Computers Are Your Future

Computers Are Your Future

Chapter 6

Inside the System Unit

What You Will Learn . . .

- ✓ Understand how computers represent data
- ✓ Understand the measurements used to describe data transfer rates and data storage capacity
- ✓ List the components inside the system unit
- ✓ List the components on the motherboard
- ✓ How a CPU processes data

What You Will Learn . . .

- ✓ Factors that determine a microprocessors performance
- ✓ The types and purpose of memory in a computer system
- ✓ The physical connectors on the exterior of the system unit

Describing Hardware Performance

Hardware performance refers to the amount of data a computer can store and how fast it can process the data

How Computers Represent Data

- → Bit (Binary digit) On or off state of electric current; considered the basic unit of information; represented by 1s and 0s (binary numbers)
- ► Byte Eight bits grouped together to represent a character (an alphabetical letter, a number, or a punctuation symbol); 256 different combinations

Bits

1000 bits = 1 kilobit (kb) 1,000,000 bits = 1 megabit (mb) 1,000,000,000 bits = 1 gigabit (gb)

- ➤ Kilobits per second (Kbps), megabits per second (Mbps), and gigabits per second (Gbps) are terms that describe units of data used in measuring data transfer rates
 - Example: 56 Kbps modem

Bytes

8 bits = 1 Byte 1024 Bytes = 1 Kilobyte (KB) 1,048,576 Bytes = 1 Megabyte (MB) 1,043,741,824 Bytes = 1 Gigabyte (GB) 1,099,511,627,776 Bytes = 1 Terabyte (TB)

- ► Kilobyte, megabyte, gigabyte, and terabyte are terms that describe large units of data used in measuring data storage
 - Example: 20 GB hard drive

Representing Characters: Character Codes

- → Character codes translate numerical data into characters readable by humans
 - ➤ American Standard Code for Information Interchange (ASCII) Eight bits equals one character; used by minicomputers and personal computers
 - ➤ Extended Binary Coded Decimal Interchange Code
 (EBCDIC) Eight bits equals one character; used by mainframe computers
 - ➤ Unicode Sixteen bits equals one character; over 65,000 combinations; used for foreign language symbols

ASCII and EBCDIC Code

ASCII	SYMBOL	EBCDIC
00110000	0	11110000
00110001	1	11110001
00110010	2	11110010
00110011	3	11110011
00110100	4	11110100
00110101	5	11110101
00110110	6	11110110
00110111	7	11110111
00111000	8	11111000
00111001	9	11111001
01000001	A	11000001
01000010	В	11000010
01000011	С	11000011
01000100	D	11000100
01000101	E	11000101
01000110	F I	11000110
01000111	G	11000111
01001000	н	11001000
01001001	1	11001001
01001010	J J	11010001
01001011	K	11010010
01001100	L L	11010011
01001101	M	11010100

ASCII	SYMBOL	EBCDIC
01001110	N	11010101
01001111	0	11010110
01010000	P	11010111
01010001	Q	11011000
01010010	R	11011001
01010011	S	11100010
01010100	Т	11100011
01010101	U	11100100
01010110	V	11100101
01010111	W	11100110
01011000	X	11100111
01011001	Y	11101000
01011010	Z	11101001
00100001	!!!	01011010
00100010	и	01111111
00100011	#	01111011
00100100	\$	01011011
00100101	%	01101100
00100110	&	01010000
00101000	(01001101
00101001	j	01011101
00101010		01011100
00101011	+	01001110

The System Unit

- The **system unit** is a boxlike case that houses the computer's main hardware components
- → A **footprint** is the **s**pace taken up on the desk by the computer
- Form factor refers to the way the internal components are mounted in the unit

Types of System Units

Inside the System Unit

- ➤ Motherboard (mainboard) Large printed circuit board with thousands of electrical circuits
- ► Power supply Transforms alternating current (AC) from wall outlets to direct current (DC) needed by the computer
- → Cooling fan Keeps the system unit cool
- → Internal Speaker Used for beeps when errors are encountered
- **→ Drive bays** Housing for the computer's hard drive, floppy drive, and CD-ROM / DVD-ROM drives

The Motherboard

- ✓ The motherboard provides the centralized connection point for the computer's components
 - ➤ Most components are integrated circuits (chips)
 - Chips carry electrical current and contain electronic switches or transistors

The Central Processing Unit: The Microprocessor

CPU socket

✓ Central processing unit (**CPU**) – A microprocessor that interprets and carries out instructions given by software. It controls the computer's components

Components of the CPU

- ➤ Control unit Coordinates and controls all parts of the computer system
- ➤ Arithmetic-logic unit Performs arithmetic or logical operations
- → Registers Temporarily store the most frequently used instructions and data

The Control Unit

- The **control unit** manages four basic operations (fetch, decode, execute, and write-back)
 - The four-step process is known as the **machine cycle** or **processing cycle**
 - The processing cycle consists of two phases:

Instruction Cycle

- Fetch Gets the next program instruction from the computer's memory
- Decode Figures out what the program is telling the computer to do

Execution Cycle

- Execute Performs the requested action
- Write-back (Store) Writes (stores) the results to a register or to memory

The Arithmetic-Logic Unit

- ✓ The arithmetic-logic unit (ALU) performs basic arithmetic and logic operations
 - > Adds, subtracts, multiplies, and divides
 - Compares alphanumeric data

