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RECOMMENDATION MODELS FOR WEB USER: USER INTEREST
MODEL AND CLICK-STREAM TREE

SUMMARY

One of the applications areas of data mining is World Wide Web (WWW), which
serves as a huge, widely distributed, global information service center for every
kind of information such as news, advertisements, consumer information, financial
management, education, government, e-commerce, health services, and many other
information services. With the rapid growth of the WWW, it becomes more important
to find the useful information from these huge amount of data. The Web also contains
arich and dynamic collection of hyperlink information and Web page access and usage
information, providing sources for data mining. The Web poses great challenges for
effective knowledge discovery and data mining applications. Web mining is defined
as the use of data mining techniques to automatically discover and extract information
from Web documents and services. In general, Web mining is a common term for
three knowledge discovery domains that are concerned with mining different parts of
the Web: Web Structure Mining, Web Content Mining and Web Usage Mining.

While Web structure and content mining utilize real or primary data on the Web, Web
usage mining works on the secondary data such as Web server access logs, proxy
server logs, browser logs, user profiles, registration data, user sessions or transactions,
cookies, user queries, and bookmark data. The continuous growth of the World
Wide Web and available data in that domain imposes new methods of design and
development of powerful yet computationally efficient Web usage mining tools. Web
usage mining refers to the application of data mining techniques to discover usage
patterns in order to understand and better serve the needs of Web-based applications.
It has been used to improve the Web performance through caching, to recommend
related pages, improve search engines and personalize browsing in a Web site.

Due to the steady growth of available information combined with the almost
unstructured Web data, it becomes more difficult to find relevant and useful
information for Web users. Thus, one of the goals of Web usage mining is to guide
the Web users to discover useful knowledge and to support them for decision-making.
In that context, predicting the needs of a Web user as she visits Web sites has gained
importance. The requirement for predicting user needs in order to guide the user in a
Web site and improve the usability of the Web site can be addressed by recommending
pages to the user that are related to the interest of the user at that time.

This thesis develops and tests two models for discovering and modelling of the user’s
interest in a single session. These approaches rely on the premise that the visiting time
of a page is an indicator of the user’s interest in that page.

The first model, User Interest Model, uses only the visiting time and visiting
frequencies of pages without considering the access order of page requests in
user sessions. The resulting model has lower run-time computation and memory
requirements, while providing predictions that are at least as precise as previous
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proposals. Our objective in this model is to assess the effectiveness of non-sequentially
ordered pages in predicting navigation patterns. The main idea behind this work is that
user sessions can be clustered according to the similar amount of time that is spent on
common pages among Sessions.

The second model, Click-Stream Tree, considers both the order information of pages
in a session and the time spent on them. User sessions are clustered according to their
pair-wise similarity and the resulting clusters are then represented by a click-stream
tree. A new method is proposed for calculating the similarity between all pairs of user
sessions considering both the order of pages and the time spent on them.

The results of the experiments on different Web sites show that the models are robust
across Web sites and they could be used for caching as well. The results show that
proper normalization of time yields a good prediction accuracy. Furthermore, the
models are quite effective in representing a Web user’s access pattern and have an
advantage over previous proposals in terms of speed and memory usage.



WEB KULLANICILARI ICIN ONERI MODELLERI: KULLANICI ILGISI
MODELI VE TIKLAMA 1Zi AGACI

OZET

World Wide Web (WWW) haber, reklam, tiketici bilgisi, mali yonetim, egitim,
hikimet, e-ticaret, saglik hizmeti ve bircok bagka bilgi hizmeti icin ¢ok buyik,
oldukca yayilmis, genel bilgi hizmet merkezi oldugundan veri madenciliginin bir
uygulama alanidir.  WWW’nin hizla biyumesi ile bu ¢ok biyik miktardaki veri
icinden yararl bilgiyi bulmak daha dnemli olmustur. Web ayrica veri madenciligi
icin kaynak olusturan bol ve dinamik baglanti bilgisi ve Web sayfasi erisim ve
kullanim bilgisi icerir. Web etkili bilgi kesifi ve veri madenciligi uygulamalar
icin blylk bir calisma ortaya koymaktadir. Web madenciligi, Web dokiman ve
hizmetlerinden otomatik olarak bilginin kesfedilmesi ve elde edilmesi igin veri
madenciligi tekniklerinin kullaniimasi olarak tanimlanmistir. Genel olarak, Web
madenciligi Web’in degisik alanlariyla ilgilenmesine gore ayrilan tg bilgi kesfi alani
icin ortak bir terimdir: Web yapisi madenciligi, Web icerik madenciligi, Web kullanim
madenciligi.

Web yapisi madenciligi ve Web icerik madenciligi Web’teki asil ya da birincil veriyi
kullanirken, Web kullanim madenciligi Web sunucu glinligu, vekil sunucu ginliga,
tarayici ginlugu, kullanici profili, kayit verisi, kullanici oturumu veya islemi, cerez,
kullanici sorgulamasi ve yer imi verisi gibi ikincil veri Gzerinde calisir. World Wide
Web’in ve bu alanda elde edilen verinin surekli blydmesi, gicli ve verimli Web
kullanim araglarinin tasarimi ve geligtirilmesi icin yeni yontemleri zorunlu kilar. Web
kullanim madenciligi, Web tabanli ihtiyaglarin anlasiimasi ve daha iyi hizmet verilmesi
amaciyla kullanici orlntilerini ortaya cikarmak icin veri madenciligi tekniklerinin
uygulanmasi ile ilgilenir. On bellege alma yontemi ile Web basarimini artirma,
ilgili sayfalari 6nerme, arama motorlarini gelistirme ve bir Web sitesine gz atarken
kisisellestirme icin kullanthr.

Hemen hemen yapisiz Web verisiyle birlesmis surekli blyuyen mevcut bilgiden
konu ile ilgili ve yararli bilgiyi bulmak daha gii¢ olmustur.  Bdylece Web
kullanim madenciliginin amaclarindan biri de Web kullanicilarina, yararh bilgiyi
ortaya cikarmak ve karar vermede desteklemek igin yol gostermektir. Bu
baglamda Web sitesini ziyaret ederken bir Web kullanicisinin ihtiyaglarini éngérmek
O6nem kazanmugtir. Kullaniciya Web sitesi icinde yol gostermek ve Web
sitesinin kullanilabilirligini artirmak icin kullanici ihtiyaclarini 6ngérme gereksinimi
kullanicinin o andaki ilgisiyle baglantili sayfalar 6nererek ¢ozimlenebilir.

Bu tez bir oturumdaki kullanici ilgisini ortaya ¢ikarmak ve modellemek icin iki model
gelistirmis ve test etmistir. Bu yaklagimlar bir sayfayi ziyaret suresinin kullanicinin o
sayfaya olan ilgisine iyi bir gdsterge olduguna dayanir.

Ik model, kullanici ilgisi modeli, kullanici oturumlarinda sayfa erisim diizenini
g6z oOniinde bulundurmadan sadece sayfanin ziyaret siresini ve ziyaret sikligini
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kullanir. Ortaya ¢cikan model en az dnceki éneriler kadar dogru 6ngorii saglarken
daha az calistirma hesaplamasi ve bellek gereksinimine sahiptir. Bu modeldeki
hedefimiz yon bulma oruntdlerini 6ngorirken sirasiz diizenlenmis sayfalarin etkisini
degerlendirmektir.  Bu calisma ardindaki ana distince kullanici oturumlarinin,
oturumlar arasindaki ortak sayfalarda benzer sire gecirmelerine gore demetlenebilir
olmasidir.

Ikinci model, tiklama izi agaci modeli, hem sayfalarin bir oturum icgindeki diizenini
hem de bu sayfalarda gegirilmis streleri g6z 6niinde bulundurur. Kullanici oturumlari
ciftli benzerliklerine gére demetlenir ve ortaya cikan demetler bir tiklama izi agaci ile
temsil edilir. Hem sayfalarin diizeni hem de o sayfalarda gecirilen siire g6z dntinde
bulundurularak bitin kullanici oturumu giftleri arasindaki benzerligi hesaplamak igin
bir yontem onerilmistir.

Degisik Web siteleri Uzerinde yapilan deneyler modellerin Web siteleri arasinda
saglam oldugunu ve cep bellege alma icin de kullanilabilecegini gdstermektedir.
Sonuglar siirenin uygun normalizasyonunun iyi bir 6éngéri dogrulugu sagladigini
gostermistir. Ayrica modeller Web kullanicilarinin erisim éruntulerini temsil etmede
oldukca etkilidir ve hiz ve bellek kullanimi agisindan daha Onceki 6nerilere gore bir
avantaja sahiptir.

Xii



1. INTRODUCTION

Data mining has emerged as one of the most exciting and dynamic fields in
computer science and software engineering. The terms “data mining” and “knowledge
discovery in databases” are often used synonymously. Knowledge discovery in
databases is the process of identifying valid, novel, potentially useful, and ultimately
understandable patterns/models in data. Data mining is a step in the knowledge
discovery process consisting of particular data mining algorithms that, under some
acceptable computational efficiency limitations, finds patterns or models in data
[1]. Simply stated, data mining refers to the process of extracting previously
unknown, valid, and potentially useful knowledge from data. Another definition is
that data mining is a variety of techniques used to identify nuggets of information or
decision-making knowledge in bodies of data, and extracting these in such a way that
they can be put to use in areas such as decision support, prediction, forecasting, and
estimation. The data is often voluminous but, as it stands, of low value as no direct use
can be made of it; it is the hidden information in the data that is useful. For this reason

data mining is often referred to as “secondary” data analysis.

Data mining roots are traced back along three family lines. The longest of these
three lines is classical statistics. Without statistics, there would be no data mining, as
statistics is the foundation of most technologies on which data mining is built. Classical
statistics embrace concepts such as regression analysis, standard distribution, standard
deviation, standard variance, discriminant analysis, cluster analysis, and confidence
intervals, all of which are used to study data and data relationships. These are
the building blocks with which more advanced statistical analysis are underpinned.
Certainly, classical statistical analysis plays a central role in current data mining tolls

and techniques.

Data mining’s second longest family line is Artificial Intelligence (Al). This
discipline, which is built upon heuristics as opposed to statistics, attempts to apply
human-thought-like processing to statistical problems. Because this approach requires

vast computer processing power, it was not practical until the early 1980s, when



computers began to offer useful power at reasonable prices. Al found a few
applications at the very high end scientific/government markets, but the required
supercomputers of the era priced Al out of the reach of virtually everyone else. The
notable exceptions were certain Al concepts which were adopted by some high-end
commercial products, such as query optimization modules for Relational Database
Management Systems (RDBMS).

The third family line of data mining is machine learning, which is more accurately
described as the union of statistics and Al. While Al was not a commercial success,
its techniques were largely co-opted by machine learning. Machine learning, able to
take advantage of the ever-improving price/performance ratios offered by computers
of the 80s and 90s, found more applications because the entry price was lower than
Al. Machine learning could be considered an evolution of Al, because it blends Al
heuristics with advanced statistical analysis. Machine learning attempts to let computer
programs learn about the data they study, such that programs make different decisions
based on the qualities of the studied data, using statistics for fundamental concepts,

and adding more advanced Al heuristics and algorithms to achieve its goals.

Data mining, in many ways, is fundamentally the adaptation of machine learning
techniques to business applications. It is best described as the union of historical and
recent developments in statistics, Al, and machine learning. These techniques are then
used together to study data and find previously-hidden trends or patterns within. Some

applications of data mining are the following:

e Common Business Applications: Such as market analysis and management,
market basket analysis, cross selling, target marketing, customer profiling,

customer behavior understanding, risk analysis and management;

e Fraud Detection and Management: Detecting telephone fraud, detecting
automotive and health insurance fraud, detecting credit card fraud, detecting

suspicious money transactions (money laundering);
e Text Mining: Message filtering (e-mails, newsgroup etc.);

e Medicine: Association of pathology and symptoms, analysis tolls for DNA

arrays, medical imaging;

e Sports: Game statistics;



e Web Surfing and Mining: Recommending related pages, improving search

engines or personalizing browsing in a Web site or caching.

1.1 Web Mining

One of the applications areas of data mining is World Wide Web (WWW), which
serves as a huge, widely distributed, global information service center for every
kind of information such as news, advertisements, consumer information, financial
management, education, government, e-commerce, health services, and many other
information services. With the rapid growth of the WWW, it becomes more important
to find the useful information from these huge amounts of data. The Web also contains
a rich and dynamic collection of hyperlink information and Web page access and usage
information, providing sources for data mining. The Web poses great challenges for
effective knowledge discovery and data mining applications. Web mining is defined
as the use of data mining techniques to automatically discover and extract information

from Web documents and services [2].

In general, Web mining is a common term for three knowledge discovery domains that
are concerned with mining different parts of the Web: Web Structure Mining, Web
Content Mining and Web Usage Mining [3, 4].

1.1.1 Web Structure Mining

Web structure mining generates a structural summary of Web sites and Web pages.
Given a collection of interconnected Web documents, interesting information can be
discovered using the link information. The following structural information from the

Web documents can be extracted:

e Measuring the frequency of the local links that connect different Web documents
at the same Web site. This gives information about inter-related pages at the
same Web server and the the ability of a Web document to cross-reference other

related Web pages within the same Web server;

e Measuring the frequency of documents that have links to the documents at
different Web sites. This measures the visibility of Web documents and ability

to relate similar and related documents across different Web sites;



e Measuring the frequency of identical Web documents. This measures the
replication of Web documents across different Web sites and may help to identify

the mirrored sites.

1.1.2 Web Content Mining

As of early 2003, there were just over three billion Web pages listed in the Google
search engine! index, widely taken to be the most comprehensive Web index. Netcraft
Web server survey [5] lists 39.174.349 Web sites as of March, 2003. No one knows
how many more Web pages there are on the Internet, or the total number of documents
available over the public network, but there is no question that the number is enormous
and growing quickly. Every one of these Web pages has come into existence within
the past ten years. Today, Web users access the Web through two dominant interfaces:
Clicking on hyperlinks and searching via keyword queries. Today’s search engines
have to cope with rapidly changing, heterogenous data collections that are orders
of magnitude larger than ever before. They also have to remain simple enough
for average and novice users to use. Better support is needed for expressing one’s
information need and and dealing with a search result. Because of the sheer number of
documents available, we can find interesting and relevant results for any search query.
The problem is that those results are likely to be hidden in a mass of semi-relevant
and irrelevant information, with no easy way to distinguish the good from the bad.
Web content mining has significant roles to play in addressing this problem. Web
content mining describes the discovery of useful information from the Web contents

and documents.

The unstructured nature of Web content mining forces a different approach towards
Web content mining. Basically, the Web content consist of several types of data such as
textual, image, audio, video, metadata, as well as hyperlinks. The research done in Web
content mining could be differentiated from two different points of view: Information
Retrieval (IR) and Database (DB) views [6]. The goal of Web content mining from
the IR view is mainly to assist or to improve the information finding or filtering the
information to the users usually based on either inferred or solicited user profiles, while
the goal of Web content mining from the DB view mainly tries to model data on the

Web for solving the problems of managing and querying the information on the Web.

Lhttp://www.google.com/



1.1.3 Web Usage Mining

While Web content and structure mining utilize real or primary data on the Web, Web
usage mining works on the secondary data such as Web server access logs, proxy
server logs, browser logs, user profiles, registration data, user sessions or transactions,
cookies, user queries, and bookmark data. Web usage mining refers to the application
of data mining techniques to discover usage patterns from these secondary data, in
order to understand and better serve the needs of Web-based applications. The usage
data collected at different sources will represent the navigation patterns of different
segments of the overall Web traffic, ranging from single-user, single-site browsing
behavior to multi-user, multi-site access patterns. The information provided by the
data sources can all be used to construct/identify several data abstractions, such as

users, server sessions, episodes, click stream, and page views [7].

With the rapid growth of the WWW, the study of modelling and predicting a user’s
access on a Web site has become more important. It has been used to improve the Web
performance through caching [8, 9] and prefetching [10, 11], to recommend related

pages [12], improve search engines [13] and personalize browsing in a Web site [10].

1.2 Goal of the Thesis

The goal of this work is to build a recommendation model that has an advantage over
previous proposals in terms of speed and memory usage by preserving the prediction
accuracy. The model can be used to guide a user during her visit to a Web site as well
as for prefetching of Web pages. The model does not capture personalization which
can be defined as any action that makes the Web experience of a user personalized to
the user’s taste. On the contrary, we regard that every user may have different desires at
different times. Thus, we intend to build a recommendation model that can recommend
different Web pages to the same user every time she visits the Web site. The main goal
of this work is to model each user session in terms of Web users’ behavior on a Web

site instead of modelling the behavior of each Web user.



1.3 Related Works

It is often necessary to make choices without sufficient personal experience of the
alternatives. In every day life, we rely on recommendations from other people either
by word of mouth, recommendation letters, movie and book reviews, or general
surveys. Recommender systems assist and augment this natural social process. Since
WWW serves as a huge, widely distributed, global information service center for every
kind of information such as news, advertisements, consumer information, financial
management, education, government, e-commerce, health services, and many other
information services, it becomes more important to find the useful information from
these huge amounts of data. Recommender systems on Internet help people make
decisions in this complex information space where the volume of information is
available to them is huge. Given a user’s (who may, for example, be a customer in
an e-commerce site) current actions, the goal is to determine which Web pages (items)
will be accessed (bought) in the near future. Recommender systems on Internet can
be divided into two parts: Recommender systems based on collaborative filtering and
automated recommender systems. This section describes some approaches used in

these systems.

1.3.1 Collaborative Filtering

One of the most successful and widely used technologies for building recommendation
systems is Collaborative Filtering (CF). Goldberg et al. introduced the phrase
“collaborative filtering”, while describing Tapestry [14], which later became known as
the first recommender system. The system relied on the explicit opinions of people
from a small community, such as an office workgroup. However, recommender
systems for large communities can not depend on each person knowing the others.
Later on several ratings-based automated recommender systems were developed. CF
systems collect visitor opinions on a set of objects, using ratings provided by the users
or implicitly computed, to form peer groups and that establishes the basis of a learning
system to predict a particular user’s interest in an item. It is often based on matching, in
real-time, the current user’s profile against similar records (nearest neighbors) obtained
by the system over time from other users. The ratings collected by the system may be

both implicit and explicit.



Explicit voting refers to a user consciously expressing her preference for a title, usually
on a discrete numerical scale. Some examples of systems that use this approach include
SIFT [15], Tapestry [14] and the system described in [16]. The GroupLens project [17]
is a purely CF approach that automates prediction by collecting explicit user ratings

and employing statistical techniques.

The lack of explicit user ratings as well as the sparseness and the large volume
of data pose limitations to standard CF. As a result, it becomes hard to scale CF
techniques to a large number of items, while maintaining reasonable prediction
performance and accuracy. A number of optimization strategies have been proposed
and employed to remedy this shortcoming. These strategies include similarity indexing
and dimensionality reduction to reduce real-time search costs. Pattern discovery
techniques have been proposed to address some of the limitations of collaborative
methods. A hybrid approach to recommendations combines aspects of both pattern
discovery methods and CF. O’Conner and Herlocker use existing data partitioning and
clustering algorithms to partition the set of items based on user rating data citech99 .

Predictions of items are then computed independently within each partition.

Another example to hybrid approaches is Content-based systems, which work
by comparing text descriptions or other representations associated with an item.
Balabonovi¢ and Shoham [18] describe a system that helps users to discover new and
interesting sites that are of interest to them. The system uses Al techniques to present
users with a number of documents that it thinks the user would find interesting. Users
evaluate the documents and provide feedback to the system. From the feedback, the
system knows more about the users’ areas of interest in order to better serve them in
subsequent searches. The hybrid approach used in this model retains the advantages
of content-based and collaborative approaches while overcoming their disadvantages.
The recommendation system, termed Yoda, uses a hybrid approach that combines CF
and content-based querying [19]. Yoda identifies similar groups of users by clustering
user sessions from a training set, and learns typical patterns of user interests in each
cluster by taking a vote among items browsed by users belonging to the cluster. The

pattern of each cluster is then used to predict a list of recommendations.

The system described in [20] aims at offering innovative on-line services to support
the trade fair business processes among a great number of exhibitors organized in a

Web-based virtual fair. In order to build user profiles and provide recommendations,



a method has been implemented which is based on the integration of data collected
explicitly and implicitly about users.  The system then provides appropriate
recommendations to the user in any circumstances during the visit. In [21] a CF
framework is used to combine personal Information Filtering (IF) agents and the
opinions of a community of users to produce better recommendations than either

agents or users can produce alone.

