##t List of 4
# S :num 1
# S : num 2
## S : num 3

##t S :List of 1

##t ..$d: num 4

## - attr(*, "dim")= int [1:2] 2 2
## - attr(*, "dimnames")=List of 2
##  ..$ : chr [1:2] "a" "b"

#t ..$ ¢ NULL

Using cbind and rbind in this way is something you shouldn’t do often, and probably
not at all. It’s another case of R being a little too flexible and accommodating, instead of
telling you that you've done something silly by throwing an error.

NULL

NULL is a special value that represents an empty variable. Its most common use is in lists,
but it also crops up with data frames and function arguments. These other uses will be
discussed later.
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When you create a list, you may wish to specify that an element should exist, but should
have no contents. For example, the following list contains UK bank holidays' for 2013
by month. Some months have no bank holidays, so we use NULL to represent this absence:

(uk_bank_holidays_2013 <- 1list(

))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Jan =
Feb =
Mar =
Apr =
May =
Jun =
Jul =
Aug =
Sep =
Oct =
Nov =
Dec =

$Jan
[1]

$Feb
NULL

SMar
[1]

SApr
[1]

$May
[1]

$Jun
NULL

$Jul
NULL

$Aug
[1]

$Sep
NULL

$0ct
NULL

"New Year's Day",

NULL,

"Good Friday",

"Easter Monday",

c("Early May Bank Holiday", "Spring Bank Holiday"),
NULL,

NULL,

"Summer Bank Holiday",

NULL,

NULL,

NULL,

c("Christmas Day", "Boxing Day")

"New Year's Day"

"Good Friday"

"Easter Monday"

"Early May Bank Holiday" "Spring Bank Holiday"

"Summer Bank Holiday"

1. Bank holidays are public holidays.
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## SNov

## NULL

##t

## SDec

## [1] "Christmas Day" "Boxing Day"

It is important to understand the difference between NULL and the special missing value

NA. The biggest difference is that NA is a scalar value, whereas NULL takes up no space at
all—it has length zero:

length(NULL)
# [1] 0
length(NA)
# (1] 1
You can test for NULL using the function is.null. Missing values are not null:

is.null(NULL)
## [1] TRUE
is.null(NA)
## [1] FALSE

The converse test doesn’t really make much sense. Since NULL has length zero, we have
nothing to test to see if it is missing:

is.na(NULL)
## Warning: is.na() applied to non-(list or vector) of type 'NULL'
## logical(o)

NULL can also be used to remove elements of a list. Setting an element to NULL (even if
italready contains NULL) will remove it. Suppose that for some reason we want to switch
to an old-style Roman 10-month calendar, removing January and February:

uk_bank_holidays_2013%$Jan <- NULL
uk_bank_holidays_2013%Feb <- NULL
uk_bank_holidays_2013

## SMar

## [1] "Good Friday"
#it

## SApr

## [1] "Easter Monday"
#t

## SMay

## [1] "Early May Bank Holiday" "Spring Bank Holiday"
#it

## $Jun

## NULL

#it
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$Jul
NULL

$Aug
[1] "Summer Bank Holiday"

$Sep
NULL

$0ct
NULL

SNov
NULL

$Dec
[1] "Christmas Day" "Boxing Day"

To set an existing element to be NULL, we cannot simply assign the value of NULL, since
that will remove the element. Instead, it must be set to 1ist(NULL). Now suppose that
the UK government becomes mean and cancels the summer bank holiday:

uk_|
uk_

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

bank_holidays_2013["Aug"] <- list(NULL)
bank_holidays_2013

SMar
[1] "Good Friday"

$Apr
[1] "Easter Monday"

SMay
[1] "Early May Bank Holiday" "Spring Bank Holiday"

$Jun
NULL

$Jul
NULL

$Aug
NULL

$Sep
NULL

$0ct
NULL

S$Nov
NULL
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## SDec
## [1] "Christmas Day" "Boxing Day"

Pairlists

R has another sort of list, the pairlist. Pairlists are used internally to pass arguments into
functions, but you should almost never have to actively use them. Possibly the only
time? that you are likely to explicitly see a pairlist is when using formals. That function
returns a pairlist of the arguments of a function.

Looking at the help page for the standard deviation function, ?sd, we see that it takes
two arguments, a vector x and a logical value na. rm, which has a default value of FALSE:
(arguments_of_sd <- formals(sd))

#t Sx

##

#H

## Sna.rm

## [1] FALSE

class(arguments_of_sd)

## [1] "pairlist"
For most practical purposes, pairlists behave like lists. The only difference is that a
pairlist of length zero is NULL, but a list of length zero is just an empty list:

pairlist()

## NULL

list()

# list()

Data Frames

Data frames are used to store spreadsheet-like data. They can either be thought of as
matrices where each column can store a different type of data, or nonnested lists where
each element is of the same length.

2. Ralso stores some global settings in a pairlist variable called . Options in the base environment. You shouldn’t
access this variable directly, but instead use the function options, which returns a list.
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Creating Data Frames
We create data frames with the data. frame function:

(a_data_frame <- data.frame(
x = letters[1:5],

y = rnorm(5),

z = runif(5) > 0.5
)
## X y z
## 1 a 0.17581 TRUE
## 2 b 0.06894 TRUE
## 3 ¢ 0.74217 TRUE
## 4 d 0.72816 TRUE
## 5 e -0.28940 TRUE

class(a_data_frame)
## [1] "data.frame"

Notice that each column can have a different type than the other columns, but that all
the elements within a column are the same type. Also notice that the class of the object
is data. frame, with a dot rather than a space.

In this example, the rows have been automatically numbered from one to five. If any of

the input vectors had names, then the row names would have been taken from the first

such vector. For example, if y had names, then those would be given to the data frame:
y <- rnorm(5)

names(y) <- month.name[1:5]
data.frame(

x = letters[1:5],

y=1Y,

z = runif(5) > 0.5
)
#it X y z
## January a -0.9373 FALSE
## February b 0.7314 TRUE
## March c -0.3030 TRUE
## April d -1.3307 FALSE
## May e -0.6857 FALSE

This behavior can be overridden by passing the argument row.names = NULL to the
data.frame function:

data.frame(
x = letters[1:5],
y=1Y,
z = runif(5) > 0.5,
row.names = NULL
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#t y z
## 1 -0.9373 FALSE
## 2 0.7314 FALSE

## 4 d -1.3307 TRUE

X
a
b
## 3 c -0.3030 TRUE
d
## 5 e -0.6857 FALSE

It is also possible to provide your own row names by passing a vector to row.names.
This vector will be converted to character, if it isn’'t already that type:

data.frame(
x = letters[1:5],
y=1Y,
z = runif(5) > 0.5,
row.names = c("Jackie", "Tito", "Jermaine", "Marlon", "Michael")

)

#i X y z
## Jackie a -0.9373 TRUE
## Tito b 0.7314 FALSE
## Jermaine c -0.3030 TRUE
## Marlon d -1.3307 FALSE
## Michael e -0.6857 FALSE

The row names can be retrieved or changed at a later date, in the same manner as with
matrices, using rownames (or row.names). Likewise, colnames and dimnames can be used
to get or set the column and dimension names, respectively. In fact, more or less all the
functions that can be used to inspect matrices can also be used with data frames. nrow,
ncol, and dim also work in exactly the same way as they do in matrices:

rownames(a_data_frame)

## [1] "1" "2 "3 g g

colnames(a_data_frame)

## [1] "x" "y" "z"

dimnames(a_data_frame)

## [[1]]
#[1] "1" "2t "3t 4" s
##

## [[2]]
#o[1] "x" "y" "z

nrow(a_data_frame)
## [1] 5
ncol(a_data_frame)
## [1] 3
dim(a_data_frame)

## [1] 5 3
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There are two quirks that you need to be aware of. First, length returns the same value
as ncol, not the total number of elements in the data frame. Likewise, names returns the
same value as colnames. For clarity of code, I recommend that you avoid these two
functions, and use ncol and colnames instead:

length(a_data_frame)

## [1] 3

names(a_data_frame)

## [1] ||Xll Hyl| llZ||
It is possible to create a data frame by passing different lengths of vectors, as long as the

lengths allow the shorter ones to be recycled an exact number of times. More technically,
the lowest common multiple of all the lengths must be equal to the longest vector:

data.frame( #lengths 1, 2, and 4 are 0K
x =1, #recycled 4 times
y = 2:3, #recycled twice
z = 4:7 #the longest input; no recycling
)
#H  xyz
## 112 4
## 2135
### 3126
#4137

If the lengths are not compatible, then an error will be thrown:

data.frame( #lengths 1, 2, and 3 cause an error
X =1, #lowest common multiple is 6, which is more than 3
y = 2:3,
z = 4:6

)

One other consideration when creating data frames is that by default the column names
are checked to be unique, valid variable names. This feature can be turned oft by passing
check.names = FALSE to data.frame:

data.frame(
"A column" letters[1:5],
"1@#S%MN&* ()" = rnorm(5),
oo runif(5) > 0.5,
check.names = FALSE

)

## A column !@#S$%"&*() ce
## 1 a 0.32940 TRUE
#i#t 2 b -1.81969 TRUE
## 3 [« 0.22951 FALSE
## 4 d -0.06705 TRUE
## 5 e -1.58005 TRUE
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In general, having nonstandard column names is a bad idea. Duplicating column names
is even worse, since it can lead to hard-to-find bugs once you start taking subsets. Turn
off the column name checking at your own peril.