Microprocessor Performance

- → Data bus width The number of pathways within the CPU that transfer data; they are measured in bits (8, 16, 32, or 64)
- ► Word size The maximum number of bits of data that the CPU can process at one time (8 bits, 16 bits, 32 bits, or 64 bits)
- ➤ System Clock electronic circuit that generates pulses at a rapid rate and synchronizes the computers internal activities

Microprocessor Performance

- → Operations per cycle (clock speed) The number of clock cycles per second measured in megahertz (MHz) or gigahertz (GHz)
 - ➤ Superscalar operations Carrying out more than one instruction per clock cycle
 - ➤ **Pipelining** operations Feeding a new instruction into the CPU at every step of the processing cycle

Parallel Processing

- → Parallel processing involves using more than one CPU to improve performance
- ➤ Complex instruction set computer (CISC) A chip that includes special-purpose circuits that carry out instructions at high speeds
- ➤ Reduced instruction set computer (RISC) A chip with a bare-bones instruction set that results in a faster processing speed than CISC chips

Popular CPUs

Intel

Advanced Micro Devices (AMD)

Cyrix

Motorola (Apple)

The Chipset

✓ A **chipset** is a collection of chips that provide the switching circuitry needed to move data throughout the computer

Input/Output Bus

- ✓ The input/output bus provides a pathway so that the microprocessor can communicate with input/output devices
- ✓ An input/output bus contains expansion slots which hold expansion cards
 - ➤ PCI (Personal Computer Interface) slots are receptacles in which expansion cards are inserted. They support Plug and Play (PnP) devices.

PCI slots

Memory

Random Access Memory (RAM)

✓ Memory is the term used to describe devices that enable the computer to retain information. Program instructions and data are stored in memory chips for quick access by the CPU.

- → Virtual memory:
 - > Part of the hard disk is reserved as RAM
 - ➤ When RAM modules become full, the CPU accesses the hard disk to store and retrieve data
- ✓ Virtual memory is slower than RAM

Random Access Memory (RAM)

- ► RAM is a type of memory that stores information temporarily so that it's available to the CPU
- → RAM is volatile; the memory's contents are erased when the power is turned off
- ► Each byte of memory has a unique location or **memory** address

Types of RAM

- → Dynamic RAM (DRAM) A memory chip that needs to be refreshed periodically or it will lose its data
 - > Synchronous DRAM (SDRAM) is synchronized with the computer's system clock
 - ➤ Rambus DRAM (RDRAM) uses a fast bus to send and receive data within one clock cycle. It is faster than SDRAM
 - ➤ **Double data rate SDRAM** (DDR SDRAM) is a type of SDRAM that can send and receive data within one clock cycle

Processing a Word

CLICK ONCE TO BEGIN ANIMATION

Cache Memory

- ► Primary cache (Level 1 or L1) Located within the CPU chip, it is the memory that the microprocessor uses to store frequently used instructions and data
- ➤ Secondary cache (Level 2 or L2; Backside Cache) Located near the CPU, it is the memory between the CPU and RAM
- → Cache memory is faster than RAM

Computers Are Your Future Chapter 6 Outside the System Unit

BACK

- The **front panel** contains drive bays, various buttons, and indicator lights
- → Connectors and ports are physical receptacles located on the back to connect peripheral devices to the computer ____ ___

Types of Connectors

Point and click on a connector below to view information about it. Click again to remove the text.

Sound card connectors – Also called jacks, sound card connectors accept stereo mini-plugs. Microphone, line-in, line-out, and speaker connectors are plugged into the card.

Other Types of Connectors

- ✓ Small computer system interface (SCSI) port A parallel interface that enables up to eight devices to be connected to it
- ✓ 1394 (**FireWire**) port A high-speed connection for up to 63 devices
- ✓ Infrared Data Association (IrDa) port Infrared signals are used to communicate between peripheral devices and the system unit

Additional Ports and Connectors

- ✓ Telephone modem interface
- ✓ Network larger than telephone jack
- ✓ PC card slot notebook computers have slot for PC cards
- ✓ Sound card connectors
 - ➤ Mic microphone input
 - ➤ Line In input from audio devices
 - ➤ Line Out output to another audio device
 - ➤ Speaker output to external speakers
- ✓ TV/sound capture turns computer into a TV tuner

Chapter 6 Summary

- The basic unit of information is the bit
- Large units of data are called kilobytes (KB), megabytes (MB), gigabytes (GB), and terabytes (TB)
- The system unit contains the motherboard, which is a circuit board that provides receptacles for chips and input/output buses
- The central processing unit (CPU) contains the control unit (CU) and the arithmetic-logic unit (ALU). It manages the four basic operations (fetch, decode, execute, and write-back).
- The CPU processes data in a four-step cycle called a machine cycle. The CU manages four basic operations: fetch, decode, execute, and store.

Chapter 6 Summary continued

- The CPU's performance is measured by the data bus width, operations per second, speed, and cache memory
- Random access memory (RAM) is the computer's main memory. It is volatile.
- There are various types of RAM, including dynamic RAM (DRAM), synchronous DRAM (SDRAM), Rambus DRAM (RDRAM), and double data rate (DDR) SDRAM
- Computers have ports such as serial ports, parallel ports, SCSI ports, USB ports, FireWire ports, and IrDA ports to connect input/output devices