Implicit rating used for CF can be divided into three categories: 1° rating based on
examination, when a user examines an item; 2° rating based on retention, when a
user saves an item; and 3° rating based on reference, when a user links all or part
of an item into an other item. PHOAKS [22] represents people by their mention
of Uniform Resource Locators (URL) in Usenet messages. Usenet is a world-wide
distributed discussion system that consists of a set of “newsgroups” with names that
are classified hierarchically by subject. “Articles” or “messages are posted to these
newsgroups by people on computers with the appropriate software. An URL in a
Usenet messages is considered an implicit rating. The process of recommendation in
PHOAKS entails mining URLSs, filtering irrelevant links via a number of heuristics
and computing a weight for each. A link’s weight is the number of times the link
appears in the Usenet messages. Finally the output is a set of relevant URL’s and their
associated weights. Siteseer [23] is another collaborative system that uses implicit
ratings. Its recommendation function is based on bookmark folder representation of
people. Bookmarks are an implicit declaration of interest of Web users that is less
noisy in comparison to other mechanisms such as mouse click or a URL embedded
in a newsgroup message. Furthermore, binary nature of bookmark eliminates the
possibility of partial preference. The recommendation function of Siteseer computes
set intersection between input bookmark folders. The output of the recommendation

function is a set of bookmarks.

CF techniques can be an important part of the recommender systems. One key
advantage of CF based on explicit voting is that it does not consider the content of
the items being recommended, rather than map user to items through user ratings.
While CF systems based on explicit voting have proven to be accurate enough for
entertainment domains [17, 24], they have yet to be successful in content domains
where higher risk is associated with accepting a filtering recommendation. In addition

to the limitations mentioned above, another difficult, though common problem of CF



systems is the cold-start problem, where recommendations are required for items that

no one in the data set has yet rated.

1.3.2 Automated Recommender Systems

Most of the techniques for automated recommender systems are based on data mining
methods, which attempt to discover patterns or trends from a variety of sources. Web
usage mining is an obvious and popular one of these techniques. Recently, a number
of approaches have been developed dealing with specific aspects of Web usage mining
like automatically discovering user profiles, recommender systems, Web prefetching,
design of adaptive Web sites, etc. In all these applications the goal is the development
of an effective prediction algorithm. The core issue in prediction is the development
of an effective algorithm that deduces the future user requests. The most successful
approach towards this goal has been the exploitation of the user’s access history to
derive prediction. This section describes pattern discovery methods that have been
applied to Web domain. It is very difficult to classify the studies according to the
methods they use for Web usage mining. In most of the works mentioned below,

methods are combined together in discovering usage patterns in Web domain.

Statistical Analysis

Statistical techniques are the most common methods to extract knowledge about
visitors to a Web site. By different kinds of statistical analysis (frequency, median,
mean, etc.) of the session file, one can extract statistical information such as the most
frequently accessed pages, average view time of a page or average length of a path
through a site. This type of knowledge can be potentially useful for improving the
system performance, enhancing the security of the system, and providing support for

marketing decisions.

An example for the application of statistical methods to Web mining is PageGather
[25]. This algorithm processes the access logs by using a statistical approach to find
pages that are often visited together by the site’s user. It then creates a graph in which
each node represents a page at the Web site and finds maximal cliques in the graph in
order to discover user profiles. While the generated profiles were not integrated as part
of a recommender system, they were used to automatically synthesize alternative static

index pages for a site.



Larsen et al. used a hierarchical probabilistic clustering method based on the
Generalizable Gaussian Mixture (GGM) model in [26] for analysis and interpretation
of WWW data. The unsupervised GGM model is applied for segmentation of user’s
behavior when shopping on a Web site. However, it has not been extended to

recommend new items during shopping.

Borges and Levene modelled the user navigation sessions as hypertext probabilistic
language generated by a hypertext probabilistic grammar, which has a one-to-one
mapping between the set of non-terminal symbols and the set of terminal symbols
[3]. Each non-terminal symbol corresponds to a Web page. The higher probability
generated navigation paths of the hypertext probabilistic grammar correspond to the
user preferences when navigating through the Web. Moreover, the use of entropy as an

estimator of the statistical properties of grammar is proposed in this study.

Association Rules

Association rules capture the relationships among items based on their patterns of
co-occurrence across transactions. The problem of discovering association rules was
introduced in [27]. Given a set of transactions, where each transaction is a set of items,
an association rule is an expression of the form X = Y, where X (defined as the
left-hand-side (LHS) of the association rule) and Y (defined as the right-hand-side
(RHS) of the association rule) are sets of items such that no item appears more than
once in X UY". The intuitive meaning of such a rule is that transactions in the database
which contain the items in X tend to also contain the items in Y. Two common numeric
measures assigned to each association rule are “support” and “confidence”. Support

quantifies how often the items in X and Y occur together in the same transaction as

| XUY|
DI

number of transactions. Confidence quantifies how often X and Y occur together as a

|XUY|
1 X1

Web usage mining, association rules refer to sets of pages that are accessed together

a fraction of the total number of transactions, or

where |D| denotes the total

fraction of the number of transactions in which X occurs, or . In the context of

with a support value exceeding some specified threshold. These pages may not be
directly connected to one another via hyperlinks. For example, using association rule

discovery techniques, we can find correlations such as following:

e 40% of users visit the Web page with URL /home/pagel, and the Web Page with

URL /home/page2 in the same user session.
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e 30% of users who accessed the Web page with URL /home/products, also

accessed /home/pruducts/computers.

Yang et al. used association rules extracted from Web server logs for Web caching and
prefetching [28]. For any given observed sequence of URL'’s the algorithm chooses a
rule whose LHS matches the sequence and has the longest length among all applicable

rules. However, the sequential data is not considered in that work.

Chen, Park and Yu converted the log data into a set of maximal forward references,
a form which is amenable to being processed by existing association rule techniques
[29]. Two algorithms are given to mine the rules, which in this context consist of large
itemsets with the additional restriction that the references must be consecutive in a

transaction.

Clustering

Clustering is a technique to group together a set of items having similar characteristics.
In the Web usage domain, there are three kinds of interesting clusters to be discovered:
1° Session clusters; 2° User clusters; and 3° Page clusters. Session clustering
implementation allows clustering of user sessions in which users have similar access
patterns. Clustering of users tends to establish groups of users exhibiting similar
browsing patterns. Page clustering can be partitioned into two methods. The first is to
cluster pages according to their contents. For this method an analysis of the content of
Web site is needed. The second method computes clusters of page references based on

how often they occur together.

In [30] a method is proposed to classify Web site visitors according to their access
patterns. Each user session is stored in a vector that contains the number of visits to
each page and an algorithm is given to find clusters of similar vectors. The clusters
obtained with this method do not take into account the order in which the pages were
accessed. This system consists of an offline module that will perform cluster analysis

and an online module which is responsible for dynamic link generation of Web pages.

Shahabi et al. described a prototype system that uses viewing time as the primary
feature to describe a user session [31]. Then, using a similarity measure roughly based
on inner products, they cluster the sessions using k-means clustering [32]. The system
is evaluated on a fictional 34-page site with simulated path data.

11



Fu et al. suggested a model that uses the URLSs to construct a page hierarchy which is
used to categorize the pages [33]. For example, all pages under /computers/ index.html
would be classified as “computers” pages. The page accesses in each user session are
then described using these page categorization. This is called “Generalization-based
Clustering”, and is similar to using URL tokens (tokenize URLs on “/” and other
delimiters). Unfortunately, this approach only works if the URLs contain useful tokens,
or if page categorization can be determined ahead of time manually.

Banerjee et al. utilized the combination of time spent on a page and Longest Common
Subsequences (LCS) to cluster the user sessions [34]. The LCS algorithm is first
applied on all pairs of user sessions. Then each LCS path is reduced using page
hierarchy in a generalization based approach called ”Concept based Clustering®. This
is basically a simpler form of generalization-based clustering, because they only use
the top-most level of the page hierarchy to categorize Web pages. Then similarities
between LCS paths are computed as the function of viewing time spent at each stage

of the paths.

Several attempts have been made to learn the click behavior of a Web user by
probabilistic clustering of individuals with a mixture of Markov models. Markov
models are a popular method for modeling stochastic sequences with an underlying
finite-state structure. For this reason they are well suited for modeling and predicting a
user’s browsing behavior on a Web site. In general, the input for these problems is the
sequence of Web pages that were accessed by a user and the goal is to build Markov
models that can be used to model the user behavior during her visit to the Web site
and predict the Web page that the user will most likely access next. Sarukkai used
Markov models for predicting the next page accessed by the user and notes the need
to reduce the size of the model by clustering the URLs [11]. Experimental results are
reported which show that a Markov model can be useful both in the prediction of http
requests and in the prediction of the next link to be requested. However, individual user
behavior is not considered. Cadez, Gaffney and Smyth proposed a methodology for
clustering individuals given the collections of their user navigation session [35]. Cadez
et al. proposed a methodology for visualizing the navigational patterns characterizing
each cluster presented [36]. The navigation behavior of the users is represented by a
Markov model in which the pages are classified into predefined categories. This model

does not analyze the log data in its finest level of detail.
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Anderson, Domingos and Weld introduced a Relational Markov model (RMM) [37]
which is a generalization of Markov models where states can be of different types with
relational predicates. Thus, RMM groups pages of the same type in a Web site into
relations, with each relation described by its own set of variables. These variables
themselves are grouped together, forming a hierarchy of values and a shrinkage is
carried out over the cross product of these hierarchies. In that model, if the states
between relations are not reflected in the distribution of the data, RMM can preform

worse then traditional Markov models.

Classification

Classification is the task of mapping a data item into one of several predefined classes.
In the context of Web usage mining, one is interested in developing a usage profile
belonging to a particular class or category. This requires extraction and selection of
features that best describe the properties of a given class or category. In Web usage
mining, classification techniques allow one to develop a profile for users who access
particular server files based on their demographic information available on those users,
or based on their access patterns. Classification techniques enable us to find usage

patterns such as followings:

e 50% of users who placed an online order in home/products/productl were in the
20-25 age group and lived in Istanbul.

e If an user put more than 2 items in the shopping cart, she will place an order
during that visit to the site.

The “Web log miner” uses On-line Analytical Processing (OLAP) technology for
prediction, classification and time series analysis of Web log data [38]. The Web
log miner project has the following steps. In the first step, the data are filtered to
remove irrelevant information and it is transformed into a relational database in order
to facilitate the following operation. In the second step, a multi-dimensional array
structure, called a data cube is built, each dimension representing a field with all
possible values described by attributes. OLAP is used in the third step in order to
provide further insight of any target data set from different perspectives and at different
conceptual level. In the last step, data mining techniques such as data characterization,
class comparison, prediction, association, classification or time-series analysis can be

used on the Web log data cube and Web log database. Interesting results are obtained
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on Web traffic analysis and on the evolution of user behavior (e.g. preferred pages)

over time.

Sequential Patterns

Sequential pattern mining, which discovers frequent subsequences as patterns in a
sequence database, is an important data mining problem with broad applications,
including the analysis of customer purchase behavior, Web access patterns, scientific
experiments, disease treatments, natural disasters, DNA sequences, and so on. The
sequential pattern mining problem was first introduced by Agrawal and Srikant in [39].
Given a set of sequences, where each sequence consists of a list of elements and each
element consists of a set of items, and given a user specified min_support threshold,
sequential pattern mining finds all of the frequent subsequences, i.e., the subsequences

whose occurrence frequency in the set of sequences is no less than min_support.

In Web server logs, a visit of a user is recorded over a period of time. A time stamp
can be attached either to the user session or to the individual page requests of user
sessions. By analyzing this information with sequential pattern discovery methods, the
Web mining system can determine temporal relationships among data items such as
the following:

e 30% of users who visited /home/products/dvd/movies, had visited /home/

products/games within the past week.

e 40% of users request the page with URL /home/products/monitors after visiting

the page /home/products/computers.

For example, IndexFinder uses the data about how often pages occur together in user
visits [40]. IndexFinder then applies a statistical cluster mining technique [41] to the
data and produces candidate clusters as output. In statistical cluster mining, objects
(Web pages) are grouped together based solely on a similarity measure (how often
they co-occur in user visits). The clusters are then used for optimizing the structure of
Web sites.

The Web Utilization Miner (WUM) system discovers navigation patterns with
interesting statistical properties like existence of cycles, repeated accesses, or rarely
followed paths etc. [42]. The query processor is incorporated to the miner in
order to specify characteristics of discovered paths that are interesting to the analyst.
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Incorporating the mining language early in the mining process allows the construction
only of patterns that have the desired characteristic while irrelevant pattern are
removed. However, no performance studies were reported and the use of query
language to find patterns with predefined characteristics may prevent the user finding

unexpected patterns.

Schechter et al. propose a method for predicting the next move of a Web user [43]. A
tree which contains the user paths is generated from the log data. The prediction of the
next request of a user is based on matching the user’s current session against the paths
in the tree. The ranking of matches is determined by a heuristic. The maximal prefixes
of each path (the first V — 1 elements of /NV-length path) are compared element-wise
against the same length suffixes of the user path, and the paths in the tree with the
highest number of element-wise matches are returned. Partial matches are disallowed.
Schecter et al. found that storing longer paths in the tree offered some improvements
in prediction but they did not study this case systematically. Although this method is
very accurate in the way it represents the user session, it is not very compact since for

every path stored all its suffixes are duplicated.

Nanopoulos et al. modified appropriately the candidate generation procedure and the
apriori-pruning criterion [44] to determine the access sequences of a Web user [45].
The work has been proposed for prefetching which refers to the process of deducing
user’s future request for Web objects and getting that objects into the cache before an

explicit request is made for them.

Pitkow and Pirolli proposed the Longest Repeated Subsequence (LRS) algorithm [10].
A LRS is a sequence of items where 1° Subsequence means a set of consecutive
items; 2° Repeated means the item occurs more than a threshold 7', where T typically
equals one; and 3° Longest means that although a subsequence may be part of another
repeated subsequence, there is at least one occurrence of this subsequence where this is
the longest repeating. However, this approach exacerbates the problem of state space
complexity.

Agent Based Approaches

An agent could be defined as a system that can be viewed a perceiving its environment

through sensors and acting upon that environment through effectors [46]. Several
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intelligent Web agents have been developed for information browsing. WebWatcher
Is an assistant agent that helps the user by using visual representations of links that
guide the user reach a particular target page or goal [47]. It learns by creating and

maintaining a log file for each user and from the user feedback it improves its guidance.

Another agent based recommendation system, Letizia, learns the areas that are of
interest to a user by recording the users’ browsing behavior [48]. It performs some
tasks at idle times (when a user is not reading a document and is not browsing). These
tasks include looking for more documents that are related to the user’s interest or might

be relevant to future requests.

The studies in [49, 50] are examples of a knowledge intensive approach, where the
agent is pre-programmed with an extensive model of what resources are available
on the network and how to access them. The knowledge-based approach is
complementary to the relatively pure behavior-based approach here, and they could

be used together.

1.3.3 Methodology for Automated Recommender Systems

As shown in Figure 1.1, the overall process of automated recommendation can be
divided into four components, namely: 1° Data collection; 2° Data preparation and

cleaning; 3° Pattern extraction; and 4° Prediction.

The first step is data collection from different kind of resources. Web usage mining

can potentially use data from the following resources [6]:

e Server Level Collection: A Web server log is an important source for performing
Web usage mining because it explicitly records the browsing behavior of Web
users. Server log files provide details about file requests to a Web server and the
server response to those requests. In the access log, which is the main log file,
each line describes the source of a request, the file requested, the date and time
of the request, the content type and length of the transferred file, and other data

such as errors and the identity of referring pages.

e Client Level Collection: Client-side data collection can be implemented by
using a remote agent (such as Java scripts or applets) or by modifying the source
code of an existing browser (such as Mosaic or Mozilla) to enhance its data

collection capabilities. The implementation of client-side data collection
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methods requires user cooperation. Client-side data collection ameliorates
problems caused by caching and session identification. A modified browser
enables data collection about a single user over multiple Web sites. However,
the most difficult part of using this method is convincing the users to use the

browser for daily browsing activities.

e Proxy Level Collection: A Web proxy acts as an intermediate level of caching
between client browsers and Web servers. Proxy server may serve as a data
source for characterizing the browsing behavior of a group of anonymous users

sharing a common proxy server.

The data resource should be selected according to the application. The second step is
to clean the data and prepare for mining the usage patterns. Fundamental methods of
data cleaning and preparation have been well studied in [51, 52, 53] and the details
of this step will be given in the Chapter 2. The third step is to extract usage patterns.
The main techniques traditionally used for modelling usage patterns in a Web site
are mentioned above. The fourth step is to build a predictive model based on the
extracted usage patterns. The prediction step is the real-time processing of the model,
which considers the active user session and makes recommendations. Once the mining
tasks are accomplished, the discovered patterns are used by the online component
of the model to provide dynamic recommendations to users based on their current
navigational activity. The Web server keeps track of the active user session as the user
browser makes HTTP requests. This can be accomplished by a variety of methods
such as URL rewriting, or by temporarily caching the Web server access logs. The
produced recommendation set is then added to the last requested page as a set of links

before the page is sent to the client browser.

1.4 Contributions of the Thesis

The most commonly used techniques to predict the user’s next request are sequential
patterns, association rules and Markov models. These techniques work well for
Web sites that do not have a complex structure, but experiments on complex, highly
interconnected sites show that the storage space and runtime requirements of these
techniques increase due to the large number of patterns for sequential pattern and
association rules, and the large number of states for Markov models.
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The discovery of usage patterns discussed above is not sufficient to accurately describe
the user’s navigational behavior in a server session. An important feature of the user’s
navigation path is the time that a user spends on different pages [31]. Even the same
person may have different desires at different times. If we knew the desire of a user
every time she visits the Web site, we could use this information for recommending
pages. Unfortunately, experience shows that users are rarely willing to give explicit
feedback. Thus, the time spent on a page is a good measure of the user’s interest
in that page, providing an implicit rating for that page. If a user is interested in the
content of a page, she will likely spend more time there compared to the other pages

in her session.

In this work, we present two new models that use the time spent on visiting pages
and study the impact of time, that a user spent on each page during her single visit
to a Web site. The first model (User Interest Model) uses only the visiting time and
visiting frequencies of pages without considering the access order of page requests
in user sessions. The resulting model has lower run-time computation and memory
requirements, while providing predictions that are at least as precise as previous
proposals. The second model (Click-stream tree model) uses both the sequences of
visiting pages and the time spent on that pages. As far as we know, existing tools for
mining two different information types like the order of visited Web pages and the
time spent on those pages, are hard to find. Therefore, we concentrate in this study
on a model that well reflects the structural information of a user session and handles
two-dimensional information. This approach to recommendation is novel and unique.
The experimental results of both of the models show that using time improves the
accuracy of the prediction of the next request. Equally important, these results are
robust across sites with different structures. To confirm our findings, the results are

compared to the results of three other well known recommendation techniques.

1.5 Organization of the Thesis

This thesis is organized as five chapters. We propose in this thesis two new models
for recommendation of Web pages in a single site. As mentioned in Section 1.3.3 the
process of recommendation has four components. The first two components , data
collection and data preparation are common for two models. Therefore these two

components are explained in detail in Chapter 2. Our original work is where usage
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patterns are extracted and a recommendation set is generated based on these extracted
patterns. For this objective, two new models are proposed and explained in detail in
Chapter 3. Chapter 4 describes our experimental work. It provides details of our data
sets, evaluation metrics and the results of experiments using proposed models. Finally,
Chapter 5 provides a conclusion.
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2. DATA PREPARATION AND CLEANING

In this research, we use three sets of server logs. The first one is from the NASA
Kennedy Space Center, the second log is from ClarkNet Web server and the last one is
from the Web server at the University of Saskatchewan. The details of these data sets

are given in Chapter 4. For each log data set we apply the same pre-processing steps?.

A Web server log is an important source for performing Web usage mining because it
explicitly records the browsing behavior of site visitors. The server records the time
and date of the transaction. It records the name of the file that was sent and how big
that file was. It records the Internet address to which the file was sent. If the user goes
to a page by clicking a link on some other page, the server records the address of the
page with that link. It also records some details about how the file was sent and any
errors that may have occurred as well as information about the browser that the user
is using. The data recorded in the server logs reflects the (possibly concurrent) access
of a Web site by multiple users. These log files can be stored in various formats such
as Common log or Extended log formats. Here is a basic definition of log files (also
called extended log files), given by the World Wide Web Consortium (or W3C), the
Internet standards group [54]:

An extended log file contains a sequence of lines containing ASCII characters
terminated by either the sequence LF or CRLF. Log file generators should follow the
line termination convention for the platform on which they are executed. Analyzers
should accept either form. Each line may contain either a directive or an entry.