Indexing Data Frames

There are lots of different ways of indexing a data frame. To start with, pairs of the four
different vector indices (positive integers, negative integers, logical values, and charac-
ters) can be used in exactly the same way as with matrices. These commands both select
the second and third elements of the first two columns:

a_data_frame[2:3, -3]

#H X y
## 2 b 0.06894
## 3 c 0.74217

a_data_frame[c(FALSE, TRUE, TRUE, FALSE, FALSE), c("x", "y")]

#H X y
## 2 b 0.06894
## 3 c 0.74217

Since more than one column was selected, the resultant subset is also a data frame. If
only one column had been selected, the result would have been simplified to be a vector:

class(a_data_frame[2:3, -3])
## [1] "data.frame"
class(a_data_frame[2:3, 1])
## [1] "factor"

If we only want to select one column, then list-style indexing (double square brackets

with a positive integer or name, or the dollar sign operator with a name) can also be

used. These commands all select the second and third elements of the first column:
a_data_frame$x[2:3]

## [1] b c
## Levels: abcde

a_data_frame[[1]][2:3]

## [1]1 b
##t Levels: abcde

a_data_frame[["x"]][2:3]

## [1] b c
## Levels: abcde

74 | Chapter5:Lists and Data Frames

www.it-ebooks.info


http://www.it-ebooks.info/

If we are trying to subset a data frame by placing conditions on columns, the syntax can
get a bit clunky, and the subset function provides a cleaner alternative. subset takes
up to three arguments: a data frame to subset, a logical vector of conditions for rows to
include, and a vector of column names to keep (if this last argument is omitted, then all
the columns are kept). The genius of subset is that it uses special evaluation techniques
to let you avoid doing some typing: instead of you having to type a_data_frame$y to
access the y column of a_data_frame, it already knows which data frame to look in, so
you can just type y. Likewise, when selecting columns, you don't need to enclose the
names of the columns in quotes; you can just type the names directly. In this next
example, recall that | is the operator for logical or:

a_data_frame[a_data_frameSy > 0 | a_data_frame$z, "x"]

## [1] abcde
##t Levels: abcde

subset(a_data_frame, y > 0 | z, x)

H
£ 3
w
D anNn oo X

Basic Data Frame Manipulation

Like matrices, data frames can be transposed using the t function, but in the process all
the columns (which become rows) are converted to the same type, and the whole thing
becomes a matrix:

t(a_data_frame)

#o [,1] [,2] [,3] [,4] [,5]

48 % "a" " wen g e

## y " 0.17581" " 0.06894" " 0.74217" " 0.72816" "-0.28940"
## z "TRUE" "TRUE" "TRUE" "TRUE" "TRUE"

Data frames can also be joined together using cbind and rbind, assuming that they have
the appropriate sizes. rbind is smart enough to reorder the columns to match. cbind
doesn’'t check column names for duplicates, though, so be careful with it:

another_data_frame <- data.frame( #same cols as a_data_frame, different order
z = rlnorm(5), #lognormally distributed numbers
y = sample(5), #the numbers 1 to 5, in some order
x = letters[3:7]

)

rbind(a_data_frame, another_data_frame)
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#t X y z
## 1 a 0.17581 1.0000
# 2 b 0.06894 1.0000
## 3 c 0.74217 1.0000
# 4 d 0.72816 1.0000
## 5 e -0.28940 1.0000
## 6 c 1.00000 0.8714
## 7 d 3.00000 0.2432
## 8 e 5.00000 2.3498
# 9 f 4.00000 2.0263
## 10 g 2.00000 1.7145

cbind(a_data_frame, another_data_frame)

##
## 1
## 2

y z zy
0.17581 TRUE 0.8714 1
0.06894 TRUE 0.2432 3
## 3 ¢ 0.74217 TRUE 2.3498 5
## 4 d 0.72816 TRUE 2.0263 4
## 5 e -0.28940 TRUE 1.7145 2 g

an oow X

X
c
d
e
f

Where two data frames share columns, they can be merged together using the merge
function. merge provides a variety of options for doing database-style joins. To join two
data frames, you need to specify which columns contain the key values to match up. By
default, the merge function uses all the common columns from the two data frames, but
more commonly you will just want to use a single shared ID column. In the following
examples, we specify that the x column contains our IDs using the by argument:

merge(a_data_frame, another_data_frame, by = "x")

##H X y.X Z.X zZ.y y.y
## 1 c 0.7422 TRUE 0.8714 1
## 2 d 0.7282 TRUE 0.2432 3
## 3 e -0.2894 TRUE 2.3498 5

merge(a_data_frame, another_data_frame, by = "x", all = TRUE)

## X y.X Z.X zZ.yy.y
## 1 a 0.17581 TRUE NA NA
## 2 b 0.06894 TRUE NA NA
## 3 c 0.74217 TRUE 0.8714 1
## 4 d 0.72816 TRUE 0.2432 3
## 5 e -0.28940 TRUE 2.3498 5
#t 6 f NA  NA 2.0263 4
## 7 g NA  NA 1.7145 2

Where a data frame has all numeric values, the functions colSums and colMeans can be
used to calculate the sums and means of each column, respectively. Similarly, rowSums
and rowMeans calculate the sums and means of each row:

colSums(a_data_frame[, 2:3])

#i# y z
## 1.426 5.000
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colMeans(a_data_frame[, 2:3])

#i# y z
## 0.2851 1.0000

Manipulating data frames is a huge topic, and is covered in more depth in Chapter 13.

Summary

o Lists can contain different sizes and types of variables in each element.
o Lists are recursive variables, since they can contain other lists.

 You can index lists using [ ], [[ 1], or $.

o NULL is a special value that can be used to create “empty” list elements.
o Data frames store spreadsheet-like data.

o Data frames have some properties of matrices (they are rectangular), and some of
lists (different columns can contain different sorts of variables).

o Data frames can be indexed like matrices or like lists.

« merge lets you do database-style joins on data frames.

Test Your Knowledge: Quiz

Question 5-1
What is the length of this list?

list(alpha = 1, list(beta = 2, gamma = 3, delta = 4), eta = NULL)

## Salpha

# [1] 1

##

## [[2]]

## [[2]]Sbeta
# [1] 2

##

## [[2]]Sgamma
## [1] 3

#H

## [[2]]5delta
## [1] 4

##

#H

##t Seta

## NULL
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Question 5-2
Where might you find a pairlist being used?

Question 5-3
Name as many ways as you can think of to create a subset of a data frame.

Question 5-4
How would you create a data frame where the column names weren’t unique, valid
variable names?

Question 5-5
Which function would you use to append one data frame to another?

Test Your Knowledge: Exercises

Exercise 5-1
Create a list variable that contains all the square numbers in the range 0 to 9 in the
first element, in the range 10 to 19 in the second element, and so on, up to a final
element with square numbers in the range 90 to 99. Elements with no square num-
bers should be included! [10]

Exercise 5-2
R ships with several built-in datasets, including the famous? iris (flowers, not eyes)
data collected by Anderson and analyzed by Fisher in the 1930s. Type iris to see
the dataset. Create a new data frame that consists of the numeric columns of the
iris dataset, and calculate the means of its columns. [5]

Exercise 5-3
The beaver1 and beaver2 datasets contain body temperatures of two beavers. Add
a column named 1id to the beaver1 dataset, where the value is always 1. Similarly,
add an id column to beaver2, with value 2. Vertically concatenate the two data
frames and find the subset where either beaver is active. [10]

3. By some definitions of fame.
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CHAPTER 6
Environments and Functions

We've already used a variety of the functions that come with R. In this chapter, you'll
learn what a function is, and how to write your own. Before that, we’ll take a look at
environments, which are used to store variables.

Chapter Goals

After reading this chapter, you should:

o Know what an environment is, and how to create one

 Be able to create, access, and list variables within an environment
 Understand the components that make up a function

« Be able to write your own functions

o Understand variable scope

Environments

All the variables that we create need to be stored somewhere, and that somewhere is an
environment. Environments themselves are just another type of variable—we can assign
them, manipulate them, and pass them into functions as arguments, just like we would
any other variable. They are closely related to lists in that they are used for storing
different types of variables together. In fact, most of the syntax for lists also works for
environments, and we can coerce a list to be an environment (and vice versa).

