

Ideal Air Standard CyclesRefferences :Heywood, J.B., Internal Combustion Engine Fundamentals,
McGraw Hill Book Comp, New York, 1988.
Pages 161 – 183Soruşbay, C., Ergeneman, M., Arslan, E., Safgönül, B.,
İçten Yanmalı Motorlar, Birsen Yayınevi, İstanbul, 2002 (3. Baskı)
Pages 3 – 23 and 38 - 41Stone, R., Introduction to IC Engines, Macmillan, London, 1994.
Pages 33 - 34

Assumptions
Air standard cycles, serve as introduction to the more detailed and accurate models of IC engines provide insight into some of the important parameters that effect engine performance
 Assumptions; Neglect heat transfer to and from cylinder walls, Replace combustion process by a heat addition process that occurs at constant volume (in Otto cycle) or at constant pressure (in Diesel cycle), Do not consider gas exchange process, Assume cylinder charge as a perfect gas (c_p and c_v are assumed constant) which is pure air.

Otto Cycle

Work done during the cycle, 1-2-3-4 is,

$$W_{cycle} = \oint p \, dV = \oint T \, ds$$

Constant volume heat input to the cycle per unit mass of working fluid

$$Q_{23} = \int_{T_2}^{T_3} c_v \, dT = c_v \left(T_3 - T_2\right)$$

Constant volume heat extraction from the cycle per unit mass

$$Q_{41} = -\int_{T_4}^{T_1} c_{\nu} dT = -c_{\nu} (T_1 - T_4) = c_{\nu} (T_4 - T_1)$$

Otto Cycle
1st law of thermodynamics $dE = dQ - dW$ dE = 0
Thermal efficiency $\eta_{t-otto} = \frac{W}{Q_{23}} = \frac{\text{work done}}{\text{heat input}}$
$\eta_{\text{t-otto}} = \frac{Q_{23} - Q_{41}}{Q_{23}} = 1 - \frac{Q_{41}}{Q_{23}}$
$\eta_{ ext{t-otto}} = 1 - rac{T_4 - T_1}{T_3 - T_2}$

Otto Cycle		
from $2 \rightarrow 3$, consta	nt volume heat addition	
$p_2V_2 = mRT_2$	$p_3V_3 = mRT_3$	$V_{2} = V_{3}$
defining eta	$T_{3} = T_{2} \frac{p_{3}}{p_{2}}$ $= \frac{p_{3}}{p_{3}}$ "pressure ratio"	(basınç artış oranı)
	p_2 $T_3 = T_1 \ \beta \ \varepsilon^{k-1}$	

Otto Cycle

from 3 \rightarrow 4, adiabatic expansion, $p_4 V_4^k = p_3 V_3^k$ $p_4 V_4 V_4^{k-1} = p_3 V_3 V_3^{k-1}$ From ideal gas law $p_4 V_4 = mRT_4$ $p_3 V_3 = mRT_3$ $\frac{V_4}{V_3} = \frac{V_1}{V_2} = \varepsilon$ $T_4 V_4^{k-1} = T_3 V_3^{k-1}$ $T_4 = \frac{T_3}{\varepsilon^{k-1}}$ $T_4 = T_1 \beta$

Thermal Efficiency

Thermal efficiency of Otto cycle is given by,

$$\eta_{\text{t-otto}} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$

placing the temperatures $T_{\rm 2},\,T_{\rm 3}$ and $T_{\rm 4}$ in terms of $T_{\rm 1}$

$$\eta_{t-otto} = 1 - \frac{1}{\varepsilon^{k-1}}$$

Diesel Cycle

Work done during the cycle, 1-2-3-4 is,

$$W_{cycle} = \oint p \, dV = \oint T \, ds$$

Constant pressure heat input to the cycle per unit mass of working fluid

$$Q_{23} = \int_{T_2}^{T_3} c_p \, dT = c_p \left(T_3 - T_2 \right)$$

Constant volume heat extraction from the cycle per unit mass

$$Q_{41} = -\int_{T_4}^{T_1} c_{\nu} dT = -c_{\nu} (T_1 - T_4) = c_{\nu} (T_4 - T_1)$$

Diesel Cycle
1st law of thermodynamics $dE = dQ - dW$ dE = 0
Thermal efficiency $\eta_{\text{t-diesel}} = \frac{W}{Q_{23}} = \frac{\text{work done}}{\text{heat input}}$
$\eta_{\text{t-diesel}} = \frac{Q_{23} - Q_{41}}{Q_{23}} = 1 - \frac{Q_{41}}{Q_{23}}$
$\eta_{\text{t-diesel}} = 1 - \frac{T_4 - T_1}{k(T_3 - T_2)}$

Diesel Cycle

$$T_2 = T_1 \varepsilon^{k-1}$$

$$T_3 = T_2 \frac{V_3}{V_2} = T_1 \ \alpha \ \varepsilon^{k-1}$$

$$T_4 = \frac{T_3 \alpha^{k-1}}{\varepsilon^{k-1}} = T_1 \alpha^k$$

Thermal Efficiency

Thermal efficiency of Diesel cycle is given by,

$$\eta_{\text{t-diesel}} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$

placing the temperatures $T_{\rm 2},\,T_{\rm 3}$ and $T_{\rm 4}$ in terms of $T_{\rm 1}$

$$\eta_{t-diesel} = 1 - \frac{1}{\varepsilon^{k-1}} \frac{\alpha^{k} - 1}{k (\alpha - 1)}$$

Dual Cycle
Work done during the cycle, 1-2-3'-3-4 is,
$W_{cycle} = \oint p \ dV = \oint T \ ds$
Constant volume heat input followed by constant pressure heat input to the cycle per unit mass of working fluid
$Q_{23} = c_v (T_{3'} - T_2) + c_p (T_3 - T_{3'})$
Constant volume heat extraction from the cycle per unit mass
$Q_{41} = -\int_{T_4}^{T_1} c_v dT = -c_v (T_1 - T_4) = c_v (T_4 - T_1)$

Dual Cycle
Thermal efficiency

$$\eta_{t-dual} = 1 - \frac{c_v(T_4 - T)_1}{c_v(T_3 - T_2) + c_p(T_3 - T_3)}$$

Dual Cycle		

Thermal Efficiency
Otto cycle $\eta_{\it th-Otto} = 1 - \frac{1}{\varepsilon^{k-1}}$
Diesel cycle $\eta_{th-Diesel} = 1 - \frac{1}{\varepsilon^{k-1}} \frac{\alpha^k - 1}{k(\alpha - 1)}$
Dual cycle $\eta_{th-Dual} = 1 - \frac{1}{\varepsilon^{k-1}} \frac{\beta \alpha^{k} - 1}{\beta - 1 + k\beta (\alpha - 1)}$