Entries consist of a sequence of fields relating to a single HTTP transaction. Fields
are separated by whitespace, the use of tab characters for this purpose is encouraged.

If a field is unused in a particular entry dash *“- > marks the omitted field.

Basically an entry in Common Log Format consists of 1° The user’s IP address; 2° The
access date and time; 3° The request method (GET, POST ...); 4° The URL of the page

1Except further cleaning techniques for the “NASA” data set the details of which are given in the
next section.
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accessed, 5° the protocol (HTTP 1.0, HTTP 1.1,...); 6° The return code; and 7° The
number of bytes transmitted. A few lines of a typical access log in the Common Log

file format for a sample Web site are presented in Table 2.1.

An extended common log format file is a variant of the common log format file that
simply adds two additional fields to the end of the line, the referrer and the user agent
fields.

The information provided by the Web server can all be used to construct a data model
consisting of several abstractions, notably, users, pages, click-streams, server sessions.
In order to provide some consistency in the way these terms are defined, the W3C has
published a draft of Web term definitions relevant to analyzing Web usage. A Web user
is a single individual who is accessing files from one or more Web servers through a
Browser. A page file is the file that is served through a Hypertext Transfer Protocol
(HTTP) to a user. The set of page files that contribute to a single display in a Web
browser constitutes a WWeb page. A Browser is a client site software application that
interprets Hypertext Markup Language (HTML), the programming language of the
Internet, into the words and graphics that the user sees when viewing a Web page. The
click-stream is the sequence of pages followed by a user. A server session consists of
a set of pages that a user requests from a single Web server during her single visit to
that Web site.

In order to understand the user behavior the following information should be extracted

from server logs:

e Who is visiting the Web site? One of the major steps in Web usage mining is to

identify unique users in order to obtain the path that each follows;

e The path users take through the Web pages. With knowledge of each page that a

user viewed and the order, one can identify how users navigate through the Web
pages;

e How much time users spend on each page? A pattern of lengthy viewing time

on a page might lead one to deduce that the page is interesting;

e Where visitors are leaving the Web site? The last page a user viewed before

leaving the Web site might be a logical place to end a server session.
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Table 2.1: Sample server logs in Common Log Format

Source of User Date and Time Method,URL, Status | Num. of

Request ID of Request (HTTP Protocol) Code Bytes
216.35.116.28 - [11/Jan/2002:00:58:25 -0500] "GET /HTTP/1.0" 200 6557
216.35.116.28 - [11/Jan/2002:00:58:53 -0500] "GET a.gif HTTP/1.0" 200 5478
216.35.116.28 - [11/Jan/2002:00:59:53 -0500] "GET b.gif HTTP/1.0" 200 6057
216.35.116.28 - [11/Jan/2002:00:59:54 -0500] "GET B.html HTTP/1.1" 200 59825
216.35.116.28 - [11/Jan/2002:00:59:54 -0500] "GET B.gif HTTP/1.1" 200 2050
24.102.227.6 - [11/Jan/2002:00:59:55 -0500] | "GET index.html HTTP/1.1" | 200 6557
216.35.116.28 - [11/Jan/2002:00:59:55 -0500] "GET C.html HTTP/1.1" 200 2560
24.102.227.6 - [11/Jan/2002:00:59:56 -0500] "GET a.gif HTTP/1.1" 200 5478
24.102.227.6 - [11/Jan/2002:00:59:56 -0500] "GET b.gif HTTP/1.1" 200 6057
24.102.227.6 - [11/Jan/2002:00:59:57 -0500] | "GET D.HTML HTTP/1.1" 200 12800
24.102.227.6 - [11/Jan/2002:00:59:58 -0500] "GET G.gif HTTP/1.1" 200 1500
24.102.227.6 - [11/Jan/2002:00:59:58 -0500] "GET e.gif HTTP/1.1" 200 1230
24.102.227.6 - [11/Jan/2002:00:59:59 -0500] "GET e.jpg HTTP/1.1" 200 3345
216.35.116.28 - [11/Jan/2002:00:59:59 -0500] "GET c.jpg HTTP/1.1" 200 2247
216.35.116.28 - [11/Jan/2002:01:00:00 -0500] "GET E.jpg HTTP/1.1" 200 2247
216.35.116.28 - [11/Jan/2002:01:00:00 -0500] "GET D.html HTTP/1.1" 200 32768
216.35.116.28 - [11/Jan/2002:01:00:01 -0500] "GET D.gif HTTP/1.1" 200 7977
216.35.116.28 - [11/Jan/2002:01:00:01 -0500] "GET d.jpg HTTP/1.1" 200 6121
216.35.116.28 - [11/Jan/2002:01:00:02 -0500] "GET e.jpg HTTP/1.1" 200 3567
24.102.227.6 - [11/Jan/2002:01:00:02 -0500] "GET C.html HTTP/1.1" 200 32768




However, a log file does not contain all of the information required for Web usage
mining. Even if it contains other data make it difficult to interpret. Regardless of the
application, data preparation and cleaning steps should be completed in order to create
server sessions. Data preparation and cleaning tasks performed in this study consist
of the following steps: 1° User ldentification; 2° Session Identification; 3° Page Time
Calculation; and 4° Data Cleaning. This chapter also presents the methods applied in
these steps.

2.1 User ldentification

In order to know who is visiting the Web site, the log file must contain a person ID
such as login to the server or to the user’s own computer. However, most Web sites do
not require users to log in, and most Web servers do not make a request to learn the
user’s login identity on her own computer. Thus, the information available according
to the HTTP standard is not adequate to distinguish among users from the same host
or proxy. More often it is an IP address assigned by an Internet Service Provider (1SP)
or corporate proxy server to a user’s TCP/IP connection to the site, preventing unique
identification. The most widespread remedy for this problem is the usage of cookies. A
cookie is a small piece of code associated with a Web site; it installs itself in the user’s
host and associates a cookie identifier with user’s browser. This identifier is sufficient
to recognize the user that launches each URL request, as long as the same browser is
being employed. Since cookies are not available in our data sets we use a heuristic
method which identifies an unique IP as an user, bearing in mind that a single IP can
be used by a group of users. In this step, we remove the information about the size of
transmitted files, because we do not need this information in our further cleaning steps.

Our system converts a set of server logs expressed as:

L = Ll, LQ, ceey L\L\

Li=(IP, TIME;,,URL;, PROT;,CODE;, BYTES;)
LieL,ie][l..|L|

into a set of user transactions 7"

T = T17T27 "'aT‘|L\
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T,=(UID;, TIME;; METHOD;,URL;, PROT;, CODE;)

T,eT, ie(l..|L|]

where |L| is the number of logs in L and UID,; is the User Identification Number. For

every identical IP address, we assign a unique User Identification Number. Thus, some

of the user requests in 7" have the same User Identification Number.

Table 2.2: Transactions after user and session identification steps

UID | Date-Time Method, URL, Status | SID
HTTP Protocol Code
1 | [11/Jan/2002:00:58:25 -0500] | "GET / HTTP/1.0" 200 1
1 | [11/Jan/2002:00:58:53 -0500] | "GET a.gif HTTP/1.0" 200 1
1 | [11/Jan/2002:00:58:53 -0500] | "GET b.gif HTTP/1.0" 200 1
1 | [11/Jan/2002:00:59:54 -0500] | "GET B.html HTTP/1.1" 200 1
1 | [11/Jan/2002:00:59:54 -0500] | "GET B.gif HTTP/1.1" 200 1
1 | [11/Jan/2002:00:59:55 -0500] | "GET C.html HTTP/1.1" 200 1
1 | [11/Jan/2002:00:59:59 -0500] | "GET c.jpg HTTP/1.1" 200 1
1 | [11/Jan/2002:01:00:00 -0500] | "GET E.jpg HTTP/1.1" 200 1
1 | [11/Jan/2002:01:00:00 -0500] | "GET D.html HTTP/1.1" 200 1
1 [11/Jan/2002:01:00:01 -0500] | "GET D.gif HTTP/1.1" 200 1
1 | [11/Jan/2002:01:00:01 -0500] | "GET d.jpg HTTP/1.1" 200 1
1 | [11/Jan/2002:01:00:02 -0500] | "GET e.jpg HTTP/1.1" 200 1
2 [11/Jan/2002:00:59:55 -0500] | "GET index.html HTTP/1.1" | 200 1
2 | [11/10an/2002:00:59:56 -0500] | "GET a.gif HTTP/1.1" 200 1
2 | [11/1an/2002:00:59:56 -0500] | "GET b.gif HTTP/1.1" 200 1
2 [11/Jan/2002:00:59:57 -0500] | "GET D.HTML HTTP/1.1" 200 1
2 | [11/3an/2002:00:59:58 -0500] | "GET G.gif HTTP/1.1" 200 1
2 | [11/0an/2002:00:59:58 -0500] | "GET e.gif HTTP/1.1" 200 1
2 | [11/10an/2002:00:59:59 -0500] | "GET e.jpg HTTP/1.1" 200 1
2 [11/Jan/2002:01:00:02 -0500] | "GET C.html HTTP/1.1" 200 1

2.2 Session ldentification

Once users have been identified, the click-stream for each user must be divided into
sessions. A session can be defined as the time period of an activity from its beginning
until its end. The activity may end for a variety of reasons: The user reaches her goal,
the user finds the activity not interesting anymore, or there is a time constraint involved.
A session has a clean meaning in an online system with user login and logout facilities.
A session, in this case, starts from the time when a user performs login, and finishes

upon logout.
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However, it is different on the Web. According to W3C, a session is the group of
activities performed by a user from the moment she enters the site to the moment she
leaves it [54]. Due to the fact that there is no official login and logout to access and use
most of the Web sites, it is not very clear when a session begins and ends. Since page
request from other servers are not typically available and a user may visit a site more
than once, the Web server log records multiple sessions for each user [51, 55]. The
goal of session identification is to divide the page accesses of each user into individual
sessions. The simplest method of achieving this is through a timeout, where if the time
between page requests exceeds a certain limit, At, it is assumed that the user is starting
a new session. A timeout is the time between two consecutive activities. Catledge and
Pitkow found a 25.5 minute timeout on their user experiments in 1994 [55]. In many
commercial products this timeout has been rounded up to 30 minutes. In this study we
set At to 30 minutes. A new session is created when a new IP-address is encountered

or if the visiting page time exceeds 30 minutes for the same IP-address.

A new field is added to the user transactions created in the previous step. Thus, every

user transaction in 7" takes the form:

T,=UID;,TIME;, METHOD;,URL;, PROT;,CODE;, SID;)

where S1D; is a unique session identification number given every time a new session
is created for the same user. Table 2.2 shows user transactions with U71D and SID

extracted from the server logs in Table 2.1.

2.3 Page Time Calculation

In this step, we calculate visiting page time for each page which we define as the time
difference between consecutive page requests for a user in the same session. This
measurement is subject to a fair amount of noise as the user’s behavior can not always
be accurately determined, e.g., the user could be taking a cup of coffee, talking on the
phone, or accurately reading the page. However, we can assume that such interruptions
during visiting a Web page are in minority. Since it is impossible to determine the
accurate behavior of a Web user these interruptions could appear as outliers in the data
set. With sufficient size of the data set the common behavior of Web users in terms of

visiting page times could be determined in spite of these outliers. However, if the size
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of the data set is insufficient for determining the common behavior of Web users the

performance of the model could be low.
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Figure 2.1: Timeline for page file request and response

Another problem is that the view time of a page as recorded in a server log is often
longer than the actual view time on the client side. As shown in Figure 2.1 [51], the
time between requests for pages Aand B is ¢ — ¢, but the actual view time for page A
isonly t5 — t4. A page can consist of several files such as frames, graphics and scripts.
The user requests a Web page, but she does not explicitly ask for frames or graphics to
be loaded into her browser. Depending on the connection speed of the client and the
size of the page file, the difference in recorded and actual view time may range from
a second to several minutes. To reduce this side effect we apply a heuristic method
during the calculation of the visiting page time. We calculate the visiting page time of
a HTML page as the time difference between the last non-HTML page that has been
sent after the HTML page request and the next HTML page that has been requested by
the user. Figure 2.2 presents the algorithm for this calculation. For example, suppose
that the user requested first a HTML page A at time ¢, as in Figure 2.1. A new session
is opened for that user and the end time for that session is set to ¢, (line 15-16 in Figure
2.2). The time stamp for the last non-HTML page after A is ¢, (line 21). When the
user requests a HTML page B at time ¢4 (line 5), the visiting time for page A will be
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calculated as ts — t4 (line 8). For the last page of the user session, we set the page time
to be the mean of visiting page times for the page taken across all sessions in which
the page is not the last page request. Table 2.3 presents visiting page times calculated
for the HTML pages requested by the user in the sample log data in Table 2.1. Since
there are only two user sessions, the visiting time for the last page of each session is

set to the visiting time of that page in the other session.

Input : 7', At
Output : T with page visiting time

1: Sort T by UID and SID
2: for all unique UID; and SID; pair do
3 OPEN SESSION = {0}

4:  forall T; with UID; and SID; do
5: if URL; is HTML page then
6: if 35, € OPEN SESSION then
7: if TIME; — END TIME(S)) < At then
8: visiting time(URL;) = TIME; — END TIME(S})
9: else
10: close S,
11: Open new session .S,
12: ENDTIME(S,) =TIME;
13: end if
14: else
15: Open new session S,
16: ENDTIME(S,) =TIME,
17: end if
18: else
19: if 35, € OPEN SESSION then
20: ifTIME; — END TIME(Sy) < At then
21: ENDTIME(Sy) =TIME;
22: else
23: close S;,
24: Open new session Sy
25: ENDTIME(Sy) =TIME;
26: end if
27: else
28: Open new session .S,
29: ENDTIME(S,) =TIME;
30: end if
31: end if
32:  end for
33: end for

Figure 2.2: Algorithm for calculating visiting page times
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Table 2.3: Visiting and normalized page times for HTML pages

UID | Method, URL visiting time | normalized | Status | SID
HTTP Protocol (sec.) time code
1 | "GET/HTTP/1.0" 29 10 200 1
1 | "GET B.html HTTP/1.1" 1 1 200 1
1 | "GET C.html HTTP/1.1" 0 1 200 1
1 | "GET D.html HTTP/1.1" 3 2 200 1
2 | "GET index.html HTTP/1.1" 1 4 200 1
2 | "GET D.HTML HTTP/1.1" 3 10 200 1
2 | "GET C.html HTTP/1.1" 0 1 200 1

However, the raw time durations may not be an appropriate measure for the interest of
a user in that page. This is because a variety of factors, such as structure, length, and
the type of Web page, the speed of network connection, as well as the user’s interests
in a particular item, may affect the amount of time spent on that page. Appropriate
normalization of the time can play an essential role in correcting for these factors.
Since we want to capture the relative importance of a page to a particular user relative
to other pages visited by that user in the same session, we normalized the visiting times

across the visiting times of pages in the same session Sy:

normygr, = [(TIME; —min(T(Sk)))/(max(T(Sk)) — minT(Sk)))]

*  (max(norm) — min(norm)) + min(norm) (2.1)

where max(T(Sk)) and min(T(Sy)) are the maximum and minimum visiting page
times respectively taken across the visiting page times spent by a user in the same
session Sy. max(norm) and min(norm) are the maximum and minimum values for
normalized page times respectively. For evaluating the effect of the normalization
values, we try 4 different maximum values: 2, 3, 5 and 10. The minimum value of
normalized time is set to 1 in order to differentiate the existence or non-existence of a
page in a session. Table 2.3 shows the normalized time of pages in the sample log file.
The maximum value for the normalized times in this case is 10. At the end of this step,

the log entries in the data sets are converted to the form:

T’i = (U]D,,TLOT’ITLURLZ,METHOD,,URLZ,PROE,CODEZ,S[DZ>
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2.4 Data Cleaning

In this step several filtering methods are applied in order to remove irrelevant log
entries. A user’s request to view a particular page often results in several log entries
since graphics and scripts are downloaded in addition to the HTML file [51]. Since
the main intent of Web Usage Mining is to extract a pattern from the user’s behavior,
it does not make sense to include file requests that the user did not explicitly request.
All log entries with filename suffixes such as gi f, G F, j peg, JPEG j pg, JPG
and maps are removed. The page requests made by the automated agents and spider
programs traversing links can often cause to a skewed analysis. The simplest method
for dealing with agent traffic is to check the agent field of the usage data. A simple
string match during the data cleaning step can remove a significant amount of agent
traffic. Robots that follow the conventions of [56] will check for the existence of a file
named “r obot . t xt ”. An agent can be identified through the agent field or by the
requesting “r obot . t xt ” file. The log entries that are made by an agent are removed
from the log data.

The status code is returned by the server as a response to the user request. The status
codes of 400 series means a failure and 500 series means that there is a server error. For
that reason, the log entries that have a status code of 400 and 500 series are removed.
The next step is extracting HTML pages and removing any CGI (Common Gateway
Interface) data. Web servers that implement the CGI standard parse the URL of the
requested file to determine if it is an application program. The URL for CGI programs
may contain additional parameters to be passed to the CGI application. If the request
is made through a hidden “POST” method, the parameters are not available in the log
data saved by common log format. Since our data are in common log format, hidden
CGlI parameters are not logged. Thus the data stored in these log files are cleaned such

that only URL page requests of the form “GET ... HTM.” are maintained.

The next step of the data cleaning task is to normalize the URLs in the log file.
Most Web servers treat a requests for a directory as a request for a default file such
as “i ndex. htm ” or “hone. ht m ”. The directory request may come in with or
without a trailing slash. This means request for “www. sanpl e”, “www. sanpl e/ ”,
“ww. sanpl e/ i ndex. ht ml ”, “www. sanpl e/ hone. ht ml ” are all for the
same file. The data cleaning must choose a common form for each Web page. This

can be done using a Web crawler. Web crawlers start by parsing a specified Web page,
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noting any hypertext links on that page that point to other Web pages. They then parse
those pages for new links, and so on, recursively. The crawler simply sends HTTP
requests for documents to Web server, just as a Web browser does when the user clicks
on links. All the crawler really does is to automate the process of following links.
A Web crawler is implemented for this study which retrieves the content of the Web
pages as well. Only links that point to the HTML pages within the site are added to
the list of pages to explore. Comparing the content of pages provides us with a way to
determine different URLSs belonging to the same Web page. The Web crawler produces

a representation of the Web site where each Web page has the following information:

e URL;

e children, which are the Web pages that are pointed by the page;

e inlinks, which is the number of links that point to the page;

e outlinks, which is the number of links the page contains to other Web pages;
e size, in bytes;

e time, that the page was last modified;

e Top-10 words, which is a list consisting of ten words that appear most frequently

in the Web page.

However ClarkNet Web site and the Web site of University of Saskatchewan can not
be explored using a Web crawler, because the ClarkNet Web server does not exist
anymore, and the Web server of the University of Saskatchewan is not up-to-date. For
these data sets, we apply simple string matching for identifying unique Web pages.
Even some URLs in the NASA log are not up-to-date such that the Web crawler is
unable to find these pages. After finding some pages with the Web crawler, we apply

string matching to the NASA log as well.

In the last step of the data cleaning some filtering methods are applied. The navigation
pages that provide links to guide users to the content pages are determined. This is
an easy task if the number of outlinks from each page could be counted. The pages
that have outlinks more than a predefined threshold can be determined as navigation
pages. For the Web sites on which the Web crawler can not be used, the number of
requests for each page can be counted. If a page is requested more than the average
number of the requests, it is more likely to be a navigation page or home page. For
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consistency of filtering methods for the data sets, we do not determine the navigation
pages on NASA Web site using the Web crawler. The number of requests are counted
in each data set. This process shows that the page requests are very scattered, i.e. even
the most popular pages such as home pages are requested in about 10% of the sessions.
Since our objective in this study is to recommend pages that contain a portion of the
information content that the Web site provides, the Web pages that appear in more than
10% of the sessions are eliminated from the data sets. The intuition behind this is that
the system should recommend pages that the user may find interesting. Furthermore,
the recommendation should guide the user during her visit to the Web site. However,
recommending a navigation page or a home page does not help the user in that context.
If a user requests a navigation page, this can be interpreted as the recommendation
made by the system is unsuccessful. It is not reasonable to recommend a page to a user

when she first enters the home page of a Web site.