Usually, you won’t need to explicitly deal with environments. For example, when you
assign a variable at the command prompt, it will automatically go into an environment
called the global environment (also known as the user workspace). When you call a
function, an environment is automatically created to store the function-related
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variables. Understanding the basics of environments can be useful, however, in under-
standing the scope of variables, and for examining the call stack when debugging your
code.

Slightly annoyingly, environments aren’t created with the environment function (that
function returns the environment that contains a particular function). Instead, what we
want is new.env:

an_environment <- new.env()

Assigning variables into environments works in exactly the same way as with lists. You
can either use double square brackets or the dollar sign operator. As with lists, the
variables can be of different types and sizes:

an_environment[["pythag"]] <- c(12, 15, 20, 21) #See http://oeis.org/A156683
an_environment$root <- polyroot(c(6, -5, 1))

The assign function that we saw in “Assigning Variables” on page 17 takes an optional
environment argument that can be used to specify where the variable is stored:

assign(
"moonday",
weekdays(as.Date("1969/07/20")),
an_environment

)

Retrieving the variables works in the same way—you can either use list-indexing syntax,
or assign’s opposite, the get function:

an_environment[["pythag"]]

## [1] 12 15 20 21
an_environmentS$root

## [1] 2+01 3-01
get("moonday", an_environment)
## [1] "Sunday"

The 1s and 1s. str functions also take an environment argument, allowing you to list
their contents:

ls(envir = an_environment)
## [1] "moonday" "pythag" "root"
1ls.str(envir = an_environment)

## moonday : chr "Sunday"
## pythag : num [1:4] 12 15 20 21
## root : cplx [1:2] 2+01 3-01

We can test to see if a variable exists in an environment using the exists function:
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exists("pythag", an_environment)
## [1] TRUE

Conversion from environment to list and back again uses the obvious functions,
as.list and as.environment. In the latter case, there is also a function list2env that
allows for a little more flexibility in the creation of the environment:

#Convert to list
(a_list <- as.list(an_environment))

## Spythag

## [1] 12 15 20 21
#it

## Smoonday

## [1] "Sunday"
#it

## Sroot

## [1] 2+01 3-01

#...and back again. Both lines of code do the same thing.
as.environment(a_list)

## <environment: 0x000000004a6fe290>
list2env(a_list)
## <environment: 0x000000004ad10288>

All environments are nested, meaning that they must have a parent environment (the
exception is a special environment called the empty environment that sits at the top of
the chain). By default, the exists and get functions will also look for variables in the
parent environments. Pass inherits = FALSE to them to change this behavior so that
they will only look in the environment that you've specified:

nested_environment <- new.env(parent = an_environment)
exists("pythag", nested_environment)

## [1] TRUE
exists("pythag", nested_environment, inherits = FALSE)

## [1] FALSE

A
o)

The word “frame” is used almost interchangeably with “environment.”
. (Seesection 2.1.10 of the R Language Definition manual that ships with
0" R for the technicalities.) This means that some functions that work
with environments have “frame” in their name, parent.frame being
the most common of these.

Shortcut functions are available to access both the global environment (where variables
that you assign from the command prompt are stored) and the base environment (this
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contains functions and other variables from R’s base package, which provides basic
functionality):

non_stormers <<- c(3, 7, 8, 13, 17, 18, 21) #See http://oeis.org/A002312
get("non_stormers", envir = globalenv())

## [1] 3 7 8 13 17 18 21

head(ls(envir = baseenv()), 20)

#oo[1] "-" "-.Date" "-.POSIXt"

#t [4] " "1.hexmode" "1.octmode"
#oo[7] "1=" "s" "$.data.frame"
## [10] "S.DLLInfo" "$.package_version" "$<-"

## [13] "S<-.data.frame" "%%" "%*%"

## [16]1 "%/%" "%in%" "%0%"

## [19] "%x%" g

There are two other situations where we might encounter environments. First, whenever
afunction s called, all the variables defined by the function are stored in an environment
belonging to that function (a function plus its environment is sometimes called a clo-
sure). Second, whenever we load a package, the functions in that package are stored in
an environment on the search path. This will be discussed in Chapter 10.

Functions

While most variable types are for storing data, functions let us do things with data—
they are “verbs” rather than “nouns.” Like environments, they are just another data type
that we can assign and manipulate and even pass into other functions.

Creating and Calling Functions
In order to understand functions better, let’s take a look at what they consist of.

Typing the name of a function shows you the code that runs when you call it. This is
the rt function, which generates random numbers from a t-distribution:'

rt

## function (n, df, ncp)

## {

it if (missing(ncp))

#i#t .External(C_rt, n, df)

##t else rnorm(n, ncp)/sqrt(rchisq(n, df)/df)
## )

1. If the definition is a single line that says something like UseMethod("my_function") or standardGene
ric("my_function"),see “Object-Oriented Programming” on page 302 in Chapter 16. If R complains that the
object is not found, try getAnywhere(my_function).
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## <bytecode: 0x0000000019738e10>

## <environment: namespace:stats>
Asyoucansee, rttakes up to three inputarguments: nis the number of random numbers
to generate, df is the number of degrees of freedom, and ncp is an optional noncentrality
parameter. To be technical, the three arguments n, df, and ncp are the formal argu-
ments of rt. When you are calling the function and passing values to it, those values are
just called arguments.

W S
N The difference between arguments and formal arguments isn’t very
N . important, so the rest of the book doesn't make an effort to differen-
"ol tiate between the two concepts.

In between the curly braces, you can see the lines of code that constitute the body of the
function. This is the code that is executed each time you call rt.

Notice that there is no explicit “return” keyword to state which value should be returned
from the function. In R, the last value that is calculated in the function is automatically
returned. In the case of rt, if the ncp argument is omitted, some C code is called to
generate the random numbers, and those are returned. Otherwise, the function calls
the rnorm, rchisq, and sqrt functions to generate the numbers, and those are returned.

To create our own functions, we just assign them as we would any other variable. As an
example, let’s create a function to calculate the length of the hypotenuse of a right-angled
triangle (for simplicity, we’ll use the obvious algorithm; for real-world code, this doesn't
work well with very big and very small numbers, so you shouldn't calculate hypotenuses
this way):

hypotenuse <- function(x, y)

{
sqrt(x ~ 2 +y ~ 2)
}

Here, hypotenuse is the name of the function we are creating, x and y are its (formal)
arguments, and the contents of the braces are the function body.

Actually, since our function body is only one line of code, we can omit the braces:

hypotenuse <- function(x, y) sqrt(x ~ 2 +y ~ 2) #same as before
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R is very permissive about how you space your code, so “one line of
. code” can be stretched to run over several lines. The amount of code
% that can be included without braces is one statement. The exact defi-
nition of a statement is technical, but from a practical point of view, it
is the amount of code that you can type at the command line before it
executes.

aqs
[N
N

We can now call this function as we would any other:

hypotenuse(3, 4)

## [1] 5

hypotenuse(y = 24, x = 7)
## [1] 25

When we call a function, if we don’t name the arguments, then R will match them based
on position. In the case of hypotenuse(3, 4), 3 comes first so it is mapped to x, and 4
comes second so it is mapped to y.

If we want to change the order that we pass the arguments, or omit some of them, then
we can pass named arguments. In the case of hypotenuse(y = 24, x = 7), although
we pass the variables in the “wrong” order, R still correctly determines which variable
should be mapped to x, and which to y.

It doesn’t make much sense for a hypotenuse-calculating function, but if we wanted, we
could provide default values for x and y. In this new version, if we don’t pass anything
to the function, x takes the value 5 and y takes the value 12:

hypotenuse <- function(x = 5, y = 12)

{
sqrt(x ~ 2 +y ~ 2)
}
hypotenuse() #equivalent to hypotenuse(5, 12)
## [1] 13

We've already seen the formals function for retrieving the arguments of a function as
a (pair)list. The args function does the same thing in a more human-readable, but less
programming-friendly, way. formalArgs returns a character vector of the names of the
arguments:

formals(hypotenuse)

#it Sx

## [1] 5
#H

## Sy

## [1] 12
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args(hypotenuse)

## function (x = 5, y = 12)
## NULL

formalArgs(hypotenuse)

## [1] ||XII |lyl|
The body of a function is retrieved using the body function. This isn't often very useful
on its own, but we may sometimes want to examine it as text—to find functions that
call another function, for example. We can use deparse to achieve this:

(body_of_hypotenuse <- body(hypotenuse))

## {
#Hit sqrt(x~2 + yn2)
## )

deparse(body_of_hypotenuse)

## [1] ||{|| " Sqrt(X/\Z + y,\z)u ||}n
The default values given to formal arguments of functions can be more than just con-
stant values—we can pass any R code into them, and even use other formal arguments.
The following function, normalize, scales a vector. The arguments m and s are, by de-

fault, the mean and standard deviation of the first argument, so that the returned vector
will have mean 0 and standard deviation 1:

normalize <- function(x, m = mean(x), s = sd(x))

{
(x -m) /s
}
normalized <- normalize(c(1, 3, 6, 10, 15))
mean(normalized) #almost 0!

## [1] -5.573e-18

sd(normalized)

## [1] 1
There is alittle problem with our normalize function, though, which we can see if some
of the elements of x are missing:

normalize(c(1l, 3, 6, 10, NA))

## [1] NA NA NA NA NA
If any elements of a vector are missing, then by default, mean and sd will both return
NA. Consequently, our normalize function returns NA values everywhere. It might be
preferable to have the option of only returning NA values where the input was NA. Both
mean and sd have an argument, na.rm, that lets us remove missing values before any

calculations occur. To avoid all the NA values, we could include such an argument in
normalize:
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normalize <- function(x, m = mean(x, na.rm = na.rm),
s = sd(x, na.rm = na.rm), na.rm = FALSE)

{
(x-m) /s

}

normalize(c(1l, 3, 6, 10, NA))

## [1] NA NA NA NA NA
normalize(c(1, 3, 6, 10, NA), na.rm = TRUE)
## [1] -1.0215 -0.5108 0.2554 1.2769 NA

This works, but the syntax is a little clunky. To save us having to explicitly type the names
of arguments that aren’t actually used by the function (na.rm is only being passed to
mean and sd), R has a special argument, . . ., that contains all the arguments that aren’t
matched by position or name:

normalize <- function(x, m = mean(x, ...), s = sd(x, ...), ...)
{

(x-m) /s
}

normalize(c(1, 3, 6, 10, NA))

## [1] NA NA NA NA NA

normalize(c(1, 3, 6, 10, NA), na.rm = TRUE)

## [1] -1.0215 -0.5108 0.2554 1.2769 NA
Now in the call normalize(c(1, 3, 6, 10, NA), na.rm = TRUE), theargumentna.rm
does not match any of the formal arguments of normalize, since it isn’t x or m or s. That

means that it gets stored in the ... argument of normalize. When we evaluate m, the
expression mean(x, ...)isnowmean(x, na.rm = TRUE).

If this isn’t clear right now, don’t worry. How this works is an advanced topic, and most
of the time we don’t need to worry about it. For now, you just need to know that . ..
can be used to pass arguments to subfunctions.

Passing Functions to and from Other Functions

Functions can be used just like other variable types, so we can pass them as arguments
to other functions, and return them from functions. One common example of a function
that takes another function as an argument is do.call. This function provides an al-
ternative syntax for calling other functions, letting us pass the arguments as a list, rather
than one at a time:

do.call(hypotenuse, list(x = 3, y = 4)) #same as hypotenuse(3, 4)
## [1] 5

Perhaps the most common use case for do.call is with rbind. You can use these two
functions together to concatenate several data frames or matrices together at once:
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dfrl <- data.frame(x
dfr2 <- data.frame(x
dfr3 <- data.frame(x

1:5, y = rt(5, 1))
6:10, y = rf(5, 1, 1))
11:15, y = rbeta(5, 1, 1))

do.call(rbind, list(dfri, dfr2, dfr3)) #same as rbind(dfri, dfr2, dfr3)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

O oo~NOUDh WNBRE

L N S S
DWNR O

15

O ooO~NOUT D WNBEL X

O e
AW NPRLO

15

OO 0O OO OP~RONOORKR L O

y

.10440
.87931
.18288
.04847
.90335
.27186
.49953
.89534
.21537
.07751
.31153
.29114
.01079
.97188
.53498

It is worth spending some time getting comfortable with this idea. In Chapter 9, we're
going to make a lot of use of passing functions to other functions with apply and its
derivatives.

When using functions as arguments, it isn’t necessary to assign them first. In the same
way that we could simplify this:

menage <- c(1, 0, 0, 1, 2, 13, 80) #See http://oeis.org/A00O179

mean(menage)

#H [1] 13.86

to:

mean(c(1, 0, 0, 1, 2, 13, 80))

## [1] 13.86

we can also pass functions anonymously:

x_plus_y <- function(x, y) x +y
do.call(x_plus_y, list(1:5, 5:1))

## [1]1 6 6 6 6 6

#1s the same as
do.call(function(x, y) x + vy, list(1:5, 5:1))

#H [11 6 6 666

Functions that return functions are rarer, but no less valid for it. The ecdf function
returns the empirical cumulative distribution function of a vector, as seen in Figure 6-1:
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(emp_cum_dist_fn <- ecdf(rnorm(50)))

## Empirical CDF
## Call: ecdf(rnorm(50))
## x[1:50] = -2.2, -2.1, -2, ..., 1.9, 2.6

is.function(emp_cum_dist_fn)
## [1] TRUE

plot(emp_cum_dist_fn)

ecdf(rnorm(50))
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Figure 6-1. An empirical cumulative distribution function
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Variable Scope

A variable’s scope is the set of places from which you can see the variable. For example,
when you define a variable inside a function, the rest of the statements in that function
will have access to that variable. In R (but not S), subfunctions will also have access to
that variable. In this next example, the function f takes a variable x and passes it to the
function g. f also defines a variable y, which is within the scope of g, since g is a sub-
function of f. So, even though y isn’t defined inside g, the example works:

f <- function(x)

{

y <- 1

g <- function(x)

{

(x +vy) / 2 #y is used, but is not a formal argument of g

}

g(x)
}
f(sqrt(5)) #It works! y is magically found in the environment of f
## [1] 1.618

If we modify the example to define g outside of f, so it is not a subfunction of f, the
example will throw an error, since R cannot find y:

f <- function(x)
{
y <- 1
g(x)
}
g <- function(x)
{
(x+y) /2
}
f(sart(5))

## January February March April May
##  0.6494 1.4838 0.9665 0.4527 0.7752

In the section “Environments” on page 79, we saw that the get and exists functions
look for variables in parent environments as well as the current one. Variable scope
works in exactly the same way: R will try to find variables in the current environment,
and if it doesn't find them it will look in the parent environment, and then that envi-
ronment’s parent, and so on until it reaches the global environment. Variables defined
in the global environment can be seen from anywhere, which is why they are called
global variables.

In our first example, the environment belonging to f is the parent environment of the
environment belonging to g, which is why y can be found. In the second example, the
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parent environment of g is the global environment, which doesn’t contain a variable y,
which is why an error is thrown.

This system of scoping where variables can be found in parent environments is often
useful, but also brings the potential for mischief and awful, unmaintainable code. Con-
sider the following function, h:

h <- function(x)
{
X *y
}
It looks like it shouldn’t work, since it accepts a single argument, x, but uses two argu-
ments, x and y, in its body. Let’s try it, with a clean user workspace:

h(9)

## January February March April May

## -8.436  6.583 -2.727 -11.976 -6.171
So far, our intuition holds. y is not defined, so the function throws an error. Now look
at what happens if we define y in the user workspace:

y <- 16

h(9)

## [1] 144

When R fails to find a variable named y in the environment belonging to h, it looks in
h’s parent—the user workspace (a.k.a. global environment), where y is defined—and
the product is correctly calculated.

Global variables should be used sparingly, since they make it very easy to write appalling
code. In this modified function, h2, y is randomly locally defined half the time. With y
defined in the user workspace, when we evaluate it y will be randomly local or global!

h2 <- function(x)

{
if(runif(1) > 0.5) y <- 12
X *y

}

Let’s use replicate to run the code several times to see the result:
replicate(10, h2(9))
## [1] 144 144 144 108 144 108 108 144 108 108

When the uniform random number (between 0 and 1) generated by runif is greater
than 0.5, alocal variable y is assigned the value 12. Otherwise, the global value of 16 is
used.
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AsI'm sure you've noticed, it is very easy to create obscure bugs in code by doing things
like this. Usually it is better to explicitly pass all the variables that we need into a function.

Summary

« Environments store variables and can be created with new.env.
e You can treat environments like lists most of the time.

o All environments have a parent environment (except the empty environment at the
top).

o Functions consist of formal arguments and a body.

« You can assign and use functions just as you would any other variable type.

o Rwill look for variables in the current environment and its parents.

Test Your Knowledge: Quiz

Question 6-1
What is another name for the global environment?

Question 6-2
How would you convert a list to an environment?

Question 6-3
How do you print the contents of a function to the console?

Question 6-4
Name three functions that tell you the names of the formal arguments of a function.

Question 6-5
What does the do.call function do?