We apply FP-tree algorithm [57] for discovering pages that are frequently requested
together. Some of the page views appear together in less than 1% of sessions in
the entire data set if the Web site has a complex structure. A learning algorithm for
predicting the next request of the user will learn not to recommend the pages that
appear together with a low request frequency. Thus, reducing the dimensionality of
the input data by removing less frequent page requests at the beginning of the learning
algorithm makes it efficient. On the other hand, using frequent patterns as a filter for
eliminating pages covers simple non-personalized recommendation such that “users
who visit page A also visit page B”. Pages that appear together in more than 1% of
all sessions are used for recommendation in order to capture the relationship between

page requests. These filtering steps produce a set of URL’s

P = {pla 7pn}

where each URL has a unique code p;,. The pages that are not in the set of P are
removed from the user sessions. Finally, a filtering method is applied in order to
remove sessions whose length is less than 4 or longer than twice the average length
of the sessions in order to eliminate the noise that random accesses or search engines
would introduce to the model. Since the user identifications are not used in the

subsequent examinations, they are removed from the log entries. The output of this
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step is a set of user sessions S
S = {51,5,...,9¢}

where |S| is the number of sessions of S. Each session of the set of sessions S' is
defined by a tuple PAGES, NORMS:

S; = (PAGES;, NORMS;)

where PAGE'S; is a subset of P that the user visits in her session S; and NORM S; is
the normalized visiting times of pages in P:

NORMS; = {norm,,, ...,norm,, }

where norm,,, is the normalized visiting time of page p; if p; € PAGES; or 0
otherwise. After these cleaning steps, the user sessions for the sample log data are
shown in Table 2.4. For simplicity, the intermediate steps of the cleaning process, such
as frequent item set mining, are not presented in the example. In the sample log data
there are only 4 pages, namely P = {p1, p2, p3, ps}. As can be seen from Table 2.4 the
page requests in line 1 and line 5 in Table 2.3 are assigned to the same page number,
p1. The PAGES field of the user sessions corresponds to the pages that the user visits
in her session whereas the NORM S field corresponds to the normalized time values

for all pages in the Web site calculated for that user.

Table 2.4: User Sessions for sample log data

S PAGES NORMS

1 {p17 D2, D3, p4} {10’ 1! l’ 2}
2 {pla D4, p3} {41 01 1! 10}
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3. WEB PAGE NAVIGATION MODELS

The process of a recommendation system was shown in Figure 1.1 in Chapter 1. The
first two components of this process is implemented using the methods which were
detailed in Chapter 2. For the last two components of the recommendation process we

propose two new models, namely:

e User Interest Model

e Click-Stream Tree Model

The User Interest Model (UIM) uses only the visiting time and visiting frequencies
of pages without considering the access order of page requests in user session. On
the other hand, Click-Stream Tree Model (CSTM) uses three kinds of information:
12 Access order of Web pages; 2° Visiting time of Web pages; and 3° The distance
between visited Web pages in a session. The main difference between these two models
is the time needed for online recommendation and the accuracy tradeoff. The common
characteristic of the two models is that the discovered patterns do not depend on any
personal data about the site users. Each section in this chapter presents a model. First,
a brief background information of the related model is given in each section. Next, the

details of the proposed models are discussed.

3.1 User Interest Model

Making a recommendation requires predicting what is of interest to a user at a specific
time. Even the same user may have different desires at different times. It is important
to extract the aggregate interest of a user from her navigational path through the site
in a session. This chapter concentrates on the discovery and modelling of the user’s

aggregate interest in a session.
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3.1.1 Background

The UIM relies on the premise that the visiting time of a page is an indicator of the
user’s interest in that page. The proportion of times spent in a set of pages requested
by the user within a single session forms the aggregate interest of that user in that
session. We first partition user sessions into clusters such that only sessions which
represent similar aggregate interest of users are placed in the same cluster. The key
idea behind this work is that user sessions can be clustered according to the similar
amount of time that is spent on common pages among user sessions. In particular,
we model user sessions in log data as being generated in the following manner: 1°
When a user arrives to the Web site, her current session is assigned to one of the
clusters; 2° The behavior of that user in this session, in terms of visiting time, is
then generated from a Poisson model of visiting times of that cluster. Since we do
not have the actual cluster assignments, we use a standard learning algorithm, the
Expectation-Maximization (EM) algorithm [58], to learn the cluster assignments of
sessions as well as the parameters of each Poisson distribution. The resulting clusters
consist of sessions in which users have similar interests and each cluster has its own

parameters representing these interests.

The next page request of an active user is predicted using parameters of the cluster to
which the active user is assigned. The model produces a set of recommendations based

on this prediction. The detailed model is given in this chapter.

Model-Based Cluster Analysis

Model-based clustering methods optimize the fit between the given data and some
mathematical model. Such methods are often based on the assumption that the data
are generated by a mixture of underlying probability distributions [59]. Given a
data set of K observations D = {x,...,xx}, every observation x;, (i € [1,..., K])
is generated according to a probability distribution defined by a set of parameters,
denoted ®. The probability distribution consists of a mixture model of components
¢; € C={c,ca,...,cq}. The parameters of each component, ®, is a disjoint subset
of ©®, where ©, (g € [1...G]) is a vector specifying the probability distribution function
(pdf) of the g** component. An observation, x;, is created by first selecting a mixture
component according to the mixture weights (or cluster prior probabilities), p(c,|®) =

74, Where ZgG:1 7, = 1, then having this selected mixture component generate an
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observation according to its own parameters, with distribution p(x;|c,; ©,). Thus, the
likelihood of a data point, x;, can be characterized with a sum of total probabilities

over all mixture components:

G
p(xi|©) = p(c,|®)p(xilcy, © ngp (xilcg, © (3.2)
g=1

Statisticians refer to such a model as mixture model with G components. Thus, the
model-based clustering problem consists of finding the model, i.e. the model structure
and parameters for that structure that best fit the data. The parameters are chosen in

two ways. The maximum likelihood (ML estimation) approach maximizes:
K G
EML(GD ceey ®G7 T1yeens TG‘D) = H ZTgp(Xi|Cg7 G)g) (32)
i=1 g=1

The second approach, Maximum Aposteriori (MAP estimation), maximizes the
posterior probability of © given the data:

K G
7 79 S
0rap(©1, e O 71, s 16ID) = [T Y Tap(X |29(D)9>p( ) (3.3)

i=1 g=1
The term p(D) can be ignored in Equation 3.3, since it is not a function of ©.

In practice, the log of these expressions is often used. Thus, the log likelihood of

Equation 3.2 and 3.3 are respectively:

K ¢
L(©®y,...,Oq5;7,...,7¢|D) = Zln (Z T,0(Xi|cy, ®g)> (3.4)
=1 g=1

L(®y,..,0q: 1, ...,7¢|D) = ZIH(ZTngl\cg, >+1np<@) (3.5)

The set of parameters of the model (®) include mixture weights representing cluster
prior probabilities (7,), which indicate the probability of selecting different mixture
components and the set of the parameters of the probability distribution assumed for
the data:

G
©={0,...0¢,71,....7c}, » T,=1 (3.6)
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EM Algorithm for Clustering

The model parameters can be trained using the Expectation Maximization (EM)
algorithm. The EM algorithm is a very general iterative algorithm for parameter
estimation by maximum likelihood when some of the random variables involved are
not observed (i.e., considered missing or incomplete). In the Expectation step (E-step),
the values of the unobserved variables are essentially “filled in”, where the filling-in
is achieved by calculating the probability of the missing variables, given the observed
variables and the current values of parameters. In the Maximization step (M-step), the

parameters are adjusted based on the filled-in variables [59].

Let D = {xy,...,xx } be aset of K observed variables, and H = {z, ..., zx } represent
a set of K values of hidden variables Z, such that each z; is in the form of z, =
{z1, ---, i } and corresponds to a data point x;. It can be assumed that Z is discrete
and represents the class (or cluster) labels for the data with the following possible

values:
1 if x; belongs to cluster j;

0 otherwise.

If Z could be observed, then the ML estimation problem would be based on the

maximization of the quantity:

L(®;D,H) 2 Inp(D, H©) (3.7)

In the presence of missing data, we calculate conditional expectation of the complete

data likelihood given the observed data and the current parameter estimate as follows:
Q(©,0")=FE[L.(D,H|O)|D,0 (3.8)

where the term L.(D, H|®) is:
(D, H|©®) = Zlnp X;,2;|©) (3.9)
Equation 3.8 involves ©, which is the parameter of the complete likelihood and ®’,

which is the parameter of the conditional distribution of complete data.
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The @Q-function in Equation 3.8 can be expanded as follows:

K
E[L.D,H|®)|D,®'] = E|) Inp(x;,z|0)|D,0

i=1
G K K
= D ) Inp(x:,z10) [ [ p(zlx;. ©)
=1 i=1 J=1
K G G
_ Z Z (In p(x;,2:|©)p(21i|x:, ©)) H Zp(le|Xj; Q')
i=1 =1 j# =1
K G
= ZZlnp(Xi,ZA@)p(ZlﬂXm9,)
i=1 I=1
K

= D) Inp(xi,2]0)p(zi]x;, ©)

=1 Z;

= Z Zp(zi|xi, ©’') In [p(x;|z;, ©)p(z;|©)]

=1 Z;

K
— Z Zp(zi|x,~, O') [In p(x;]z;, ©) + Inp(z;|®)] (3.10)

=1 Z;

At each EM iteration, the -function is maximized with respect to the parameters ©
using the current parameters ®’. At the end of each iteration, a set of new optimal
parameters ® becomes the current parameters @’ for the next iteration. Given these

steps, the EM algorithm can be implemented as follows:

1. Choose an initial estimate for parameter set ®’(0), and set n = 0.
2. (E)xpectation Step: For n, compute Q(©, ®’(n)) using Equation 3.8.

3. (M)aximization Step: Replace the current estimate ®’(n) with the new estimate
®’(n + 1) where,

O'(n+1) = argmazreQ (0, O0'(n))

4. Setn = n+ 1 and iterate steps 2 and 3 until convergence.

By iteratively applying the E-step and M-step, the parameters ® will converge to at
least a local maximum of the log likelihood function.
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Table 3.1: A set of user sessions as running example

S | PAGES NORMS

1 | {p1, p3, Ps, 5, P10} {1,0,8,0,3,10,0,0,0, 1}
2 {P4, P9, D6y P10 p7} {O! 0! 0, 21 0! 1! 10’ 0, 81 10}
3 {p7! P6: P5y P4y P10 p9} {O! 0! 0, 21 1! 11 91 0! 8! 10}
4 | {p1, 3, ps. ps, P10, Do, P2} | {10,10,3,0,1,6,0,0,1, 4}
5 | {p1, p1o, ps, P2, ps, p3. pe} | {1,1,7,0,3,10,0,1,0, 1}
6 {]99, P10y Pe, D3y P2, pl} {101 9’ 2! 01 0’ 6’ 01 O! 11 4}
7 | {p1, ps, Pe, P3} {1,0,8,0,4,10,0,0,0, 0}

3.1.2 Model Implementation

Once the data cleaning and preprocessing tasks described in the Chapter 2 are
performed, Web server logs will have been converted into a set of user sessions. User
sessions can be clustered according to the similar amount of time spent on common

pages.

Example 3.1. A sample set of user sessions, for a Web site with ten pages, P =
{p1,p2, ..., P10} 1S Shown in Table 3.1. PAGES corresponds to a subset of pages in P
and NORM S corresponds to the normalized visiting times of pages in P.

Clustering User Sessions in Web Log Data

In this section, we first describe the specific mixture model that we use for clustering
the user sessions in Web log data. Next, the update parameters for training the mixture
model of Poisson distributions with the Expectation Maximization algorithm are given.
We use a model-based technique to group the user sessions according to the interests

of users in each session. We assume the data to be generated in the following fashion:

1. When a user arrives at a Web site, her session is assigned to one of G clusters

with some probability.

2. Given that a user’s session is in a cluster, her next request in that session is

generated according to a probability distribution specific to that cluster.

Since it is assumed that the data are produced by a mixture model, every user session
is generated according to the probability distribution defined by a subset of model
parameters, denoted ©,. Let X = {x;,...,xx} be a set of K user sessions and C be

a discrete valued variable taking values ¢, ..., c¢g, which corresponds to an unknown
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cluster assignment of a user session. Then the mixture model for a user session is:
G
PX=x0) = > p(C=c,|®O)p(X =xi|C=c,,0,)
g=1
G
= > mp(X =xilc, ©,) (3.11)
g=1

where 7, is the probability of selecting cluster c,. A user session, x; , is considered
to be an n—dimensional vector of visiting page times, (x;1, zi2, ..., i), Where z;;
corresponds to norm,, in NORM S field of a user session; each p; is a page in the
set of pages (in a given site) P = {p1,ps, ..., pn}. Each page in the set of pages P
corresponds to a dimension in the model. The n-dimensional vector represents the

aggregate interest of the user.

In our case, the mixture model can be regarded as a distribution in which the class
labels are missing. Although we reduce the dimensions of the input data using frequent
pattern mining, there is still a problem of how to estimate the probabilities. One of the
key ideas to handle this problem is to impose a structure on the underlying distribution,

for example by assuming the independence of dimensions:
p(xi) = [ [ pi(ws)) (3.12)
j=1

Since a user session is an n-dimensional vector of normalized visiting times, we can
easily adapt this assumption to our model. Even the order of visiting pages may be
different in two user sessions, each session can be represented by the equal vectors if

the normalized page times corresponding to the same page in each session are equal.

Example 3.2. To illustrate the independence assumption for our model, consider the
user sessions 1, 4 and 7 in Table 3.1. The order of page requests in sessions 1 and
7 are different. However, the aggregate interests of these sessions are very similar,
because the normalized page times of each page are similar. Although the first 5 pages
in sessions 1 and 4 are requested in the same order, the aggregate interests of these
sessions are not similar. According to our clustering criteria, sessions 1 and 7 would
be in the same cluster, whereas session 4 would be in a different cluster. Thus, the
value of the m' dimension of a session, where m € [1...n], is independent of the

values in the preceding dimensions.
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The independence assumption enables us to use n separate probability distributions to
model each dimension of a user session. To model this data, we assume that the data at
each dimension have been generated by a mixture of Poisson distributions. A random

variable X has a Poisson distribution with parameter m if for some m > 0 [60]:

k=0,1,.. (3.13)

Prolablty()

12 14

Figure 3.1: Shape of the Poisson distribution for different parameters

Figure 3.1 presents the shape of the Poisson distribution for different parameters, m.
As m increases, the shape of the Poisson distribution begins to resemble a bell shaped
distribution. The Poisson model can be used to model the rate at which individual
events occur, for example the rate at which a user session has the value 1 for a
particular page. To confirm our assumption, that the data in each dimension have
been generated by a Poisson distribution, the histogram of the occurrence of each of
the ten possible values at each dimension has been plotted. Most of the histograms
verify our assumption. Figure 3.2 presents one of these histograms. As can be seen,

the histogram has the shape of the Poisson distribution with a low parameter m.

According to the independence assumption, a user session x; is generated in a cluster

g by a Poisson model as follows:

n 9"’11 e Y9
p(xilcy, © H (3.14)

7j=1
where ¢, is the parameter of the Poisson distribution for a dimension j in cluster g.
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Figure 3.2: Histogram of a page from NASA Web server

By combining Equation 3.11 and Equation 3.14 we obtain:
G n
(0,;)%id e 09i
pxi|®) => "1, (H ANCITA— — (3.15)
g9=1 j=1 E
where 0,; (g € [1...G], j € [1...n]) is the Poisson parameter of cluster ¢, at dimension
7

Example 3.3. For the sample set of user sessions in Table 3.1, there are 10 Poisson

parameters for each cluster, where the number of unique pages is 10 in that data set.

The model parameters to be learned are then:

G
© ={0,...0¢,71, ... 7¢}, O = (Og1, ..., 0pn) , Y 7y =1 (3.16)
g=1

Learning the Model Parameters

We can train the model parameters of the mixture model, developed in the previous
subsection, using EM algorithm where the conditional independence assumption is
enforced during Maximization step. The learning algorithm is carried out for each

component of the model. There are several reasons for using the EM algorithm:

e We want to represent the behavior of the user in one session using Poisson

distribution;

e Its performance is linear to the number of sessions;
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It is robust to noisy data;

It accepts as input the desired number of clusters;

It provides a cluster membership probability per session;

It can handle high dimensionality;

It converges fast given a good initialization.

In order to implement the EM algorithm we should pick the number of clusters (G),
an initial starting point (®’(0)), a convergence criteria and prior probabilities for ©
in case of MAP estimate of model parameters. To determine the number of clusters,
we run the algorithm with several numbers of clusters. We initialize the parameters
of our components, ©,, (¢ € [1...G]) by estimating the Poisson parameters for a
single component model and then randomly perturbing the parameter values by a small
amount to obtain G sets of parameters. We determine the convergence criteria such
that the algorithm converges when the log likelihoods of two consecutive iterations on
the training data differ less than 0.001%. There is a trade-off between the estimation
accuracy of parameters and the number of iterations. With a smaller value the number
of iterations required for convergence will increase so that the algorithm converges in a
longer period of time. If it is greater than the selected value, then the estimation for the
parameters would be less precise. Finally, to assign prior probabilities to ® for MAP
estimate we use a prior distribution for the Poisson distribution.

Example 3.4. Let us determine the initial parameters of the EM algorithm for the
data set in Table 3.1. Assume that the number of clusters is 3 and the cluster prior
probabilities are set to 7, = 1/3 where g € [1,2,3]. We determine 10 initial values
for Poisson parameters for each cluster, giving a total of 30 Poisson parameters for the
model, as mentioned earlier. Table 3.2 presents these parameters. Then, for the first
iteration of the EM algorithm the cluster prior of the first cluster would be 7, = 1/3,

and the Poisson parameter of the second dimension in that cluster is 6,; = 0.2207.

ML Estimate of Model Parameters One approach to learning parameters from data
is to find those parameter values that maximize the likelihood of data:

oML = argmaze{p(D|®, ...,Oq, 1, ..., 7¢)} (3.17)
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Table 3.2: Poisson parameters for three clusters

page number | cluster 1 | cluster 2 | cluster 3
10 0.1917 | 0.2030 | 0.2049
0.2126 | 0.2380 | 0.2095
1.0020 | 1.0067 | 0.9942
0.0954 |0.0923 | 0.1111
0.1395 | 0.1548 | 0.1623
0.4321 0.4011 0.4178
0.4864 | 0.4824 | 0.4972
0.1711 0.1685 0.1728
0.1464 | 0.1377 0.1481
0.2204 | 0.2207 | 0.1996

RN W OO |00 ©

These parameters are often referred to as a maximum likelihood or ML estimate.

The E-step of ML estimate of parameters involves an update of the conditional
probability of missing class labels given the current parameter set ®’. We define this
probability as cluster-posterior probability, P;,(®’), that the transaction x; arose from

the ¢'” cluster.
Tgp(Xi‘Cg, @;)

Py(©) =
/() S Tp(xile, ©5)

(3.18)

In the M-step, the () function in Equation 3.10 is maximized and this step consists of

the update of cluster priors and Poisson parameters:

K

7, = % > Py (@) (3.19)

i=1

é\ i Zfil (Pig(e)/)xim)

m =TS b @) (320

At the end of the EM algorithm each cluster has its own set of parameters such that:

pcg = {719, (Og1, -, 0gn) }

The details of EM algorithm for ML estimate problem is given in Appendix B.
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MAP Estimate of Model Parameters One difficulty associated with using the
maximum likelihood approach relates to zero probabilities. For example, if there is
no request for a page p; in the data set, then our estimate of the Poisson parameter for
that page will be zero. That is, according to our model, the probability of requesting
page p; is zero. To address this difficulty, we can assign prior probabilities to ® and use
the maximum of the posterior distribution over ® as our estimate for the parameters.
Thus, the MAP parameters that correspond to the maximum of posterior distribution

of ® can be found by maximizing the posterior probability of ® given the data:
OMAP — urgmazre = {p(D|Oy, ...,Oq, 11, ..., 7¢)p(O)} (3.22)

where the second identity follows by Bayes’ rule and is the prior distribution of the

model parameters.

To perform MAP estimate of parameters we first need to choose a functional form
for the prior p(®). The parameter set ® consists of a set of Poisson parameters and
the class weights. An often used prior distribution for Poisson distribution is Gamma
distribution with two parameters of « and 5 [61]. The distribution of selecting a class
can be regarded as a multinomial distribution. The conjugate prior distribution for the
multinomial distribution is Dirichlet distribution with the parameter v [61]. The details

of conjugate prior distributions are given in Appendix A.