Test Your Knowledge: Exercises

Exercise 6-1
Create a new environment named multiples_of_pi. Assign these variables into
the environment:

1. two_pi, with the value 2 * n, using double square brackets
2. three_p1, with the value 3 * n, using the dollar sign operator
3. four_pi, with the value 4 * n, using the assign function

List the contents of the environment, along with their values. [10]
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Exercise 6-2
Write a function that accepts a vector of integers (for simplicity, you don't have to
worry about input checking) and returns a logical vector that is TRUE whenever the
input is even, FALSE whenever the input is odd, and NA whenever the input is non-
finite (nonfinite means anything that will make is. finite return FALSE: Inf, - Inf,
NA, and NaN). Check that the function works with positive, negative, zero, and non-
finite inputs. [10]

Exercise 6-3
Write a function that accepts a function as an input and returns a list with two
elements: an element named args that contains a pairlist of the input’s formal ar-
guments, and an element named body that contains the inputs body. Test it by
calling the function with a variety of inputs. [10]
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CHAPTER 7
Strings and Factors

As well as dealing with numbers and logical values, at some point you will almost cer-
tainly need to manipulate text. This is particularly common when you are retrieving or
cleaning datasets. Perhaps you are trying to turn the text of a log file into meaningful
values, or correct the typos in your data. These data-cleaning activities will be discussed
in more depth in Chapter 13, but for now, you will learn how to manipulate character
vectors.

Factors are used to store categorical data like gender (“male” or “female”) where there
are a limited number of options for a string. They sometimes behave like character
vectors and sometimes like integer vectors, depending upon context.

Chapter Goals

After reading this chapter, you should:

 Be able to construct new strings from existing strings
o Be able to format how numbers are printed
o Understand special characters like tab and newline

« Be able to create and manipulate factors

Strings

Text data is stored in character vectors (or, less commonly, character arrays). It’s im-
portant to remember that each element of a character vector is a whole string, rather
than just an individual character. In R, “string” is an informal term that is used because
“element of a character vector” is quite a mouthful.
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The fact that the basic unit of text is a character vector means that most string manip-
ulation functions operate on vectors of strings, in the same way that mathematical op-
erations are vectorized.

Constructing and Printing Strings

Asyou've already seen, character vectors can be created with the c function. We can use
single or double quotes around our strings, as long as they match, though double quotes
are considered more standard:

c(
"You should use double quotes most of the time",
'Single quotes are better for including " inside the string'

)

## [1] "You should use double gquotes most of the time"
## [2] "Single quotes are better for including \" inside the string"

The paste function combines strings together. Each vector passed to it has its elements
recycled to reach the length of the longest input, and then the strings are concatenated,
with a space separating them. We can change the separator by passing an argument
called sep, or use the related function paste0 to have no separator. After all the strings
are combined, the result can be collapsed into one string containing everything using
the collapse argument:

paste(c("red", "yellow"), "lorry")

## [1] "red lorry" "yellow lorry"

paste(c("red", "yellow"), "lorry", sep = "-")

## [1] "red-lorry" "yellow-lorry"

paste(c("red", "yellow"), "lorry", collapse = ", ")
## [1] "red lorry, yellow lorry"

paste0(c("red", "yellow"), "lorry")

## [1] "redlorry" "yellowlorry"

The function toString is a variation of paste that is useful for printing vectors. It
separates each element with a comma and a space, and can limit how much we print.
In the following example, width = 46 limits the output to 40 characters:

X <- (1:15) ~ 2
toString(x)

## [1] "1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225"
toString(x, width = 40)

## [1]1 "1, 4, 9, 16, 25, 36, 49, 64, 81, 100...."
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cat is a low-level function that works similarly to paste, but with less formatting. You
should rarely need to call it directly yourself, but it is worth being aware of, since it is
the basis for most of the print functions. cat can also accept a file argument' to write
its output to a file:

cat(c("red", "yellow"), "lorry")
## red yellow lorry

Usually, when strings are printed to the console they are shown wrapped in double
quotes. By wrapping a variable in a call to the noquote function, we can suppress those
quotes. This can make the text more readable in some instances:

x <- c(
"TU) Msaw", "a", "saw", "that", "could", "out",

saw", "any", "other", "saw", "I", "ever", "saw
)
y <- noquote(x)
X
## [1] III|| ”Saw" ||all llsawll llthatﬂ ||C0u'LdI| lloutll ”Saw"
## [9] "any" "other" "saw" "I" "ever" "saw"
y
# [1] 1 saw a saw that could out saw any other saw
# [12] 1 ever saw

Formatting Numbers

There are several functions for formatting numbers. formatC uses C-style formatting
specifications that allow you to specify fixed or scientific formatting, the number of
decimal places, and the width of the output. Whatever the options, the input should be
one of the numeric types (including arrays), and the output is a character vector or
array:

pow <- 1:3
(powers_of_e <- exp(pow))

## [1] 2.718 7.389 20.086

formatC(powers_of_e)

## [1] "2.718" "7.389" "20.09"

formatC(powers_of_e, digits = 3) #3 sig figs

## [1] "2.72" "7.39" "20.1"

formatC(powers_of_e, digits = 3, width = 10)  #preceding spaces

#o[1] " 2.72" " 7.39" " 20.1"

1. Pedantically, it accepts a path to a file, or a connection to a file, as returned by the file function.
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formatC(powers_of_e, digits = 3, format = "e") #scientific formatting

## [1] "2.718e+00" "7.389e+00" "2.009e+01"

formatC(powers_of_e, digits = 3, flag = "+") #precede +ve values with +
## [1] "+2.72" "+7.39" "+20.1"

Ralso provides slightly more general C-style formatting with the function sprintf. This
works in the same way as sprintf in every other language: the first argument contains
placeholders for string or number variables, and further arguments are substituted into
those placeholders. Just remember that most numbers in R are floating-point values
rather than integers.

The first argument to sprintf specifies a formatting string, with placeholders for other
values. For example, %s denotes another string, %f and %e denote a floating-point num-
ber in fixed or scientific format, respectively, and %d represents an integer. Additional
arguments specify the values to replace the placeholders. As with the paste function,
shorter inputs are recycled to match the longest input:

sprintf("%s %d = %f", "Euler's constant to the power", pow, powers_of_e)

## [1] "Euler's constant to the power 1 = 2.718282"
## [2] "Euler's constant to the power 2 = 7.389056"
## [3] "Euler's constant to the power 3 = 20.085537"

sprintf("To three decimal places, e » %d = %.3f", pow, powers_of_e)

## [1] "To three decimal places, e ~ 1 = 2.718"
## [2] "To three decimal places, e ~ 2 = 7.389"
## [3] "To three decimal places, e » 3 = 20.086"

sprintf("In scientific notation, e » %d = %e", pow, powers_of_e)

## [1] "In scientific notation, e A~ 1 = 2.718282e+00"
## [2] "In scientific notation, e » 2 = 7.389056e+00"
## [3] "In scientific notation, e » 3 = 2.008554e+01"

Alternative syntaxes for formatting numbers are provided with the format and pretty
Num functions. format just provides a slightly different syntax for formatting strings,
and has similar usage to formatC. prettyNum, on the other hand, is best for pretty for-
matting of very big or very small numbers:

format(powers_of_e)

## [1] " 2.718" " 7.389" "20.086"

format(powers_of_e, digits = 3) #at least 3 sig figs

## [1] " 2.72" " 7.39" "20.09"

format(powers_of_e, digits = 3, trim = TRUE) #remove leading zeros

## [1] "2.72" "7.39" "20.09"
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format(powers_of_e, digits = 3, scientific = TRUE)
## [1] "2.72e+00" "7.39e+00" "2.01e+01"

prettyNum(
c(1le10, le-20),

big.mark =",",

small.mark = ,
preserve.width = "individual",
scientific = FALSE

)

# [1] "10,000,000,000" "0.00000 00000 00000 0O0O1"

Special Characters

There are some special characters that can be included in strings. For example, we can
insert a tab character using \t. In the following example, we use cat rather than
print, since print performs an extra conversion to turn \t from a tab character into a
backslash and a “t” The argument fill = TRUE makes cat move the cursor to a new
line after it is finished:

cat("foo\tbar", fill = TRUE)

## foo bar
Moving the cursor to a new line is done by printing a newline character, \n (this is true
on all platforms; don’t try to use \r or \r\n for printing newlines to the R command

line, since \ r will just move the cursor to the start of the current line and overwrite what
you have written):

cat("foo\nbar", fill = TRUE)

## foo
## bar

Null characters, \0, are used to terminate strings in R’s internal code. It is an error to
explicitly try to include them in a string (older versions of R will discard the contents
of the string after the null character):

cat("foo\@bar", fill = TRUE) #this throws an error

Backslash characters need to be doubled up so that they aren’t mistaken for a special
character. In this next example, the two input backslashes make just one backslash in
the resultant string:

cat("foo\\bar", fill = TRUE)
## foo\bar

If we are using double quotes around our string, then double quote characters need to
be preceded by a backslash to escape them. Similarly, if we use single quotes around our
strings, then single quote characters need to be escaped:
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cat("foo\"bar", fill = TRUE)
## foo"bar
cat('foo\'bar', fill = TRUE)