The choice of the parameters of the conjugate prior distributions is to be determined
by one’s prior beliefs based on the knowledge of the problem. In general, however,
such prior knowledge is difficult to obtain. In the absence of such knowledge one
usually uses a “non-informative” prior, typically a uniform prior. In this work several

combinations of the parameters are tested.

The E-step of the MAP parameter estimation consists of an update of the conditional
probability of missing class labels given the current parameter set ®’ as in Equation
3.17. The Q-function for the log-posterior (MAP) function is defined as:

K G
Q(©,0) =) "> " Py(®) [Inp(xilcy, ©,) + In7,] + Inp(O) (3.22)

i=1 g=1

If we maximize the Q-function with respect to each subset of parameters ® one can

show that the following update rules for mixture weights and Poisson parameters can
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be inferred for the M-step of the EM algorithm:

K
K Piy(®
- GZZ:leg(@H’Yg (3.23)
S8 [ Py + ]
~ YK P02 +a
B = 2zt LiolO )T+ g (3.24)

>iss Pig(©) + Bym
where ~; is the hyperparameter associated with 7;, i € [1, ..., G], ayy, and f3;,, are the
hyperparameters associated with 6,,,, ¢ € [1,...,G], m € [1,...,n]. The details of

these step are given in Appendix B.

The output of EM algorithm with MAP estimates is a set of cluster parameters such
that each cluster has its own parameters:

peg = {74, (g1, -, 0gn) }

Example 3.5. For the data set in Table 3.1 we compute in the E-step the cluster
posterior probabilities using Equation 3.17. In the M-step we update the model
parameters using Equation 3.19 and Equation 3.20. Thus, the parameters in Table
3.2 and the cluster priors are updated in each M-step. The E and M-steps are applied
until the convergence criteria is obtained. The output of this algorithm is the set of
cluster parameters. For example, {0.3; (0.02,1.2,...)} tells us that a cluster has a prior
probability of 0.3 and the Poisson parameter of the first page is 0.02, of the second page
is 1.2 and so on. In case of using the MAP estimate, there will be a small difference
in the parameters according to the hyperparameters of conjugate priors. The clusters
in Table 3.3 are obtained by assigning each session to the cluster that has the highest

cluster-posterior probability.

Table 3.3: Clusters built by using EM algorithm

Cluster No. | S | PAGES NORMS
1 | {p1, p3, ps; Ps, P10} {1,0,8,0,3,10,0,0,0, 1}
1 5 {p17 P10, P8, P2, D5, P3, pG} {1’ 1’ 7’ Ov 3’ 101 0! 1! 01 l}
7 | {p1, ps, Ps, P3} {1,0,8,0,4,10,0,0,0,0}
2 2 {p47 P9, Pe, P10, p7} {O’ 0’ 0’ 21 0’ 1’ 10! O! 81 10}
3 {p77 D6, D5, P4, P10, p9} {O’ 01 O’ 21 11 1! 91 0’ 8’ 10}
3 4 | {p1, ps, ps, p5, Pro, po, 2} | {10,10,3,0,1,6,0,0, 1, 4}
6 {p97 P10, Ps, P3, D2, pl} {101 9! 2! 01 O’ 61 01 O! 11 4}
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Cluster Profiles

In order to obtain a set of pages for recommending and rank them in this set
recommendation scores are calculated for every page in each cluster using the Poisson
parameters of that cluster. Thus, each cluster has a set of recommendation scores
additional to its parameter set created in the previous subsection. We modify the
cluster parameters such that each cluster has a recommendation score set, RS, =
{rsg,...,rsgn}, Where rsy, i € [1,..,n] is the recommendation score for page
p; in cluster c¢,. The updated cluster parameters are then in the form pc, =
{74: (01, .., 04n); (rSg1, ..., Sgn) o Those are the only parameters that the system
needs in order to produce a set of pages for recommendation. We define the number of
parameters stored in memory as the model size. It is clear that the smaller the model

size the faster the online prediction.

We use five different methods for calculating recommendation scores for every page.
The recommendation scores are then normalized such that the maximum score has a

value of 1. These methods are as follows:

Method 1. For the first method, we only use the Poisson parameters of the active

cluster as recommendation scores, namely:

rSgi = egi (325)

For the remaining calculations we assign each session in the training set to a cluster that
has the highest posterior probability. Next we count the number of requests for every
page in each cluster. We define this number as popularity, (f,:), where i € [1,...,n]
and g € [1,..., G]. For example, if R, is the total number of page requests for page p;
and R, is the total request for all pages in a cluster c,, then the popularity of page p; in
that cluster is f,; = R,/ R,

Method 2. In the second method we use only the popularity information for
recommending pages. The intuition behind this is to recommend pages that are most

likely visited in a cluster. The recommendation score for page p; in active cluster ¢, is
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then:
TS89 = fyi (3.26)

Method 3. For the third method, we calculate recommendation scores by multiplying
the popularity by the Poisson parameter:

TSgi = fgi X Qgi (3.27)

Method 4. We use for the fourth recommendation method the entropy values.
According to our clustering criteria, the normalized visiting page times for a given
page in a cluster should not vary greatly among sessions. Thus, we take advantage of a
technique used in decision theory called the entropy. We calculate the entropy for each
page using the relative frequency of each of the ten possible values of normalized times.
A low entropy value means that the visiting time of that page mostly has one of the
normalized values. High entropy value, on the other hand, indicates wide divergence
in page visiting times among sessions. Our recommendation score is then:

1
TSgi = fgi X ( X Ggi (328)

entropy) g

Method 5. For the last calculation, the log of the popularity is taken in order to

decrease the effect of the popularity in recommendation score:

1
. Ix—Lt  sa 3.29
'Sgi [ og fg ] X (entTOpy)gi 8 ! ( )

Recommendation Engine

The real-time component of the model calculates cluster posterior probability P(c,|s;)
for every cluster ¢, € C' = {cy,...,cq} Where s; is the portion of a session in test
set that is used to find the most similar cluster. The active session is assigned to the
cluster that has the highest probability. We define this cluster as the active cluster. A
recommendation set, which is the set of predicted pages by the model, is then produced
ranking the recommendation scores of the active cluster in descending order. The
recommendation set consists of pages which have a recommendation score greater

than a threshold £ (or top N items with the highest recommendation scores where N
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is a fixed number) in the active cluster and that the user has not yet visited. The choice

of specific alternative depends on the evaluation metric discussed in the Chapter 4.

3.2 Click-Stream Tree Model

In this section, we present a new model that uses both the sequences of visiting pages
and the time spent on that pages. Markov models and their variations, or models based
on sequence mining have been found well suited for predicting the next request of
a Web user. However, higher order Markov models are extremely complicated due
to their large number of states whereas lower order Markov models do not capture
the entire behavior of a user in a session. The models that are based on sequential
pattern mining only consider the frequent sequences in the data set, making it difficult
to predict the next request following a page that is not in the sequential pattern.
Furthermore, it is hard to find models for mining two different kinds of information of
a user session. We propose a new model that considers both the order information of
pages in a session and the time spent on them. We cluster user sessions based on their
pairwise similarity and represent the resulting clusters by a Click-Stream Tree (CST).
The new user session is then assigned to a cluster based on a similarity measure. The
CST of that cluster is used to generate the recommendation set. The model we propose
has two characteristics: 1° Preservation of the whole path of a user session; and 2°
Preservation of the time information of the visited pages. A path is a sequence of
URL’s that a user visits in her single session, ordered by time of access. The model
can be used as part of a cache prefetching system as well as a recommendation model.

The hit ratio is highly satisfactory in both cases.

3.2.1 Background

Our overall approach can be summarized as follows. Once the log data has been
cleaned, the user sessions are clustered based on the pairwise similarities of the user
sessions. Then, each cluster is represented by a CST such that each branch of the tree
is an unique session of the cluster. When a request is received from an active user, a
recommendation set consisting of three different pages that the user has not yet visited
is produced using the best matching user session®. For the first two requests of an
active user session all clusters are explored to find the one that best matches the active

1The user session that has the highest similarity to the active user session is defined as the best
matching session.
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user session. For the remaining requests, the best matching user session is found by
exploring the top- NV clusters that have the highest NV similarity values computed using
the first two requests of the active user session. The rest of the recommendations for

the same active user session are made by using the top- N clusters.

The novelty of our approach lies in the method by which we compute the similarity
of user sessions and how we cluster them. We propose a method for calculating the
similarity between all pairs of user sessions considering both the order of pages, the
distance between identical pages, and the time spent on these pages. The distance
between identical pages is taken into consideration, because the similarity between
two user sessions also reflects the distance between identical pages as measured by
the number of user requests between these pages with the same order of occurrence in
these sessions. Using these pairwise similarity values, a graph is constructed whose
vertices are user sessions. An edge connecting two vertices in the graph has a weight
equal to the similarity between these two user sessions. Using an efficient graph-based
clustering algorithm the user sessions are clustered, and each cluster is then represented

by a CST whose nodes are pages of user sessions of that cluster.

One Dimensional Sequence Alignment

In our study, we use sequence alignment techniques to analyze the sequence of user
requests that appear in user sessions. For two strings of length m and n, optimal
sequence alignment has zero or more gaps inserted into the sequence to maximize
the number of positions in the aligned strings that match. For example, consider
aligning the sequences “p; ps ps ps” and “py p1 p2 ps p3 ps”- BY inserting gaps (—)
in the appropriate place, the number of positions where two sequences match can be
maximized:

- D1 P2 P4 P55 - -
Ps P11 P2 - DPs P3 De

Here the aligned sequences match in three positions. Algorithms for efficiently solving
this type of problem are well known and are based on dynamic programming. In our
study we use FastLSA algorithm [62] to find the best alignment for a pair of user

sessions.
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Graph Based Clustering

The process of grouping a set of physical or abstract objects into classes of similar
objects is called clustering. A cluster is a collection of data objects that are similar
to one another within the same cluster and dissimilar to objects in other clusters. In
this study, we focus on pairwise data clustering. Formally, the pairwise data clustering
problem is defined as follows: Given S = (D, N, W, (), where D is a set of data,
N C D x D isaset of data pairs, W is a symmetric matrix of similarity values of each
data pair in IV, and C' is the clustering criterion function, partition the data set D into

clusters such that the criterion function in C' is optimized.

Given the similarity metric between any pair of data items, the symmetric matrix W
forms a weighted adjacency matrix (weight matrix) of an undirected graph. Thus,
the pairwise data clustering problem becomes a graph partitioning problem. Given a
weighted, undirected graph G = G(V, E)) with a set of vertices V' that represent the
data items in D and an edge set E that represent the data pairs in N whose weights are
defined by W, we wish to partition it into several subgraphs such that criteria function

C'is optimized.

3.2.2 Model Implementation

Following the data cleaning and preprocessing steps, we use a similarity metric in
the second step for calculating the similarities between all pairs of sessions. In the
third step, the sessions are clustered based on this similarity metric using the graph
partitioning algorithm and each cluster is represented by a CST. In order to produce
the recommendation set, we first select the cluster and then select the path from the

CST of the cluster that best matches the active user session.

Session Similarity Measure

In this section, we propose a session similarity measure. Since user sessions are
ordered URL requests, we can refer to them as sequences of Web pages. The problem
of finding the optimal sequence alignment is solved using a dynamic programming
formulation. We develop an algorithm based on FastLSA [62] for this purpose. Briefly,
the algorithm consists of three steps. The first step is initialization as in the FastLSA
algorithm (Figure 3.3), where a scoring matrix is created with K + 1 columns and

o1



N + 1 rows where K and N correspond to the size of the sequences to be aligned.
One sequence is placed along the top of the matrix (sequence#1) and the other one
along the left-hand-side of the matrix (sequence#2). A gap is added to the end of each
sequence which indicates the starting point of calculation of similarity score. Since the
most recent visited pages are more important for prediction of the next request than
older ones, we start the calculation from the end of sequences. There are three scores
in this matrix: Score;, = s, which means that the residue at position ! of sequence
#2 is the same as the residue at position » of sequence #1 (match score); otherwise
Score;, = sq (mismatch score) or Score;,, = s, (gap penalty). From this starting
point, the last row is filled from right-to-left such that each cell in the last row is the
sum of the previous cell and the gap penalty. The last column of the matrix is filled

from bottom-to-top in the same manner.

Input : s,
Output : Score matrix M

M(N+1,K+1)«0
2. fori = Ndowntol=1do
MU, K+1) —MI+1,K+1)+s,
4: end for
forr = K downtor =1do
6: M(N+1,r)—MN+1Lr+1)+s,
end for

Figure 3.3: Algorithm of the initialization step

The second step of the algorithm is FindScore (Figure 3.4), in which we modify
the FastLSA algorithm to calculate the two dimensional similarity of sessions. We
implemented the algorithm with an additional module for that step that takes into
account the time spent on matching pages. In our implementation the identical
matching of Web pages and time spent on those pages is given a score s,, = 2 and
each mismatch or gap inserted to the sequences is given a penalty score of —1, i.e.
sq = s4 = —1. Then the two dimensional matching score Score;, = s(pi, pj,) of the

matrix is calculated for a pair of matching pages, p; = pj» = p», as follows:

min(normy,,, norm,, )

(3.30)

Scoreyy = 5(pit, pjr) = Sm
max(normy, normy, )
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where p,, € P and norm,,, is the normalized value of time corresponding to the page
pa in session S;, and norm,,, is the normalized value of time corresponding to the
page p;, in session S;. Thus the two dimensional matching score is the ratio of the
normalized time values spent on matching pages multiplied by the identical matching
score. In that step the scoring matrix is filled by starting in the lower right hand corner
in the matrix and finding the maximal score 1/; ; for each position in the matrix. Going
left corresponds to inserting a gap in sequence #2. Going up inserts a gap in sequence
#1. Going diagonally up-left corresponds to matching. For each position, M, ; is

defined to be the maximum of the three incoming values:
M; ; = max[M;1 j11 + Score; j(match/mismatch in the diagonal),

M, j 11 + s4(gap in sequence #2),

M1, + sq(gap in sequence #1)]

Input : S;, S, Sm, Sg
Output : Score matrix M

forr = Kdowntor =1do
2. forl=Ndowntol!=1do
prll = Pjr then

min(normp,, ,’VLO’I‘?TLPJ-T)

4: Score;, = sy, 0 . )
maz(normp,normy .
else
6: Score;, = s4
end if
8: Vertical = M(l+1,r) + s,
Diagonal = M(l+ 1,7+ 1) + Score,,
10: Horizontal = M(l,r + 1)+ s,
M(l,r) = Mazx|Vertical, Diagonal, Horizontal|
12:  end for
end for

Figure 3.4: FindScore algorithm

The third step is FindPath which is the same as in the FastLSA algorithm and
determines the actual alignment(s) that lead to the maximal score (Figure 3.5).
FindPath traverses the matrix beginning from the destination point (upper left corner)

53



to the start point (lower right corner) of the matrix. It takes the current cell and looks at
the neighboring cells that could be direct predecessors. This means that it looks at the
neighbor to the right (gap in sequence #2), the diagonal neighbor (match/mismatch),
and the neighbor below it (gap in sequence #1). The algorithm for FindPath chooses as
the next cell in the sequence one of the possible predecessors that leads to the maximal

score.

Input : Score Matrix M
Output : Aligned sequences Sequencel and Sequence2

Sequencel «— {0}
2: Sequence2 «— {0}
r«—1,l«1
4: whiler < K +1do
while I < N +1do

6: Vertical = M (1 +1,r)
Diagonal = M(l + 1,7+ 1)
8: Horizontal = M(l,r + 1)
max = Maz{Vertical, Diagonal, Horizontal}

10: if max = Vertical then

Sequencel «— Sequencel + {—}
12: Sequence2 «— Sequence2 + {py}

l—1+1
14: else

if max = Diagonal then
16: Sequencel — Sequencel + {p;.}

Sequence2 «— Sequence2 + {py}

18: l—1l+1,r—7r+1

else
20: if max = Horizontal then

Sequencel = Sequencel + {p;, }
22: Sequence2 = Sequence2 + {—}
r—r+1

24: end if

end if
26: end if

end while

28: end while

Figure 3.5: FindPath algorithm

The similarity between sessions is then calculated such that only the identical matching
of sequences has a similarity value of 1. The similarity measure has two components,

which we define as alignment score component and local similarity component. The
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alignment score component computes how similar the two sessions are in the region
of their overlap. If the highest value of the score matrix of two sessions, S; and S, is
o and the number of matching pages is M in the aligned sequence, then the alignment

score component is:
o

sa( i, 55) = Sk M

(3.31)

The intuition behind this is that score o is higher if the sessions have more consecutive
matching pages. This value is normalized by dividing it by the matching score and the
number of matching pages. The local similarity component computes how important
the overlap region is. If the length of the aligned sequences is L, the local similarity
component is :

M

(i, S) = = (332)

Then the overall similarity between two sessions is given by

Sim(Si, S]) = SQ(SZ‘, Sj) * Sl(Si7 Sj) (333)

Table 3.4: Sample user sessions as running example

S | PAGES NORMS

Sl {ph D5, P17, D3, p4} {11 01 1! 2! 1! 0! 21 0! 0, 0}
52 {p57 P3, P, pg} {0, 0! 1! O! 1! 0, 2’ 0! 21 0}
SB {an Ds, D4, p3} {O’ 11 21 2! 01 0’ O’ 11 O! 0}
S4 {p57 D3, De, pS} {0’ 01 1’ O! 11 1’ 01 21 O! O}
SE) {p2> Ds, De, p5} {0’ 11 0’ O’ 17 2’ Ov 2’ O! O}
Se | {ps; s, pr; po} {0,0,1,0,1,0,2,0,2, 0}
S? {p27 Ds, De, p4} {01 11 0! 2! 01 1! 01 2’ 0, O}
SS {ph D7, Pé, p5} {11 0, 0! O! 2! 2! 11 0! O, 0}
59 {p27 P8, P6, Ps, p3} {O’ 11 1! O! 1! 21 O’ 2! O’ 0}

Table 3.5: The scoring matrix for two dimensional sequences

m| 2 1 2 2 -2 4
pe|-1 0 -1 -1 -1 -3
pi|3 2 -1 0 0 -2
ps|-3 2 -1 0 1 -1
|5 4 3 2 -1 0
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Example 3.6. Let us illustrate the calculation of the similarity between two user
sessions with an example in Table 3.5. Suppose that the set of pages P consists of
10 pages, P = {pi, ..., p1o} and the user sessions are as in Table 3.4. For two user
session, Sz and Sy, the score matrix is given in Table 3.5. Since p, is identical in
both sessions the matching score of this page is Score;; = 2 % (1/1) = 2. Then, the
maximum score of that cell in the matrix is M;; = Mss + Score;; = 042 = 2.
However, the time spent on page ps is not equal in both sessions. The matching score
of that page is Score,5 = 2 % (1/2) = 1. Then, the maximum score of that cell in
the matrix is Mys = Msg + Scoress = 04+ 1 = 1. Since the length of the aligned
sequences is 5 and the number of matching pages in that sessions is 3, the overall
similarity between these sessions is sim(1,2) = (2/(2 * 3)) * (3/5).

Pairwise Clustering

After calculating pair-wise similarities of all user sessions, a graph is constructed
whose vertices are user sessions. There is an edge between two vertices (S;, .S;) if the
similarity value between S; and .S; computed as described in the previous subsection
is greater than O and this edge is weighted by this similarity value. The problem
of clustering user sessions is formulated as partitioning the graph G into k disjoint
subgraphs G,,,, (m € [1, ..., k]) by minimizing MinMaxCut function [63]. MinMaxCut
function combines both the minimization of similarity between each subgraph and the

maximization of similarity within each subgraph and is defined as:

mzmmzzez cut(Gm, G = Gn)

Zv WjEGM Slm(vﬂ U])

where cut(G,,, G — G,,)is the sum of edges connecting the vertices in G,, to the rest
of the vertices in graph G — G,,, and sim(v;, v;) is the similarity value between vertices
v; and v; calculated using the similarity metric. In this study an efficient and fast graph

partitioning algorithm called Cluto is used for graph partitioning [64].

Cluster Representation

The clusters created by the graph partitioning algorithm contain user sessions. Each
cluster has the following properties:
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1. The order of occurrence of Web pages is similar across the user sessions in the
same cluster.

2. The distance between identical Web pages of two user sessions in a cluster is
shorter than the distance between identical Web pages of two user sessions in
different clusters.