## foo'bar

In the converse case, including single quotes in double-quoted strings or double quotes
inside single-quoted strings, we don’t need an escape backslash:

cat("foo'bar", fill = TRUE)
## foo'bar
cat('foo"bar', fill = TRUE)
## foo'"bar
We can make our computer beep by printing an alarm character, \ a, though the function

alarmwill do this in a more readable way. This can be useful to add to the end of a long
analysis to notify you that it’s finished (as long as you aren’t in an open-plan office):

cat("\a")
alarm()

Changing Case

Strings can be converted to contain all uppercase or all lowercase values using the func-
tions toupper and tolower:

toupper("I'm Shouting")
## [1] "I'M SHOUTING"
tolower("I'm Whispering")

## [1] "i'm whispering"

Extracting Substrings

There are two related functions for extracting substrings: substring and substr. In
most cases, it doesn’t matter which you use, but they behave in slightly different ways
when you pass vectors of different lengths as arguments. For substring, the output is
as long as the longest input; for substr, the output is as long as the first input:

woodchuck <- c(
"How much wood would a woodchuck chuck",
"If a woodchuck could chuck wood?",
"He would chuck, he would, as much as he could",
"And chuck as much wood as a woodchuck would",
"If a woodchuck could chuck wood."
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substring(woodchuck, 1:6, 10)

## [1] "How much w" "f a woodc" " would c" " chuck " " woodc"
##t [6] "uch w"

substr(woodchuck, 1:6, 10)

## [1] "How much w" "f a woodc" " would c¢" " chuck " " woodc"

Splitting Strings

The paste function and its friends combine strings together. strsplit does the oppo-
site, breaking them apart at specified cut points. We can break the woodchuck tongue
twister up into words by splitting it on the spaces. In the next example, fixed = TRUE
means that the split argument is a fixed string rather than a regular expression:

strsplit(woodchuck, " ", fixed = TRUE)
## [[1]]

## [1] "How" "much" "wood" "would" "a" "woodchuck"
## [7] "chuck"

#it

## [[2]]

## [1] "If" "a" "woodchuck" "could" "chuck" "wood?"
#it

## [[3]]

## [1] "He" "would" "ChUCk," "he" I‘WOUI.d,“ "as" "much"

## [8] "as" "he" "could"

#it

## [[4]]

## [1] "And" "chuck" "as" "much" "wood" "as"
## [7] "a" "woodchuck" "would"

#it

## [[5]]

## [1] "If" "a" "woodchuck" "could" "chuck" "wood."

Notice that strsplit returns a list (not a character vector or matrix). This is because

its result consists of character vectors of possibly different lengths. When you only pass
a single string as an input, this fact is easy to overlook. Be careful!

In our example, the trailing commas on some words are a little annoying. It would be
better to split on an optional comma followed by a space. This is easily specified using
a regular expression. ? means “make the previous character optional™:

strsplit(woodchuck, ",? ")
## [[1]]

## [1] "How" "much" "wood" "would" "a" "woodchuck"
## [7] "chuck"

#it

## [[2]]

# [1] "If" "a" "woodchuck" "could" "chuck" "wood?"

#i#
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## [[3]]

##t [1] "He" "would" "chuck" "he" "would" "as" "much" "as"

# [9] "he" "could"

#H

## [[4]]

## [1] "And" "chuck" "as" "much" "wood" "as"

## [7] "a" "woodchuck" "would"

#H

## [[5]]

##t [1] "If" "a" "woodchuck" "could" "chuck" "wood."

File Paths

R has a working directory, which is the default place that files will be read from or written
to. You can see its location with getwd and change it with setwd:

getwd()

## [1] "d:/workspace/LearningR"

setwd("c:/windows")
getwd()

## [1] "c:/windows"
Notice that the directory components of each path are separated by forward slashes,
even though they are Windows pathnames. For portability, in R you can always specity

paths with forward slashes, and the file handling functions will magically replace them
with backslashes if the operating system needs them.

You can also specify a double backslash to denote Windows paths, but forward slashes
are preferred:

"c:\\windows" #remember to double up the slashes
"\\\\myserver\\mydir"  #UNC names need four slashes at the start

Alternatively, you can construct file paths from individual directory names using
file.path. This automatically puts forward slashes between directory names. It’s like
a simpler, faster version of paste for paths:

file.path("c:", "Program Files", "R", "R-devel")

## [1] "c:/Program Files/R/R-devel"

R.home() #same place: a shortcut to the R installation dir

## [1] "C:/PROGRA~1/R/R-devel"
Paths can be absolute (starting from a drive name or network share), or relative to the
current working directory. In the latter case, . can be used for the current directory

and .. can be used for the parent directory. ~ is shorthand for your user home directory.
path.expand converts relative paths to absolute paths:
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path.expand(".")
w[1] "
path.expand("..")
wo[1] "
path.expand("~"

## [1] "C:\\Users\\richie\\Documents"
basename returns the name of a file without the preceding directory location. Con-
versely, dirname returns the name of the directory that a file is in:

file_name <- "C:/Program Files/R/R-devel/bin/x64/RGui.exe"
basename(file_name)

## [1] "RGui.exe"
dirname(file_name)

## [1] "C:/Program Files/R/R-devel/bin/x64"

Factors

Factors are a special variable type for storing categorical variables. They sometimes
behave like strings, and sometimes like integers.

Creating Factors

Whenever you create a data frame with a column of text data, R will assume by default
that the text is categorical data and perform some conversion. The following example
dataset contains the heights of 10 random adults:

(heights <- data.frame(
height_cm = c(153, 181, 150, 172, 165, 149, 174, 169, 198, 163),
gender = c(
"female", "male", "female", "male", "male",
"female", "female", "male", "male", "female"

)
)
it height_cm gender
#t 1 153 female
Ht 2 181 male
#t 3 150 female
#Ht 4 172  male
##t 5 165 male
#Ht 6 149 female
#Ht 7 174 female
#Ht 8 169 male
##t 9 198 male
#t 10 163 female
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By inspecting the class of the gender column we can see that it is not, as you may have
expected, a character vector, but is in fact a factor:

class(heights$gender)

## [1] "factor"

Printing the column reveals a little more about the nature of this factor:

heights$gender

## [1] female male female male male female female male male female
## Levels: female male

» «

Each value in the factor is a string that is constrained to be either “female,” “male,” or
missing. This constraint becomes obvious if we try to add a different string to the
genders:

heights$gender[1] <- "Female" #notice the capital "F"

## Warning: invalid factor level, NA generated

heights$gender

## [1] <NA> male female male male female female male male female
## Levels: female male

The choices “female” and “male” are called the levels of the factor and can be retrieved
with the levels function:

levels(heightsS$Sgender)

## [1] "female" "male"
The number of these levels (equivalent to the length of the levels of the factor) can
be retrieved with the nlevels function:

nlevels(heights$gender)

# [1] 2
Outside of their automatic creation inside data frames, you can create factors using the

factor function. The first (and only compulsory) argument is a character vector:

gender_char <- c(
"female", "male", "female", "male", "male",
"female", "female", "male", "male", "female"

)

(gender_fac <- factor(gender_char))

## [1] female male female male male female female male male female
##t Levels: female male
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Changing Factor Levels

We can change the order of the levels when the factor is created by specifying a levels
argument:

factor(gender_char, levels = c("male", "female"))

## [1] female male female male male female female male male female
## Levels: male female

If we want to change the order of the factor levels after creation, we again use the factor
function, this time passing in the existing factor (rather than a character vector):

factor(gender_fac, levels = c("male", "female"))

## [1] female male female male male female female male male female
##t Levels: male female

What we shouldn't do is directly change the levels using the levels
‘@ function. This will relabel each level, changing data values, which is

usually undesirable.

In the next example, directly setting the levels of the factor changes male data to female
data, and female data to male data, which isn’t what we want:

levels(gender_fac) <- c("male", "female")
gender_fac

## [1] male female male female female male male female female male
## Levels: male female

The relevel function is an alternative way of changing the order of factor levels. In this
case, it just lets you specify which level comes first. As you might imagine, the use case
for this function is rather niche—it can come in handy for regression models where you
want to compare different categories to a reference category. Most of the time you will
be better off calling factor if you want to set the levels:

relevel(gender_fac, "male")

## [1] male female male female female male male female female male
## Levels: male female

Dropping Factor Levels

In the process of cleaning datasets, you may end up removing all the data corresponding
to a factor level. Consider this dataset of times to travel into work using different modes
of transport:

getting_to_work <- data.frame(
mode = c(

"bike", "car", "bus", "car", "walk",
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"bike", "car", "bike", "car", "car

)J
time_mins = c(25, 13, NA, 22, 65, 28, 15, 24, NA, 14)
)

Not all the times have been recorded, so our first task is to remove the rows where
time_mins is NA:

(getting_to_work <- subset(getting_to_work, !is.na(time_mins)))

i mode time_mins
## 1 bike 25
#it 2 car 13
## 4  car 22
## 5 walk 65
## 6 bike 28
#t 7 car 15
## 8 bike 24
## 10 car 14

Looking at the mode column, there are now just three different values, but we still have
the same four levels in the factor. We can see this with the unique function (the levels
function will, of course, also tell us the levels of the factor):

unique(getting_to_workS$mode)

## [1] bike car walk
## Levels: bilke bus car walk

If we want to drop the unused levels of the factor, we can use the droplevels function.
This accepts either a factor or a data frame. In the latter case, it drops the unused levels
in all the factors of the input. Since there is only one factor in our example data frame,
the two lines of code in the next example are equivalent:

getting_to_workSmode <- droplevels(getting_to_work$mode)

getting_to_work <- droplevels(getting_to_work)
levels(getting_to_workS$mode)

## [1] "bike" "car" "walk"

Ordered Factors

Some factors have levels that are semantically greater than or less than other levels. This
is common with multiple-choice survey questions. For example, the survey question
“How happy are you?” could have the possible responses “depressed,” “grumpy;” “so-so,”
“cheery;” and “'ecstatic.? The resulting variable is categorical, so we can create a factor
with the five choices as levels. Here we generate ten thousand random responses using
the sample function:

2. This is sometimes called a Likert scale.
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happy_choices <- c("depressed", "grumpy", "so-so", "cheery", "ecstatic")
happy_values <- sample(

happy_choices,

10000,

replace = TRUE

)
happy_fac <- factor(happy_values, happy_choices)
head(happy_fac)

## [1] grumpy depressed cheery ecstatic grumpy grumpy
## Levels: depressed grumpy so-so cheery ecstatic

In this case, the five choices have a natural ordering to them: “grumpy” is happier than
“depressed,” “so-so” is happier than “grumpy,” and so on. This means that it is better to
store the responses in an ordered factor. We can do this using the ordered function (or
by passing the argument ordered = TRUE to factor):

happy_ord <- ordered(happy_values, happy_choices)
head(happy_ord)

## [1] grumpy depressed cheery ecstatic grumpy grumpy
## Levels: depressed < grumpy < so-so < cheery < ecstatic

An ordered factor is a factor, but a normal factor isn’t ordered:

is.factor(happy_ord)
## [1] TRUE
is.ordered(happy_fac)
## [1] FALSE

For most purposes, you don’'t need to worry about using ordered factors—you will only
see a difference in some models—but they can be useful for analyzing survey data.

Converting Continuous Variables to Categorical

A useful way of summarizing a numeric variable is to count how many values fall into
different “bins” The cut function cuts a numeric variable into pieces, returning a factor.
It is commonly used with the table function to get counts of numbers in different
groups. (The hist function, which draws histograms, provides an alternative way of
doing this, as does count in the plyr package, which we will see later.)

In the next example, we randomly generate the ages of ten thousand workers (from 16
to 66, using a beta distribution) and put them in 10-year-wide groups:

ages <- 16 + 50 * rbeta(10000, 2, 3)
grouped_ages <- cut(ages, seq.int(16, 66, 10))
head(grouped_ages)

## [1] (26,36] (16,26] (26,36] (26,361 (26,36] (46,56]
## Levels: (16,26] (26,36] (36,46] (46,561 (56,66]

Factors | 105

www.it-ebooks.info


http://www.it-ebooks.info/

table(grouped_ages)

## grouped_ages
## (16,26] (26,36] (36,46] (46,56] (56,66]
#i# 1844 3339 3017 1533 267

In this case, the bulk of the workforce falls into the 26-to-36 and 36-to-46 categories (as
a direct consequence of the shape of our beta distribution).

Notice that ages is a numeric variable and grouped_ages is a factor:

class(ages)
## [1] "numeric"
class(grouped_ages)

## [1] "factor"

Converting Categorical Variables to Continuous

The converse case of converting a factor into a numeric variable is most useful during
data cleaning. If you have dirty data where numbers are mistyped, R may interpret them
as strings and convert them to factors during the import process. In this next example,
one of the numbers has a double decimal place. Import functions such as read. table,
which we will look at in Chapter 12, would fail to parse such a string into numeric format,
and default to making the column a character vector:

dirty <- data.frame(

x = c("1.23", "4..56", "7.89")

)
To convert the x column to be numeric, the obvious solution is to call as.numeric.
Unfortunately, it gives the wrong answer:

as.numeric(dirtys$x)
# [1] 12 3

Calling as.numeric on a factor reveals the underlying integer codes that the factor uses
to store its data. In general, a factor f can be reconstructed from levels(f)[as.inte

ger(f)].
To correctly convert the factor to numeric, we can first retrieve the values by converting
the factor to a character vector. The second value is NA because 4. .56 is not a genuine
number:

as.numeric(as.character(dirty$x))

## Warning: NAs introduced by coercion

# [1] 1.23  NA 7.89
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This is slightly inefficient, since repeated values have to be converted multiple times. As
the FAQ on R notes, it is better to convert the factor’s levels to be numeric, then recon-
struct the factor as above:

as.numeric(levels(dirty$x))[as.integer(dirty$x)]
## Warning: NAs introduced by coercion
## [1] 1.23  NA 7.89

Since this is not entirely intuitive, if you want to do this task regularly, you can wrap it
into a function for convenience:

factor_to_numeric <- function(f)

{

as.numeric(levels(f))[as.integer(f)]

}

Generating Factor Levels

For balanced data, where there are an equal number of data points for each level, the gl
function can be used to generate a factor. In its simplest form, the function takes an
integer for the number of levels in the resultant factor, and another integer for how many
times each level should be repeated. More commonly, you will want to set the names of
the levels, which is achieved by passing a character vector to the labels argument. More
complex level orderings, such as alternating values, can be created by also passing a
length argument:

al(3, 2)

## [1]1 112233
#it Levels: 1 2 3

gl(3, 2, labels = c("placebo", "drug A", "drug B"))

## [1] placebo placebo drug A drug A drug B drug B
## Levels: placebo drug A drug B

gl(3, 1, 6, labels = c("placebo", "drug A", "drug B")) #alternating

## [1] placebo drug A drug B placebo drug A drug B
## Levels: placebo drug A drug B

Combining Factors

Where we have multiple categorical variables, it is sometimes useful to combine them
into a single factor, where each level consists of the interactions of the individual
variables:

treatment <- gl(3, 2, labels = c("placebo", "drug A", "drug B"))
gender <- gl(2, 1, 6, labels = c("female", "male"))
interaction(treatment, gender)
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## [1] placebo.female placebo.male drug A.female drug A.male
## [5] drug B.female drug B.male
## 6 Levels: placebo.female drug A.female drug B.female ... drug B.male

Summary

 You can combine strings together using paste and its derivatives.
o There are many functions for formatting numbers.

o Categorical data is stored in factors (or ordered factors).

« Each possible category in a factor is called a level.

« Continuous variables can be cut into categorical variables.

Test Your Knowledge: Quiz

Question 7-1
Name as many functions as you can think of for formatting numbers.

Question 7-2
How might you make your computer beep?

Question 7-3
What are the classes of the two types of categorical variable?

Question 7-4
What happens if you add a value to a factor that isn’t one of the levels?

Question 7-5
How do you convert a numeric variable to categorical?

Test Your Knowledge: Exercises

Exercise 7-1
Display the value of pi to 16 significant digits. [5]

Exercise 7-2
Split these strings into words, removing any commas or hyphens:
x <- c(
"Swan swam over the pond, Swim swan swim!",

"Swan swam back again - Well swum swan!"

)
(5]
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Exercise 7-3
For your role-playing game, each of your adventurer’s character attributes is cal-
culated as the sum of the scores from three six-sided dice rolls. To save arm-ache,
you decide to use R to generate the scores. Here’s a helper function to generate them:

#n specifies the number of scores to generate.
#It should be a natural number.
three_d6 <- function(n)
{
random_numbers <- matrix(
sample(6, 3 * n, replace = TRUE),
nrow = 3
)

colSums(random_numbers)

}

Big scores give characters bonuses, and small scores give characters penalties, ac-
cording to the following table:

Score Bonus

3 -3
4,5 -2
6t08 -1
9t0 12 0

131015 +1
16,17 +2
18 +3

Use the three_dé function to generate 1,000 character attribute scores. Create a
table of the number of scores with different levels of bonus. [15]
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CHAPTER 8
Flow Control and Loops

In R, as with other languages, there are many instances where we might want to con-
ditionally execute code, or to repeatedly execute similar code.