3. The amount of time spent on identical Web pages of two user sessions in a cluster

is similar.

Each user session in a cluster is a sequence of Web pages visited by a single user and
the normalized time spent on those pages with a unique session number. It is important
to represent each user session in a cluster while preserving the properties of a cluster.
One way of doing this is to represent each unique user session in a cluster as a branch of
a tree, which we define as the click-stream-tree. Thus, we generate a click-stream-tree
for each cluster. Each CST has a root node, which is labelled as “null”. Each node
except the root node of the click-stream-tree consists of three fields: data, count and
next_node. Data field consists of page number and the normalized time information of
that page. Count field registers the number of sessions represented by the portion of
the path arriving to that node. Next_node links to the next node in the CST that has the
same data field or null if there is any node with the same data field. Each CST has a
data_table, which consists of two fields: data field and first_node that links to the first
node in the CST that has the data field.

The tree for each cluster is constructed by applying the algorithm given in Figure 3.6.
Let each session be in the form of S, = (PAGES;, NORMS;), where PAGES,; =
{pi1, .--, pir.} consists of visited pages in session S; and NORM S; is the normalized
visiting times of pages in P, as stated before in Chapter 2. S;.length corresponds
to the number of pages in PAGES;. We start the algorithm with an empty tree that
contains only the root node (line 1 in Figure 3.6). For each session of a cluster (line
2) and for each request in the session (line 6) the algorithm does the following: Since
the algorithm starts to insert a session in the tree from the root node, first the root node
is stored as Current_Node (line 5). For each request of the session the requested
page and corresponding normalized time value are merged to create the data field of
a node (line 7) and labelled as Active_Data. If the Current_Node has a child with
the same data field as the Active_Data (line 8), then the count field of the child node
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Input : Sessions in a cluster
Output : Click-Stream tree

1: Create a oot node of a CST, and label it as “null”
2: for all user sessions in a cluster do
3: .S; « next user session in the cluster

4 m+—20
5. Current_Node < root node of the CST
6:  while m < S;.length do
7 Active_Data «— {pim }_{norm,, }
8: if there is a C'hild of Current_N ode with the same data field then
9: Child.count + +
10: Current_Node < Child
11: else
12: create a child node of the Current_Node
13: Child.data = Active_Data
14: Child.count =1
15: Current_Node «— Child
16: end if
17: m+ +
18:  end while
19: end for

Figure 3.6: Build Click-Stream Tree algorithm

of the Current_Node is incremented by 1 (line 9) and the child node is labelled as
Current_Node (line 10). If the C'urrent_Node does not have a child with the same
data field as Active_Data (line 11) a new node with that data field is created as the
child node of the Current_Node (line 12), its data field is set to Active_Data (line
13), its count is set to 1 (line 14) and is labelled as C'urrent_Node (line 15). Thus,
the next request of a session is inserted always in a node that is a child of the node
of the previous request. Such a tree has an inherent orientation, since each session
is considered from beginning to end. This covers the first property of a cluster. If
the distance between identical pages of two user sessions is short, then the number
of nodes between these pages in the tree is less compared to the number of nodes of
pages that have longer distances. This covers the second property of a cluster. By
constructing the CST the page number and corresponding normalized time value are
merged together which forms the data_field of a node in the tree. This covers the last

property of a cluster.
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Table 3.6: Sessions of two clusters.

Cl. | S | PAGES NORMS

1 Sl {pl’ Ps, P7, P3, p4} {11 0! 11 2! 1! O’ 2! 0, 01 0}
l SQ {p5, P3, P7, pg} {0, 0, 1, 0, 1, O, 2, 0, 2, 0}
1 S4 {p5, P3, Pe, pg} {O, 0, 1, 0, 1, 1, 0, 2, O, 0}
1 | Ss | {ps, p3, p7, Po} {0,0,1,0,1,0,2,0, 2,0}
1 | Ss | {p1, p7, Ps, Ps} {1,0,0,0,2,2,1,0,0, 0}
2 | S3 | {p2, ps; pa; p3} {0,1,2,2,0,0,0,1,0, 0}
2 S5 {PQ, DPs, De, p5} {Ov 1! O, 01 1! 21 0’ 21 01 0}
2 S7 {pg, Ps, Dé, p4} {0, 1, O, 2, 0, 1, 0, 2, 0, 0}
2 | Sy | {p2: ps, ps; s, pa} | {0,1,1,0,1,2,0,2,0,0}

The children of each node in the CST is ordered in the count-descending order such that
a child node with bigger count is closer to its parent node. The code for constructing
the CST is given in Appendix C. The programs are written in Java without any code

optimization. The resulting CSTs are then used for recommendation.

Example 3.7. Let us illustrate the construction of the CST with an example. Let the
sessions in a data set be clustered into 2 clusters and let each cluster consist of the
sessions given in Table 3.6. First the root of the tree of the first cluster is created and
labelled with null (Figure 3.7). The first page of the session S is inserted to the tree
as the child of the root, and its count field is set to 1. The following pages of this
session are inserted as the children of the previous page and their count fields are set
to one (First For Iteration in Figure 3.7). For session Sy, a new node is created with
data field 5_1 as the child node of the root node since that node does not exist in the
tree. The remaining pages are inserted as the child node of the previous page in the
session (Second For Iteration). For session Sg, since the root node has a child with the
data field 1_1, the count of that node is incremented by one. A new node is created
with data field 7_1, and linked as the child of 1_1 (Fifth For Iteration). The remaining
sessions of that cluster are inserted in the tree in the same manner. The CST of the
second cluster is built as the first one. Figure 3.8 shows the constructed CSTs. Circles
represent tree nodes. Each node in a tree has a data field (shown in Figure 3.8 as
PageNumber_NormalizedTime in the first line in each node) and a count field (shown
in Figure 3.8 as [count] in the second line in each node). For simplicity, PageNumber
of the data field is represented by only the subscript of pages in PAGES field of a
user session. After inserting all the sessions in a cluster, the CST of one cluster with

the associated next_node and data_table is shown in Figure 3.7.
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Initial State First For Iteration Second For Iteration Third For Iteration

-0
D020
CO-CO-C5
D020
(5

G2

Fifth For Iteration

Fourth For Iteration

Data First_Node
1] m=mm——mmm—————

Figure 3.7: Construction of the click-stream Tree of the first cluster

Recommendation Engine

The recommendation engine is the real time component of the model that selects
the best path for predicting the next request of the active user session. There is a
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Cluster #1 Cluster #2

Figure 3.8: Click-stream trees of two clusters

trade-off between the prediction accuracy of the next request and the time spent for
recommendation. The speed of the recommendation engine is of great importance in
on-line recommendation systems. Thus, we propose the clustering of user sessions
in order to reduce the search space and represent each cluster by a CST. Given
the time of the last visited page of the active user session, the model recommends
three pages. The most recent visited page of the active user session contains the
most important information. Before describing the recommendation algorithm, it is
useful to first understand a few special properties of the CST. If a data field d; is
found in the tree, all the possible paths that contain d; can be obtained by following
d;’s next_node, starting from d;’s first_node in the data_table of the tree. The CST
enables us to insert the entire session of a user without any information loss. We
not only store the frequent patterns in the tree but also the whole path that a user
follows during his or her session. Besides this, the tree has a compact structure.
If a user session with the same PAGES and NORMS fields occurs more than
once, only the count of its nodes is incremented. Based on the construction of the
CST, a user session (p;1, pi2, --., Dik ), (Rormy, , norm,,, ..., norm, ) occurs in the tree
dy..count times, where dy, is the data field formed by merging the page request p;,, and

corresponding normalized time value norm,,  of the user session.
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Input : Active user session, Click-Stream trees
Output : Best matching session

1. S, <« Active User Session
2: if S,.length < 2 then

Clusters = All Clusters
else

Clusters = Top — N Clusters
end if

. for i = 0to NumberO fClusters do

. ol = Clustersi]

Simlel] =0

100 m « S,.length

11:  dy «— {Pam}_{norm,,, }

12:  Node « data_table[cl)(d,). first_node
13:  path = null

14:  while Node # null do

15: path = {path} + {Node.data}

o R

16: Parent_Node < Node.Parent

17: while Parent_Node # null do

18: path = {path} + { Parent_Node.Data}
19: Parent_Node « Parent_Node.Parent
20: end while

21 Sim(path) = sim(S,, path)x Node.count/S|cl]
22: if Sim(path) > Sim|cl] then

23: Simlcl] « Sim(path)

24 BestPathlcl] < path

25: end if

26: path = null

27: Node <+ Node.next_node

28:  end while

29: end for

30: if S,.length = 2 then
31:  Top — N Clusters « N Clusters with highest Sim|[cl] values
32: end if

Figure 3.9: Find Best Path algorithm

Figure 3.9 presents the algorithm for finding the path that best matches the active user
sessions. For the first two pages of the active user session all clusters are searched
to select the best path (line 3 in Figure 3.9). After the second request of the active
user top- N clusters that have higher recommendation scores among other clusters are
selected (line 30-32) for producing further recommendation sets (line 5). To select the
best path we use a backward stepping algorithm. The last visited page and normalized
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time of that page of the active user session are merged together to build the data field
(line 11). We find from the data_table of the CST of a cluster the first_node that has the
same data field (line 12). We start with that node and go back until the root node (or
until the active user session has no more pages to compare) to calculate the similarity
of that path to the active user session (line 17-20). We calculate the similarity of the
optimal alignment. To obtain the recommendation score of a path, the similarity is
multiplied by the relative frequency of that path, which we define as the count of the
path divided by the total number of paths (S[cl]) in the tree (line 21). Starting from the
first_node of the data field and following the next_node, the recommendation score is
calculated for the paths that contain the data field in the cluster (line 27). The path that
has the highest recommendation score is selected as the best path for generating the
recommendation set for that cluster (line 22-25). The first three children nodes of the
last node of the best path is used for producing the recommendation set. The pages of

these child nodes are recommended to the active user.

Example 3.8. Let us illustrate how to find the best path with a simple example for
top 1 Cluster (Figure 3.10). Let the active user session be (S,, [2,5,3,7],[0,1,1,0, 1,
0,2,0,0,0]) and the CSTs be as in Figure 3.8. The first request of the active user is
page 2 with a normalized time value 1. The data field is formed by merging 2 and 1.
Since only cluster 2 has a node with a data field 2_1 only the path Node(2_1) of cluster
2 is examined and found as the best path with a similarity value of 1. Node(2_1) in
cluster 2 has only children with the page number 8 and page 8 is recommended to the
active user. The second request of the active user is page 5 with the normalized time
value 1. Thus, the active user path becomes 2_1 — 5_1. Starting from the first_node
of Node(5_1) on the data_table of cluster 1, all the paths that contain Node(5_1) in
cluster 1 are examined by following next_node of Node(5_1). Cluster 2 has only one
path with a data field 5_1, Node(2_1) — Node(8_2) — Node(6_2) — Node(5_1),
however the similarity value of this path is 1/8. Thus the path with the highest
similarity value in the first cluster, Node(5_1), is selected as the best path to produce
the recommendation set and page 3 is recommended to the active user. The third
request of the active user is page 3 with the normalized time value 1. The active user
path becomes 2_1 — 5 1 — 3_1. After the first two request of the active user, only
top 1 cluster is examined for further recommendation. Since the last best path is from
cluster 1, the best path is searched only in cluster 1. Starting from the first_node of
3_1onthe data_table of cluster 1, two paths are examined by following the next_node
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of Node(3_1). The path Node(5_1) — Node(3_1) is found as the best path with a

similarity value of 2/5. Page 7 and page 6 are recommended to the active user.
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Best Path

User request = {2_1}
Candidate Paths :>

Similarity : 1
RS = {8}
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User request ={2_1,5 1}
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Similarity : 3/10
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Figure 3.10: A sample recommendation set generation
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4. EXPERIMENTAL RESULTS

In order to test the recommendation models discussed in Chapter 3, the raw data
collected from server logs are cleaned and converted into user sessions. This
chapter discusses the results from several experiments run to test the performance and

effectiveness of the models.

4.1 Data Sets

The first data set is from the NASA Kennedy Space Center (NASA) server over the
months of July and August 1995 [65]. The second log is from ClarkNet (C.Net) Web
server which is a full Internet access provider for the Metro Baltimore-Washington DC
area [66]. This server log was collected over the months of August and September,
1995. The last server log is from the Web server at the University of Saskatchewan
(UOS) from June to December, 1995 [67].

All the server logs are in Common log format. Since the data sets have different
characteristics, the cleaning step results in different numbers of sessions and pages.
Even before filtering the data at the last step of the cleaning and preprocessing
procedure, 80% of sessions in C.Net Web log have lengths less than three pages
and 35% of sessions in UOS Web log have lengths of one page request. Since our
evaluation metric is not appropriate for user sessions that have a length less than four
pages, we eliminate user sessions that are shorter than this. After cleaning the data
sets, the number of sessions are decreased significantly in these logs. Table 4.1 shows

the number of remaining URL’s and the number of sessions for each data set.

Table 4.1: Characteristics of cleaned log data sets

NASA | C.Net | UOS
Number of URL’s 92 67 171
Number Of Sessions | 15369 | 6846 | 7452
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Approximately 30% of these cleaned sessions are randomly selected as the test set, and
the remaining part as the training set. We run the experiments using the same training
and test sets for both of the models.

4.2 Evaluation Metrics

The main focus in evaluating the performance of the models is to determine the
extent to which the recommended pages match the actual user session. We define

the following metrics to evaluate our models:

Hit-Ratio: Given the visiting time of a page in the current session, the model
recommends three pages that have the highest recommendation score in the
active cluster. A hit is declared if any one of the three recommended pages
is the next request of the user. The hit-ratio is the number of hits divided by the

total number of recommendations made by the system.

Click-Soon-Ratio: A Click-Soon is declared if any one of the recommended pages is
requested by the user during the active user session. The Click-Soon-Ratio is the
number of click-soons divided by the total number of recommendations made
by the system.

Precision: For each session S; in the test set we select the first w requests in
S;. These w requests are used to calculate the active cluster and produce the
recommendation set. The recommendation set contains all the pages that have
a recommendation score greater than threshold ¢ and that are not in the first w
requests. We denote this set as P.S(w, &) and the number of pages in this set that
match with the remaining part of active session as m. Then the precision for a

session is defined as:

m

= 1PS(w.6) *.1)

precision(S)

These metrics have been widely used in other studies [68, 69]. Related to our model we
use some of these evaluation metrics. For example, precision metric is not appropriate
for CSTM. Since the order of user requests are considered in that model, it is more

reasonable to use the Hit-Ratio metric.
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4.3 Results of the User Interest Model

To evaluate the UIM proposed in Chapter 3, we run several experiments with
different sets of initial parameters for EM algorithm and different parameters for prior
distributions in case of MAP estimation.

For MAP estimation problem, we conduct the experiments with different parameters
ranging from 1 to 5 for Gamma and Dirichlet priors. We use a simple flat prior for
Poisson distribution by making all values of «; and 3; of Gamma distribution equal.
For the Dirichlet distribution we set all the values of ~; to be equal. However, the
results of the MAP estimation do not differ more than 0.001% from the results of the
ML estimate. This was surprising. Since the data sets are very sparse we expected
better results for MAP estimation. Even several combinations of the prior parameters
do not lead to a better result. Thus, the remaining experiments are conducted using

ML estimation since the model is less complicated during the learning task.

The experiments are performed with different number of clusters. In our experiments,
we try different values for the threshold, &, of recommendation scores ranging from
0.1 to 0.9. If the threshold is high, then fewer recommendation are produced. If it is
small, then irrelevant pages are recommended with a low recommendation score. Our
experiments show that setting & to 0.5 and w to 2 produces few but highly relevant
recommendations. We perform the experiments with different numbers of clusters
ranging from 4 to 30. These experiments show that normalization of time between 1
and 2 improves the prediction accuracy. For a comparison we only give the results of
experiments that are run with the normalization values of 1-2 and 1-10. Table 4.2 and
Table 4.3 present the results of the experiments for NASA Kennedy Space Center data
set. Table 4.4 and Table 4.5 present the results of C.Net test logs for normalization
values 1-2 and 1-10 respectively. Table 4.7 and Table 4.8 present the results of UOS
test logs using normalization values 1-2 and 1-10 respectively. As can be seen from
the tables, normalization of time between 1-2 increases the prediction accuracy. We
define the number of clusters for which we have the highest results as the best number
of clusters. The best number of clusters are changing if the normalization time range
changes. Table 4.6 summarizes the results of test logs for the best number of clusters
where time is normalized between 1-2. Figure 4.1 presents the prediction accuracy of
the model for different number of clusters where time is normalized between 1 and 2.

As can be seen from the figure, the model is insensitive to the number of clusters in a
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reasonable range around the best numbers of clusters. The remarkable changes in the
number of clusters results in a decrease of the performance of the model. Figure 4.2

presents the prediction accuracy for different normalization values of time.

60
50 A
40 -
- -+ —NASA
T 30 A —=—C.Net
- -a- -UOS
20 A
10 A
0 1 1 1
0 10 20 30 40
Number Of CI.
Figure 4.1: Number of clusters-Accuracy(H-R)
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Figure 4.2: Normalization values-Accuracy(H-R)
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0.

Table 4.2: Results in % of the NASA data set. Visiting time is normalized between 1 and 2.

No. Method 1 Method 2 Method 3 Method 4 Method 5
8{ Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R
5 12096 | 25.33 | 51.84 | 21.2 | 24.03 | 4963 | 21.2 26 532 | 219 | 25,6 | 524 21 25.3 | 51.3
10 | 33.42 | 43.61 | 92.66 | 32.94 | 43.31 | 92.85 | 33.84 | 43.93 93 3242 | 42.87 | 92.61 | 30.64 | 37.46 | 85.27
15 | 34.26 | 45.32 | 95.8 | 33.19 | 45.12 | 96.14 | 3457 | 45.94 | 95.99 | 33.15 | 43.52 | 94.28 | 31.17 | 39.87 | 93.14
20 | 35.1 | 49.05| 974 | 3553 | 4954 | 98.93 | 35.37 | 48.14 | 98.37 | 34.14 | 48.82 | 97.74 | 33.20 | 47.55 96
25 | 34.15 | 47.11 91 35.78 | 46.82 | 90.18 | 35.24 | 47.31 | 91.34 | 34.03 | 46.14 | 90.48 | 32.39 43 86.20
30 | 3441 | 5151 | 964 | 347 | 51.3 | 97.03 35 52 96.34 | 33.76 | 51.11 | 96.43 | 33.76 | 47.45 | 92.3
Table 4.3: Results in % of the NASA data set. Visiting time is normalized between 1 and 10.
No. Method 1 Method 2 Method 3 Method 4 Method 5
8{ Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R
5 | 2415 | 31.33 | 65.24 | 24.32 | 32.24 | 71.32 | 27.65 | 33.55 | 71.14 | 28.35 | 35.06 | 75.80 | 24.92 | 35.29 | 71.65
10 | 26.67 | 36.92 | 71.12 | 26.95 | 41.18 | 80.26 | 29.50 | 38.07 | 77.16 | 32.26 | 40.92 | 81.09 | 27.26 | 39.88 | 78.77
15 | 27.06 | 38.97 | 75.18 | 27.41 | 42.76 | 80.66 | 31.54 | 40.01 | 77.95 | 33.15 | 41.52 | 8153 | 28.17 | 41.56 | 79.11
20 | 29.23 | 40.76 | 76.1 | 28.13 | 43.05 | 83.65 | 32.26 | 41.42 | 78.22 | 34.20 | 42.89 | 81.26 | 30.54 | 42.80 | 81.16
25 | 29.13 | 4163 | 79.21 | 28.98 | 42.92 | 83.14 33 43.10 | 83.27 | 34.05 | 43.12 | 83.27 | 30.11 | 43.18 | 83.14
30 | 249 | 3352 | 68.32 | 2464 | 35.73 | 72.16 | 2825 | 34.2 | 74.11 | 28.66 | 36.05 | 76.43 | 25.14 | 3557 | 72.14
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Table 4.4: Results in % of the ClarkNet data set. Visiting time is normalized between 1 and 2.

No. Method 1 Method 2 Method 3 Method 4 Method 5
8{ Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R
4 | 36.29 | 40.72 | 99.17 | 35.83 | 41.39 99 36.04 | 40.20 | 99.54 | 33.32 | 39.59 | 92.17 | 32.93 | 39.37 | 91.19
6 | 35.92 | 42.89 99 35.94 | 42.17 | 98.87 | 36.15 | 41.16 | 99.54 | 33.30 | 49.16 | 91.19 | 33.08 | 39.37 | 91.16
8 | 35.88 | 43.32 99 36.16 | 43.73 | 98.54 | 36.17 | 42.75 | 99.55 | 33.09 | 40.22 | 89.54 | 33.09 | 39.93 | 87.37
10 | 379 | 48.7 | 946 | 37.6 | 4962 | 95.81 | 38.18 | 49.21 | 95.26 | 354 | 48.21 | 94.14 | 32.88 | 46.58 | 51.94
20 | 37.47 | 4432 | 9154 | 379 | 44.08 | 91.31 | 37.2 | 4415 | 9154 | 35.77 | 43.60 | 89.40 | 32.31 | 42.18 | 86.38
30 | 35.99 | 4397 | 91.44 | 3583 | 43.19 | 8894 | 356 | 44.16 | 91.01 | 34.21 | 43.07 | 86.79 | 31.97 | 41.13 | 83.63
Table 4.5: Results in % of the ClarkNet data set. Visiting time is normalized between 1 and 10.
No. Method 1 Method 2 Method 3 Method 4 Method 5
8{ Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R Pre. H-R CS-R | Pre. H-R CS-R
4 34 35 65.41 | 30.18 | 40.13 | 73.16 | 36.18 | 38.14 75.95 36.21 | 38.64 | 77.16 | 33.72 | 38.05 | 71.17
6 | 33.17 32 65.92 | 29.78 | 35.88 | 70.21 | 35.77 | 35.07 73.36 34 36 75.21 32 36 72.45
8 | 32.17 | 36.47 | 70.14 | 29.80 | 41.78 | 73.79 | 33.13 | 40.80 76.04 33.48 41 77.29 | 32.56 39 73.43
10 | 32.01 | 35.18 | 70.72 | 28.40 | 39.13 | 73.76 33 35.78 | 73.74.16 | 33.32 37 75.43 | 32.43 | 35.26 | 72.12
20 | 31.47 | 3418 | 71.18 | 29.41 | 36.30 | 72.27 | 32.29 | 34.76 71.85 32.33 | 35.88 | 72.78 | 31.79 | 34.53 | 70.57
30 | 31.20 | 36.92 | 72.14 | 30.97 | 39.79 | 74.88 | 32.39 | 38.01 74.48 3264 | 37.87 | 74.87 | 31.78 | 36.91 | 73.11




Table 4.6: Results (in %) of the model. Visiting time is normalized between 1 and 2.
Data Set | No.Of Method 1 Method 2 Method 3 Method 4 Method 5
Clusters | H-R | Pre. | H-R | Pre. | H-R | Pre. | H-R | Pre. | H-R | Pre.
NASA 30 515|344 | 513 | 347 | 52 35 | 511|338 |475 | 338
C.Net 10 48.7 | 379 | 49.2 | 376 | 49.6 | 38.2 | 48.2 | 354 | 46.6 | 32.9
uUosS 30 50.8 | 40.6 | 50.6 | 40.7 | 50.8 | 40.7 | 50.5 | 39.3 | 50.1 | 38.7

As can be seen in Table 4.2 and Table 4.3, the accuracy of predictions greatly increases
in NASA data set, when we use Hit-Ratio metric. The cause for that may be that we
apply further cleaning methods to this data set. Some of the page views in the log data
are still available in the NASA Web site. On the other hand, these cannot be applied to
others since C.Net Web server does not exist anymore and the URL requests in the UOS
log data are not up-to-date. The methods applied during the cleaning tasks produce
significant improvement in the prediction accuracy for NASA data set. However, in
most cases precision metric performs very poorly compared to the Hit-Ratio metric.
This can be due to the fact that for precision metric the active user session is assigned to
one of the clusters after the first two requests. The cluster assignment is not calculated
for further recommendations to the same user whereas for hit-ratio metric the cluster
assignment is calculated after each request of the active user. The recommendation set

is created based on this new cluster assignment.

As mentioned in the Chapter 3, we use 5 different methods for calculating
recommendation scores. The application of methods that calculate the
recommendation scores using popularity term results in marked improvement of the
prediction accuracy. This is not surprising, because the popularity represents the
common interest among user sessions in each cluster. The results show that using
entropy during calculation of recommendation score does not improve the accuracy.
This is not surprising for the experiments where page time is normalized in a narrow
range. However, even for a wide change in normalized time the entropy does not
improve the prediction accuracy as much as we expected. Initially, we assumed this
may be due to the fact that EM algorithm learns the best model in terms of model
parameters. However, even the results of experiments with different number of clusters
reflect the same characteristic. Further examination of the cluster profiles indicate that
the popularity of some pages in most of the clusters are zero due to the sparse and

scattered nature of the data. Thus, we can not observe the effect of the entropy, since
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Table 4.7: Results in % of the University of Saskatchewan data set. Visiting time is normalized between 1 and 2.

No. Method 1 Method 2 Method 3 Method 4 Method 5

8{ Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R
4 | 3196 | 34.81 | 81.68 | 31.98 | 33.57 | 81.86 | 32.05 | 33.76 | 82.51 31 33.80 | 80.34 | 30.64 | 33.68 | 78.72
6 | 33.12 | 37.41 | 86.10 | 33.14 | 37.12 | 86.10 | 34.17 39 87.11 | 33.87 | 38.91 | 85.74 | 31.62 | 38.87 | 83.79
8 | 37.33 | 41.95 99 36.88 | 44.04 | 99 | 36.79 | 43.58 99 35.28 | 43.16 | 96.8 | 33.93 | 415 | 93.12
10 | 37.05 | 43.01 | 98.10 | 36.69 | 44.98 | 98.10 | 36.70 | 45.32 | 98.11 | 35.39 | 44.32 98 34.08 | 42.81 | 97.37
20 | 38.90 | 46.10 | 96.40 | 36.80 | 46.48 | 96.70 | 37.60 | 49.06 | 97.70 | 37 | 47.90 | 96.50 | 36.90 | 46 95.80
30 | 40.64 | 50.77 98 | 40.43 | 50.58 98 | 40.68 | 50.82 | 98.10 | 39.28 | 50.5 98 38.74 | 50.09 98

Table 4.8: Results in % of the University of Saskatchewan data set. Visiting time is normalized between 1 and 10.

No. Method 1 Method 2 Method 3 Method 4 Method 5

8{ Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R | Pre. H-R CS-R
4 | 3112 | 3213 | 72.73 | 30.13 | 33.98 | 71.93 | 33.86 | 33.87 | 72.42 | 33.93 | 33.94 | 74.76 | 31.35 | 34.37 | 70.68
6 | 32.10 | 33.75 | 72.84 | 32.10 | 34.21 | 7258 | 35.17 | 35,51 | 72.92 | 36.71 | 36.81 | 76.52 | 32.10 | 31.16 | 69.12
8 | 33.90 35 7461 | 334 35 73.09 | 38.47 38 75.10 | 38.47 | 39.10 | 77.51 | 33.38 | 35.53 | 70.90
10 | 33.61 32 72.49 | 31.61 39 75.54 | 36.73 34 | 7256 | 36.22 | 37.5 | 75.32 | 32.62 | 34.57 69
20 | 32.80 36 75.69 | 31.55 | 41.26 | 76.12 | 36.71 | 39.34 | 75.49 | 36.15 | 40.42 | 77.10 | 32.86 | 37.09 | 70.45
30 | 30.37 | 32.91 | 72.16 | 32.58 | 38.19 | 74.65 | 32.92 | 35.87 | 72.56 | 32.53 | 37.68 | 74.42 31 35.21 | 69.13




we multiply the inverse of the entropy with popularity for calculating the
recommendationscores. All of our experiments show that in general we can use the
third method for calculating recommendation scores, discarding the metric we use for

evaluation.

For evaluating the Poisson model in terms of modelling user sessions we use
two other distributions: multinomial distribution and binomial distribution. Since
multinomial distribution performs very poorly, we only regard binomial distribution.
The normalized visiting page time is not considered in that case. The user sessions are
modelled only using binary weights for pages, representing existence or non-existence
of a page in a user session. The parameters of the binomial distribution are learned
using the EM algorithm. The results of these experiments are given in Table 4.9.
Method 4 and Method 5 are not used for the evaluation of binomial model. For
calculating the recommendation score in Method 4 and Method 5 we need the entropy.
Since the weights of the pages are binary the entropy can not be calculated. For this
reason, the binomial model is evaluated only using the first 3 methods. As can be seen
from the results, Poisson model performs better than the Binomial model, especially
Hit-Ratio and Click-Soon metrics outperform by using the Poisson model. The Poisson
model performs 38% better than the binomial model for Hit-Ratio metric. These results
prove that Poisson model can be used for modelling user sessions and using visiting
time improves the prediction accuracy. Besides these experiment and the examination
of the histograms as mentioned in the Chapter 3, we examine the occurrence of each
of the possible normalized visiting page times. According to our clustering criteria,
the normalized visiting page time should not vary among clusters. After clustering
user sessions, the histograms are plotted in order to observe the structure of the cluster.
These histograms prove that the visiting page times do not vary among user sessions in
the same cluster. This may be another evidence that the Poisson distribution could be
used for modelling user sessions. However, the model has the flexibility to represent
user interest with a mixture of another distribution, e.g., binomial distribution, if one
wishes to ignore the visiting time in determining the navigational pattern. This could
be considered especially on e-commerce Web sites where the visiting page time is not
an indicator of user interest. For this sites, the user interest can be modelled in terms

of items that a user buys during her single visit.

We provide some intuitive arguments regarding the advantage of our model in terms

of speed and memory usage. The online prediction time correlates strongly with the
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Table 4.9: Results (in %) of the model using Binomial distribution.

Data Set | No.Of Method 1 Method 2 Method 3
Clusters | Pre. H-R | CS-R | Pre. H-R | CS-R | Pre. H-R | CS-R
NASA 23 33.33 | 36.97 49 33.60 | 36.78 | 48.77 | 35.92 | 36.89 | 48.84
C.Net 10 34.78 | 34.17 | 64.88 | 34.04 | 34.19 | 64.88 | 38.72 | 34.16 | 64.87
uos 30 34.78 | 41.22 | 51.62 | 34.88 | 41.22 | 51.56 | 38.65 | 41.27 | 51.59

model size. The smaller the model size, the faster is the online recommendation. Since
we only store the cluster parameters for the prediction of the next page request, our
model size is very small. The model size only increases with the number of clusters
or the number of pages in the Web site when the Web site has a complex structure.
However, it is clear that in that case the application of methods such as sequential
pattern mining, association rules or Markov models generate more complex models
due to the increasing size of rules or states. Thus, all of these models require some
pruning steps in order that they be effective. However, our model provides a high
prediction accuracy with a simple model structure.

Table 4.10: Comparison of recommendation models.

Data Set | Poisson Model | Model 1 | Model 2 | Model 3
NASA 52 4 47.84 52.6
C.Net 49.6 15 49.3 50.08
UoSsS 50.8 5 4459 52

For evaluating the effect of the Poisson model, we repeated the experiments with the

same training and test sets using three other recommendation methods [11, 70, 71].

The recommendation model proposed in [70] (Model 1 in Table 4.19) is comparable
to our model in terms of speed and memory usage. Since the hit-ratio metric has not
performed well for the model in [70], we use the precision metric for evaluation. We
obtain the best result with 23 clusters for NASA data set and 4 clusters for C.Net data
set and 8 clusters for the UOS data set. The C.Net data set has a precision of 15%,
whereas the NASA data set has 4% and the UOS has 5%.

Since the model in [71] is based on association rule discovery, it has obviously a greater
model size than our model. We select this model in order to compare our results to the
results of a model that uses a different approach. For the method in [71] (Model 2 in

Table 4.19) we use a sliding window with a window size of 2. The sliding window is
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the last portion of the active user session to produce the recommendation set. Thus,
the model is able to produce the recommendation set only after the first two pages of
the active user session. We set the support for association rule generation to a low
value (such as 1 %) discarding of increasing the model size in order to have a good
prediction accuracy. The hit ratio for the NASA, C.Net and UOS data sets are 47.8%,
49.3%, 44.50% respectively.

For the last set of experiments we use first order Markov models (Model 3 in Table
4.19). The parameters of the Markov model are learned using the EM algorithm. The
best results for NASA data set is with 23 clusters, and the hit-ratio and click-soon-ratio
are 52.6%. The C.Net data set has, for 4 clusters, a hit-ratio of 50.08%. Finally,
the UOS data set has a hit-ratio of 52%. Only the last model has a better prediction
accuracy compared with our model. However, the decrease of the prediction accuracy
of our models is in an acceptable range considering the model sizes. It is clear that the

last model has a greater model size which may lead to a slower online prediction.

These results prove that modelling the user transaction with a mixture of
Poisson distributions produces satisfactory prediction rates with an acceptable
computational complexity in real-time and memory usage when page time is

normalized between 1 and 2.

4.4 Results of the Click-Stream Tree

For each data set we conduct the experiment with a single click-steam tree, without
the use of any clusters of user sessions, to compare the performance of the similarity
metric and the clustering method. The results obtained by using a single tree (see Table
4.11) gives us the upper bound of the prediction accuracy. In that case we do not have
any side effects of the clustering algorithm or the assumptions we made for assigning
the active user session to a cluster since the entire tree is searched (with significant

run-time overhead, of course).

We repeat the experiments with different number of clusters ranging from 5 to 30
and N ranging from 1 to 3 after the first 2 requests of the user. The experiments
are performed for C.Net and UOS data sets with different number of clusters from
the experiments of NASA data set. This is done to account for the lower number of

sessions and number of pages in the C.Net and UOS data sets. There is a trade-off
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Table 4.11: Results in % of the recommendation algorithm with one tree. (NT =
Normalized Time, UT = Unity Time)

Data Set NT uT Time(ms.)
H-R | CS-R | H-R | CS-R
NASA | 61.61 | 99.63 | 59.9 95 3.5
C.Net |55.76 | 100 |51.29 | 92.25 2
UOS |49.49 | 83.05|53.16 | 90 1.3

between the prediction accuracy and the time spent for recommendation. When we
determine the top-N clusters after the first request of the user, the recommendation
is faster, but the accuracy is about 4% lower. Thus, we determine top-/N clusters
after the first 2 requests, since the time spent for recommendation and the decrease
of accuracy are in an acceptable range. In order to study the results we repeat the same
experiments without considering the normalized time (Unity Time). If we do not use
the time information, the data field of each node in the CST consists of only the page
number. The same experiments are then performed by normalizing time between 1 and
3,1and 5, and 1 and 10. In the case when the time is normalized between 1 and 3, and
the number of clusters is 5, the method with time information performs better for the
NASA data set. But in other cases the method without time information outperforms.
Since our method for tree construction merges the page number and time information
for creating the data field of nodes, the number of data items corresponding to the same
page increases if the values of normalized time changes in a wide range. For example
for the NASA data set, if the time is normalized between 1 and 10, the number of
data items becomes 920, since the number of pages is 92. Thus, for a page we have
10 different data items. Since we only recommend pages to the user, having different
data items corresponding to one page makes the recommendation inefficient. For each
experiment we register the average time spent to produce the recommendation set.
Since the other results are worse, we just present the results of the experiments in which
the normalized time has a value between 1 and 2. All Experiments are performed on a
Pentium 11, 333 MHz PC with a 512 MB main memory running on Microsoft Windows
2000. The programs are coded in Java.

Table 4.12 shows the results of the NASA data set where the visiting time of pages are
normalized between 1 and 2. The results in Table 4.13 are obtained without taking time
into consideration. Table 4.14 and Table 4.15 show the results of C.Net data set with

normalized time between 1 and 2, and without time information, respectively. The
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Table 4.12: Results in % of the NASA data set. Visiting time is normalized between 1
and 2.

No.Of Top-N

Clusters 1 2 3

H-R | CS-R| H-R | CS-R | H-R | CS-R
5 57.41 | 96.47 | 59.22 | 98.80 | 59.79 | 99.65
10 54.68 | 91.10 | 56.15 | 93.15 | 57.18 | 94.53
15 52.61 | 88.15 | 54.65 | 91.15 | 55.95 | 92.43
20 50.79 | 84.45 | 52.47 | 86.37 | 53.51 | 87.85
25 4959 | 81.47 | 52.17 | 85.28 | 53.11 | 86.50
30 48.75 | 80.06 | 51.29 | 84.92 | 52.15 | 85.77

Table 4.13: Results in % of the NASA data set. Time information is ignored.

No.Of Top-N

Clusters 1 2 3

H-R | CS-R| H-R | CS-R | H-R | CS-R
5 56.19 | 91.17 | 57.23 | 92.82 | 57.95 | 93.89
10 53.92 | 88.31 | 55.07 | 89.9 | 56.01 | 91.27
15 52.3 | 86.36 | 53.77 | 88.21 | 54.68 | 89.36
20 48.96 | 80.69 | 50.58 | 83.01 | 52.10 | 84.20
25 48.67 | 80.15 | 50.02 | 82.45 | 50.42 | 82.98
30 48.33 | 79.50 | 49.37 | 81.17 | 50.58 | 82.74

same experiments have been conducted for UOS data set and the results are presented
in Table 4.16 and Table 4.17. Figures 4.3, 4.4 and 4.5 present the average time spent to
produce one recommendation set using normalized time between 1 and 2 for the three
data sets. As can be seen from the figures, using clustering approach reduces the time
for producing the recommendation set whereas the prediction accuracy decreases but is
still acceptable. As shown in the tables, the method that incorporates time information
performs mostly better. These experiments show that normalizing time between 1
and 2 improves the prediction accuracy. However, only with the data set of UQOS, the
results are worse with normalized time values. As mentioned in Chapter 2, this data
set is very sparse such that even the home page is requested only in about 10% of the
user sessions. Besides this, as mentioned in the Section 4.1, almost 1/3 of the user
sessions have a length of one page. These characteristics are very unusual for a data
set and may arise from the caching effects. However, these characteristics may result
in a wrong calculation of visiting page times, which lead to inefficient predictions in
case of using time information. In the case of large number of clusters the C.Net data

set has a lower prediction accuracy with time information. This is likely due to the fact
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that C.Net data set is as sparse as the UOS data set and not cleaned to the same extent
as the NASA data set. The unique page views are obtained by listing the unique URL’s,
whereas the pages of the Web site of NASA Kennedy Space Center are retrieved using
a Web crawler implemented for this work. For the C.Net data set we can not determine
different URL’s that correspond to the same page in the Web site which causes a lower

prediction accuracy for bigger cluster numbers.
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Figure 4.3: Average time in ms. spent to produce one recommendation set for the
NASA data set

Table 4.14: Results in % of the ClarkNet data set. Visiting time is normalized between
1and 2.

No.Of Top-N

Clusters 1 2 3

H-R | CS-R| H-R | CS-R | H-R | CS-R
4 53 100 | 53.84 | 100 |54.07 | 100
6 50.53 | 97.64 | 50.81 | 97.86 | 51.40 | 98.72
8 49.65 | 97 |50.01 |97.20 | 50.95 | 97.86
10 48.22 | 94.07 | 48.65 | 94.86 | 49.01 | 94.82
20 399 | 76.9 | 4151 | 78.85 | 42.13 | 79.50
30 35.65 | 68.34 | 37.74 | 71.75 | 39.19 | 73.57

We run the experiments using another similarity metric. The similarity between two

user sessions is calculated only using the length of common subsequence and the
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Figure 4.4: Average time in ms. spent to produce one recommendation set for the

ClarkNet data set

Table 4.15: Results in % of the ClarkNet data set. Time information is ignored.

No.Of Top-N
Clusters 2

H-R | CS-R | H-R | CS-R | H-R | CS-R
4 4994 19138 | 51 |92.95 | 51.09 | 92.96
6 48.69 | 90.13 | 49.86 | 92.19 | 50.4 | 92.53
8 48.42 | 90.05 | 49.63 | 92.17 | 50.22 | 92.79
10 47.18 | 88.16 | 48.64 | 90.78 | 48.97 | 91.32
20 40.95 | 79.22 | 43.25 | 81.80 | 44.45 | 83.58
30 37.69 | 73.29 | 38.48 | 74.76 | 41.23 | 77.12

length of the user sessions without taking the distance between them

For example, let two user sessions be as follows:

S1 =P PPP,

52:P2P4P5P6
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Table 4.16: Results in % of the University of Saskatchewan data set. Visiting time is
normalized between 1 and 2.