The if and switch functions of R should be familiar if you have programmed in other
languages, though the fact that they are functions may be new to you. Vectorized con-
ditional execution via the ifelse function is also an R speciality.

We'll look at all of these in this chapter, as well as the three simplest loops (for, while,
and repeat), which again should be reasonably familiar from other languages. Due to
the vectorized nature of R, and some more aesthetic alternatives, these loops are less
commonly used in R than you may expect.

Chapter Goals

After reading this chapter, you should:

o Be able to branch the flow of execution

o Be able to repeatedly execute code with loops

Flow Control

There are many occasions where you don’t just want to execute one statement after
another: you need to control the flow of execution. Typically this means that you only
want to execute some code if a condition is fulfilled.

m
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if and else

The simplest form of flow control is conditional execution using if. if takes a logical
value (more precisely, a logical vector of length one) and executes the next statement
only if that value is TRUE:

1f(TRUE) message("It was true!")

## It was true!

1f(FALSE) message("It wasn't true!")
Missing values aren’t allowed to be passed to if; doing so throws an error:

1f(NA) message("Who knows if it was true?")

## Error: missing value where TRUE/FALSE needed
Where you may have a missing value, you should test for it using is.na:

if(is.na(NA)) message('"The value is missing!")

## The value is missing!
Of course, most of the time, you won’t be passing the actual values TRUE or FALSE. Instead
you’ll be passing a variable or expression—if you knew that the statement was going
to be executed in advance, you wouldn't need the if clause. In this next example,
runif(1) generates one uniformly distributed random number between 0 and 1. If that
value is more than 0.5, then the message is displayed:

1f(runif(1) > 0.5) message("This message appears with a 50% chance.")
If you want to conditionally execute several statements, you can wrap them in curly

braces:

X <- 3
F(x > 2)
{
y <- 2 * X
z<-3%*y
}
For clarity of code, some style guides recommend always using curly braces, even if you
only want to conditionally execute one statement.

The next step up in complexity from if is to include an else statement. Code that
follows an else statement is executed if the i1f condition was FALSE:
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if(FALSE)
{

message("This won't execute...")
} else

{
message("but this will.")

}
## but this will.

One important thing to remember is that the else statement must occur on the same
line as the closing curly brace from the if clause. If you move it to the next line, you'll
get an error:

if(FALSE)
{

message("This won't execute...")

}

else

{

message("and you'll get an error before you reach this.")

}

Multiple conditions can be defined by combining 1f and else repeatedly. Notice that
if and else remain two separate words—there is an ifelse function but it means
something slightly different, as we’ll see in a moment:

(r <- round(rnorm(2), 1))
## [1] -0.1 -0.4

(x <- r[1] / r[2D)

## [1] 0.25

if(is.nan(x))
{

message("x is missing")
} else if(is.infinite(x))
{

message("x is infinite")
} else if(x > 0)
{

message("x is positive")
} else if(x < 0)
{

message("x is negative")
} else
{

message("x is zero")

}

## x 1s positive
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R, unlike many languages, has a nifty trick that lets you reorder the code and do con-
ditional assignment. In the next example, Re returns the real component of a complex
number (Im returns the imaginary component):

X <- sqrt(-1 + 0i)
(reality <- if(Re(x) == 0) "real" else "imaginary")

## [1] "real"

Vectorized if

The standard if statement takes a single logical value. If you pass a logical vector with
alength of more than one (don’'t do this!), then R will warn you that you've given multiple
options, and only the first one will be used:

1f(c(TRUE, FALSE)) message("two choices")

## Warning: the condition has length > 1 and only the first element will be
## used

## two choices

Since much of R is vectorized, you may not be surprised to learn that it also has vec-
torized flow control, in the form of the ifelse function. ifelse takes three arguments.
The first is a logical vector of conditions. The second contains values that are returned
when the first vector is TRUE. The third contains values that are returned when the first
vector is FALSE. In the following example, rbinom generates random numbers from a
binomial distribution to simulate a coin flip:

ifelse(rbinom(10, 1, 0.5), "Head", "Tail")

## [1] "Head" "Head" "Head" "Tail" "Tail" "Head" "Head" "Head" "Tail" "Head"
ifelse can also accept vectors in the second and third arguments. These should be the
same size as the first vector (if the vectors aren’t the same size, then elements in the
second and third arguments are recycled or ignored to make them the same size as the
first):

(yn <- rep.int(c(TRUE, FALSE), 6))

## [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
## [12] FALSE

ifelse(yn, 1:3, -1:-12)
#o [1] 1 -2 3 -4 2 -6 1 -8 3 -10 2 -12

If there are missing values in the condition argument, then the corresponding values in
the result will be missing:

yn[c(3, 6, 9, 12)] <- NA
ifelse(yn, 1:3, -1:-12)

#Ho[1] 1 -2 NA -4 2 N 1 -8 NA-10 2 NA
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Multiple Selection

Code with many else statements can quickly become cumbersome to read. In such
circumstances, prettier code can sometimes be achieved with a call to the switch func-
tion. The most common usage takes for its first argument an expression that returns a
string, followed by several named arguments that provide results when the name
matches the first argument. The names must match the first argument exactly (since R
2.11.0), and you can execute multiple expressions by enclosing them in curly braces:

(greek <- switch(

"gamma",
alpha = 1,
beta = sqrt(4),
gamma =
{
a <- sin(pil / 3)
4 % 3 N2
}
))
## [1] 3

If no names match, then switch (invisibly) returns NULL:

(greek <- switch(

"delta",
alpha = 1,
beta = sqrt(4),
gamma =
{
a <- sin(pl / 3)
4 % a N2
}
)
## NULL

For these circumstances, you can provide an unnamed argument that matches when
nothing else does:

(greek <- switch(

"delta",
alpha = 1,
beta = sqrt(4),
gamma =
{
a <- sin(pi / 3)
4% an2
1,
4
)
# [1] 4
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switch can also take a first argument that returns an integer. In this case the remaining
arguments do not need names—the next argument is executed if the first argument
resolves to 1, the argument after that is executed if the first argument resolves to 2, and
so on:

switch(
3,
"first",
"second",
"third",
"fourth"
)

## [1] "third"

As you may have noticed, no default argument is possible in this case. It’s also rather
cumbersome if you want to test for large integers, since you'll need to provide many
arguments. Under those circumstances it is best to convert the first argument to a string
and use the first syntax:

switch(
as.character(2147483647),
"2147483647" = "a big number",

"another number"

)
## [1] "a big number"

Loops

There are three kinds of loops in R: repeat, while, and for. Although vectorization
means that you don’t need them as much in R as in other languages, they can still come
in handy for repeatedly executing code.

repeat Loops

The easiest loop to master in R is repeat. All it does is execute the same code over and
over until you tell it to stop. In other languages, it often goes by the name do while, or
something similar. The following example' will execute until you press Escape, quit R,
or the universe ends, whichever happens soonest:

1. If these examples make no sense, please watch the movie.
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re

{
}

peat

message("Happy Groundhog Day!")

In general, we want our code to complete before the end of the universe, so it is possible
to break out of the infinite loop by including a break statement. In the next example,
sample returns one action in each iteration of the loop:

re

{

##
##
##
##
##
##
##
##

peat

message("Happy Groundhog Day!")
action <- sample(
c(
"Learn French",
"Make an ice statue",
"Rob a bank",
"Win heart of Andie McDowell"

)’
1
)
message("action = ", action)
if(action == "Win heart of Andie McDowell") break

Happy Groundhog Day!
action = Rob a bank
Happy Groundhog Day!
action = Rob a bank
Happy Groundhog Day!
action = Rob a bank
Happy Groundhog Day!

action = Win heart of Andie McDowell

Sometimes, rather than breaking out of the loop we just want to skip the rest of the
current iteration and start the next iteration:
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repeat

{
message( "Happy Groundhog Day!")
action <- sample(
(

"Learn French",
"Make an ice statue",
"Rob a bank",
"Win heart of Andie McDowell"

)J
1
)

if(action == "Rob a bank")

{
message("Quietly skipping to the next iteration")
next

}
message("action = ", action)
if(action == "Win heart of Andie McDowell") break

## Happy Groundhog Day!

## action = Learn French

## Happy Groundhog Day!

## Quietly skipping to the next iteration
## Happy Groundhog Day!

## Quietly skipping to the next iteration
## Happy Groundhog Day!

## action = Make an ice statue

## Happy Groundhog Day!

## action = Make an ice statue

## Happy Groundhog Day!

## Quietly skipping to the next iteration
## Happy Groundhog Day!

## action = Win heart of Andie McDowell

while Loops

whileloops are like backward repeat loops. Rather than executing some code and then
checking to see if the loop should end, they check first and then (maybe) execute. Since
the check happens at the beginning, it is possible that the contents of the loop will never
be executed (unlike in a repeat loop). The following example behaves similarly to the
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repeat example, except that if Andie McDowell’s heart