No.Of Top-N

Clusters 1 2 3

H-R | CS-R | H-R | CS-R H-R CS-R
4 48.07 | 81.12 | 48.83 | 82.17 | 50.91 | 82.33
6 4750 | 79.45 | 48.65 | 80.87 | 49.81 81.1
8 43.04 | 73.08 | 46.23 | 77.55 | 48.97 | 78.39
10 4183 | 67.86 | 44.31 | 71.12 | 47.04 | 7255
20 38.93 | 61.82 | 41.77 | 64 | 43.45.48 | 65.69
30 35.28 | 64.37 | 38.87 | 57.13 | 42.43 | 58.67

Table 4.17: Results in % of the University of Saskatchewan data set. Time information
is ignored.

No.Of Top-N

Clusters 1 2 3

H-R | CS-R| H-R | CS-R | H-R | CS-R
4 51.07 | 89.7 | 52.16 | 90 |53.27| 90
6 49.42 | 87.61 | 50.78 | 89.67 | 51.89 | 90
8 49.35(88.79 | 50.30 | 90 |51.32 | 90
10 48.25 | 86.11 | 49.02 | 87.61 | 50.26 | 89.23
20 41.79 | 62.92 | 43.92 | 65.49 | 44.93 | 66.74
30 40.60 | 60.78 | 42.16 | 63.28 | 43.40 | 64.65

Since the length of matching subsequence is 2 (P, FP,) and the length of both sessions
is 4, the similarity is:
sim(sy, s2) = \/(2/4) % (2/4)

Our similarity metric using time information performs about 8% better than this
similarity metric. Even without using time information our metric results in about 4%
better then this one. For an example, we only give the best results of this experiment
in Table 4.18.

Table 4.18: Results with different similarity metric

Data | Number of Top-3
Set Clusters
H-R | CS-R
NASA 5 52.1 | 86.7
C.Net 4 50 |95.14
uos 4 44.28 | 80.1
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Figure 4.5: Average time in ms. spent to produce one recommendation set for the
University of Saskatchewan data set

Table 4.19: Comparison of recommendation models.

Data | Metric | Model | Model | Model | C-Str.
Set 1 2 3 Tree
Prec. 4 - - 48.63

. 47.84 - 61.61

NASA| H-R - 5 52.6 | 59.79
- 84.41 B 99.63

CS-R - . 86.3 | 99.65

Prec. 15 - - 49.62

- 493 : 55.76

C.Net | H-R - 5 50.08 | 54.07
- 92.7 - 100

CS-R - N 95.12 | 100

Prec. 5} - } 39.9

- 4459 - 49.49

UOS | H-R - - 52 | 50.91
- 81.2 : 83.05

CS-R : N 822 | 82.33

For evaluating the performance of our method, we run the experiments with the same
training and test examples using 3 other recommendation methods proposed in [11, 70,

71]. Table 4.19 shows these results in %. Since the experimental conditions for these
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models are same as in Section 4.3, we only give here the comparison between these
models and the CSTM.

Model 1 has a precision for NASA data set of 4%, for C.Net data set of 15% and for
UOS data set of 4% respectively.

We set the support for association rule generation to a low value such as 1 %. The
hit-ratio and click-soon-ratio for NASA data set is 47.84% and 84.41% respectively.
The hit-ratio and click-soon-ratio for C.Net data set is 49.30% and 92.7% respectively.
The same model has a hit-ratio of 44.59% and a click-soon ratio of 81.2 for UOS data
set. Since this method does not utilize clustering, we can compare these experiments
to our experiments in which we use one tree. Clearly our method is superior. Another
difference between our model and this one is that our model begins to produce the

recommendation set after the first request of the user.

For the last set of experiments, The best results for NASA data set is with 23 clusters,
and the hit-ratio and click-soon-ratio are 52.6% and 86.3% respectively. The C.Net
data set has for 4 clusters a hit-ratio of 50.08% and click-soon-ratio of 95.12%. Finally,
the UOS data set has a hit-ratio of 52% and click-soon-ratio of 82.2%. These results
prove that our model performs better than the previous proposed models whether we

use one CST or cluster the data set.

Our model has a high click-soon-ratio, in some cases even about 100%. Thus,
the model is very useful for a cache prefetching system. Besides this, the
clustering approach reduces the search space when working with sites with complex

architecture.
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5. CONCLUSION

Web usage mining has become an important area of research with the rapid expansion
of the World Wide Web. As more data are becoming available, there is much need
to study Web user behavior in order to better serve the users and increase business
intelligence. In that context, it becomes more important to predict the next action of
a Web user. A literature survey reveals that they are many approaches for discovering
patterns form Web logs that predict the users’ future request based on their current
behavior. Despite the fact that visiting time on Web pages is an interesting factor,
since it can be employed to measure user’s interest in a page, most of previous the

studies do not consider the visiting time.

In this work we propose two models to predict a Web user’s next request on a Web
site based on the time that the user spent on a page and examine the effect of several
representations of the visiting page time. The common characteristic of two models is

that the discovered patterns do not depend on any personal data about the site users.

For the first model, the mixture of Poisson model is proposed for modelling the
behavior of a user in one user session. The main contribution of this model is that
user behavior is modelled by the mixture of Poisson distributions without considering
the access order of page requests. Experimental evaluation shows that the approach
is quite effective in capturing a Web user’s access pattern. In order to evaluate the
effect of the representation of visiting page time, it is normalized using five different
maximum values. These experiments show that normalizing visiting page time in
a narrow range improves the prediction accuracy. However, without using the time
information, we have a lower prediction accuracy. These results prove that the visiting
page time supplies useful information for predicting the user’s next requests in case of
not considering the order of user accesses. This enables an advantage over previous

proposals in terms of speed and memory usage.

However, to improve the prediction accuracy, additional information is needed like
the order of user accesses. This leads to a new model that uses two different kinds

84



of information of a user session: Order and visiting page time. We introduce a
similarity metric to find pair-wise similarities between user sessions. This similarity
metric compares two user sessions by means of visited pages and visiting times. The
third significant element of that metric is that it also reflects the distance between
matching pages of two user sessions. This second method is aimed at achieving higher
prediction accuracy while sacrificing efficiency slightly. To reduce the search space
and the time for producing the recommendation set, user sessions are clustered. The
main difference between these two models is the time-accuracy tradeoff. Experimental
evaluation shows that the model improves the prediction accuracy where visiting time
is normalized in a narrow range. Similar to the first model, expanding the upper limits

of the normalized time decrease the prediction accuracy.

We are now extending the model in several ways. Since adding the time information
as a second dimension to the user sessions improves the prediction accuracy, we are
planning to add a third dimension such as the content of Web pages to the user sessions.
The similarity between two user sessions can be calculated such that it considers the

content of Web pages as well.

Other improvements would be to add a module to the model that updates the model
parameters according to the feedback from the users. This feedback will be extracted
automatically from the choices of the active user. If the user requests one of the pages
from the recommendation set that the model generates it means that the parameters of
the model fit to the user’s behavior in that session. If the model is unsuccessful in most

of the recommendations then the parameters of the model are needed to update.

Ultimately, the field of recommender systems is still young and much work lays
ahead. Given the huge amount of information available on the Internet and increasingly
important role that the Web plays in today’s society, effective Web usage mining will
continue to grow as an important tool for analyzing, optimizing, and personalizing
Web sites.
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A. Appendix: Prior Distributions

A.1 Prior of Poisson Distribution

When samples are taken from a Poisson distribution, the family of Gamma distribution
is a conjugate prior for Poisson distribution. Conjugate prior is a prior that yields a
posterior that is identical to the functional form of the prior. Let D be a data set D =
{Xi,..., X, }. Suppose X3, ..., X,, form a random sample from a Poisson distribution
for which the value of the mean 6 is unknown. Suppose also that the prior distribution

of 6 is a Gamma distribution with given parameters « and 5 (o« > 0 and § > 0):

Baeaflefﬁa 1
where for positive integers «:
[(a) = (= 1)!

Then the posterior distribution of 6, given that X; = z; (i = 1,...,n) is a Gamma

distribution with parameters o + > | z; and 5 + n.

Proof: Lety = > " | x;, then the likelihood function p(D|6) satisfies the relation
p(D]0) oc e "00Y.

If X is arandom variable from a Poisson distribution, then the probability of observing

a particular observation x; is:

frie—0

p(X = x,]0) =

(A2)
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The probability of observing a full data set D = {Xi,..., X,,} is known as the

likelihood and is defined as:

p(0l0) = T]p(x =ailo)

= [T pmime (A3)

The posterior distribution of the parameter 6 is:

p(DI0)p(0)

p(01D) = 2=

o p(D|0)p(0) (A.4)

Substituting Equation A.1 and A.3 into Equation A.4 we obtain:

p(B|D) o fxiTigTmgale=H0

x Hoty—1o—0(n+p5) (A.5)

Thus the posterior distribution of 6 is again a Gamma distribution with parameters
a+y " z;and 5+ n.

A.2 Prior of Multinomial Distribution

Suppose that the random variables D = {Xji,..., X} come from a multinomial

distribution, then the joint probability function is:

k
Nl
— — _ T T Tk z;
p( Xy =z, .., Xk =) = xll...xk!Tl LTRE o | |1 T; (A.6)
1=

where

T = {Tl,...,Tk}, T1 —|——|—Tk =1
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Then the conjugate prior for = is a Dirichlet distribution with parameters ~ =

{71, ..., 7k} is given by:

k k
HT]“ H : (A7)

subject to y; > 0. Then the posterior distribution of 7 is another Dirichlet distribution

with parameters v + 1, ..., Y + .

Proof: Given the Dirichlet prior for 7, suppose we observe data, D, from a
multinomial distribution such that there are x; occurrences of state 7 fori = 1, ..., k.
Then the likelihood function satisfies the relation p(D|7) oc []r, 77 .

The probability of observing D is:

p(Dlr) o [ 7" (A8)
=1
The posterior distribution of = can be written using Bayes’ rule as:
p(D|T)p(7)
T|D) = ——FF—— x p(D|T)p(T A.9
p(t|D) (D) p(D|7)p(T) (A.9)
Substituting Equation A.7 and A.8 into Equation A.9 yields the following result:

k k
p(r|D) o [[=" 7"
i=1 j=1

k
x [[= (A.10)

which is again a Dirichlet distribution with parameters v, + 1, ..., Vx + 4.
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B. Appendix: The EM algorithm for Mixture of Poisson Distributions

B.1 The ML Optimization Framework

To compute the necessary equations used for obtaining ML parameters in the E-step,
we should compute the conditional probability of missing class labels given the current
parameter set ®’. We define this probability as cluster-posterior probability, P;,(©’),
that the session x; arose from the ¢'* cluster. We can write the cluster-posterior

probability using Bayes’ rule as:

Pig(e)/) = p(C = ¢ylx;)
p(C = ¢g)p(xilcy, ®;>
p(xi)

_ Tgp(Xi‘Cg, G;) (B.1)
S Tp(xile;, ©))

The Q-function can be written as:

Q(©,0') = ZZHQ (@) [In p(xicy, O,) + In7y (B.2)

i=1 g=1
In M-step, keeping the cluster-posterior probabilities fixed, we reassign a new set of
parameters ©'(n + 1) so as to maximize the expected log likelihood of the training
data. The @-function is maximized subject to the constraint that the cluster priors sum
to 1. In order to perform constrained maximization, a Lagrange multiplier is used. The

estimating equations for cluster priors are as follows:
9 Q(0,0') — ) ZT = 0
07, I

K 1
3Py (@) H =0 ®3)

Tg
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from which it follows:

K
AT, = Z Py (©") (B.4)

If we sum Equation (B.4) over g we obtain:

K G
A=) > Py(®) = (B.5)
i=1 g=1
Last equation follows from the fact that Zle P,(©®') = 1. By combining

Equation (B.4) and Equation (B.5), we obtain the equation for updating the cluster
probabilities:

K

1 ,

o= Pu(®) (B6)
i=1

Similarly we can maximize the Q)-function with respect to the parameters of Poisson

model, ®,, under the independence assumption:

)
O gm

[Q(©,87] = 0

Z i0(©5) (lnH 0) " € g]—HnTg) =0

00,

K
Y Py(@) [mm 1| =0 (B.7)

Ogm

which yields the following update equation for Poisson parameters:

2 i1 Fig(©)

am

B.2 The MAP Optimization Framework

The E-step of the MAP estimation of parameters is the same as the ML estimation
problem where the conditional probability of missing class labels given the current
parameter set ©’ is computes as in Equation B.1. The ¢ function of the EM algorithm

for the log posterior function is defined as:

K
Q(©,0) =) > " Py(®) [Inp(xilcy, ©y) +In7] +Inp(®)  (B.I)

i=1 g=1
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where the parameters © consists of all mixture model parameters:
® = {0,..,0q1}
G')g = {991, ceey ng}

G
T = {n,...7¢} ZTg =1 (B.10)
g=1

The prior term p(®) in Equation B.9 consists of Poisson parameter prior and cluster
priors. This can be decomposed as:

G n
= [[ 11 2Oalog Ba)p(r17) (B.11)

g=11=1

where we use gamma priors with parameters « and (5 for Poisson parameters and
Dirichlet priors for cluster weights :

p(egl |agla ﬁgl) X ngl e_ﬁglegl

G
p(rly) o< 7" (B.12)

Then, the @ function in Equation B.9 can be written as:

M)~
M=

Q(©,0) = Pig(@/) [In p(xi[cg, Og) + In 7y
i=1 g=1
G n G
+ 3N (agnby — Bufy) + > 7yIn7, (B.13)
g=1 [=1 g=1

To calculate the optimal parameters we maximize the ¢ function in Equation B.13
subject to the constraint that cluster priors sum to 1:

9 ;
8—79 Q(©,0) /\ZT]] = 0
K
1
> Py (@) L—]Jr%—A = 0 (B.14)
i=1 9 9
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from which it follows:

K
Ay = Pyt (B.15)
=1

Summing Equation B.15 over g we obtain:

G

A=
j=1

K

Fij +7; (B.16)
=1

Upon substituting Equation B.16 into Equation B.15 and solving cluster priors, we

obtain the update equation for cluster weights:

K
* P (O
?g — GZ'L:lKZg(G) ) + 79 (Bl?)
Y7 |28 Pi(©) + 7]
Optimizing the @-function with respect to Poisson parameters we obtain:
0.0 = 0
57, 10(©. )]
K Z; (e
D Py(@) |7 =1 4+ 2T = By = 0 (B.18)
: ng egm
=1
Equation B.18 can be solved for 6, to obtain update equation for Poisson parameters
as follows: .
o i R 8/ im m
ng — Zz:l 9( )1: + Oég (Blg)

SR Py(©) + Bym
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C. Appendix: Source Code for the Construction of CST

package ca.uwaterloo.tree;
[ **
* Node of the CST
* Creation date: (12/30/2002 3:26:05 PM
* @ut hor: Sule Gunduz
*/
i mport java.util.Vector;
public class Node inplenents java.io. Serializable, Conparable {
public bject n_Data; //Data field
public Vector n_Children = new Vector();
//indefinite nunber of children
public int n_Count = 0; //count field
public java.lang. Obj ect n_Next Node;
[1links to the next node with the sane data field
public java.lang. Object n_ParentNode; //links to the Parent Node
public Node() {
super () ;
this.n_Count = O;
this.n Data = null;
AR
* Creates a node with specified data field and set the count to 1
* @aram data java.l ang. Obj ect
*/
public Node(bject data) {
this.n_Data = dat a;
this.n_Count = 1;
A
* set the data and count fields to specified val ues
* @aram data java.l ang. Qbj ect
* @aram count int
*/
public Node((Object data, int count) {
this.n_Data = data;
this.n_Count = count;
AR
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* add a child with data field and returns child
* @aram data java.l ang. Obj ect
*/
public Node addChil d(nject data) {
Node tenpNode = new Node(data);
n_Chi | dren. add(t enpNode) ;
t enpNode. n_Par ent Node = this;
return tenpNode;
} o/
* add child with data and count fields and return child
* @eturn ca.uwaterl oo.tree. Node
* @aram data java.l ang. bj ect
* @aram count int
*/
public Node addChil d(oject data, int count) {
Node tenpNode = new Node(data, count);
n_Chi | dren. add(t enpNode) ;
t enpNode. n_Par ent Node = this;
return tenpNode;
} oI
* returns the nunber of children
* @eturn int
*/
public int degree() {
return n_Children.size();
AR
* returns the child at index=i ndex
* @eturn ca.uwaterl oo.tree. Node
* @aramindex int

*/
public Node get Child(int index) {
if (index >= degree() || index < 0)
return null;
el se
return (Node) n_Children. get(index);
A

* returns the data field
* @eturn java.l ang. oj ect
*/
public Object getData() {
return n_Dat a;
} | **
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* increnments the count of the child at index = index
* Creation date: (12/30/2002 4:10:01 PM
*/
public void increnment Count (int index) ({
Node tenpNode = get Chil d(i ndex);
t enpNode. n_Count ++;
P
* The Construction of the CST, where each
* user session is represented as a branch of the CST
* Creation date: (12/30/2002 3:26:38 PM
* @ut hor: Sule @unduz
*/
i mport java.util.Hashtable;
i mport java.util.Vector;
i mport java.util.Enuneration
i nport java.util.Arrays;
public class Tree inplenents java.io. Serializable {
Node t _Root;
Hasht abl e t _NodeTabl e;
int t_Nunber O Pat hs;
int renmovedEl enents = O;

public Tree() {
super () ;
t_NunberOfPaths = 0; // nunber of sessions in the tree
t_Root = new Node(); // root node, data = nul
t _NodeTabl e = new Hashtable(); // data_table
A
* Each user session is a vector. Adds a user session to the tree
* @aram el enent java.util.Vector
* @ar am node ca. uwat er| 0o. tree. Node
*/
public void addEl enent (Vector el enment, Node node) {
if (element.size() == 0) {
bool ean found = true;
return;
}
Node current node;
int step = 0;
String data = (String) elenent.get(0);
bool ean found = fal se;
if (node.degree() !'=0) {
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while (!found &% step < node.degree()) {
i f (node.getChild(step).n_Data.equal s(data)) {
node. i ncr emrent Count ( st ep) ;
current _node = node. get Chil d(step);
el enent . renove(0);
found = true;
((NodeTabl ed ass)
t _NodeTabl e. get (data)). i ncrenment Count ();
addEl enent (el enent, current _node);
}
st ep++;
1}
if (!found || node.degree() == 0) {
current_node = node. addChi |l d(dat a) ;
if (t_NodeTable.get(data) != null)
((NodeTabl ed ass)
t _NodeTabl e. get (dat a) ) . addNode( curr ent _node) ;
el se
t _NodeTabl e. put (data, new NodeTabl eC ass(current_node));
el enent . renmove(0);
found = true;
addEl enent (el ement, current_node);

A
* Returns the nodes in the tree
*/
public Enureration elements() {
return (new Breadth_First_Traversal (t_Root));
1}
[ **
* Performs a Breadth First Search on the tree
* Creation date: (1/3/2003 4:11:33 PM
* @ut hor:
*/
i nport java.util.Vector;
i mport java.util.Arrays;
public class Breadth_First_Traversa
i mpl enents java.util.Enumeration {
private Vector nodes = new Vector();
private bool ean started;
private Node root = new Node();
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public Breadth_First_Traversal () {

super () ;
AR

* Starts the search from node

* @aram node ca. uwaterl oo.tree. Node

*/

public Breadth_First_Traversal (Obj ect

root = (Node) node;
if (root !'= null)

nodes. addEl enent (root);

} /**

node) {

* Tests if this enuneration contains nore el enents.

* @eturn <code>true</code> if and only if this enuneration object

* contains at |east one nore elenment to provide;
* <code>f al se</ code> ot herwi se.
*/

publ i c bool ean hasMoreEl enents() {

i f (nodes.size() == 0)
return fal se;
return true;
} /**

* Returns the next elenent of this enuneration if this

* enumer ation obj ect

has at | east one nore el enent to provide.

* @eturn t he next elenent of this enuneration.

* @xception NoSuchEl ement Exception

*/

public Cbject nextEl ement() {

ohject [] array;
Vector children;

if no nbre elenents exist.

Node tenpNode = (Node) nodes. el emrent At (0);
nodes. r enoveEl enment At (0) ;

children = tenpNode. n_

Chi | dren;

array = children.toArray();

Arrays.sort(array);

children = new Vector();

for (int i = 0; i < tenpNode. degree();

i ++){

chi |l dren. addEl enrent (( Node) array[i]);

nodes. addEl ement (( Node) array[i]);

}
t enpNode. n_Chi l dren =

return tenpNode;
b}

chil dren;
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