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Abstract. Cluster analysis aims at identifying groups of similar objects and, therefore helps to discover dis-
tribution of patterns and interesting correlations in large data sets. It has been subject of wide research since it
arises in many application domains in engineering, business and social sciences. Especially, in the last years the
availability of huge transactional and experimental data sets and the arising requirements for data mining created
needs for clustering algorithms that scale and can be applied in diverse domains.

This paper introduces the fundamental concepts of clustering while it surveys the widely known clustering algo-
rithms in a comparative way. Moreover, it addresses an important issue of clustering process regarding the quality
assessment of the clustering results. This is also related to the inherent features of the data set under concern. A re-
view of clustering validity measures and approaches available in the literature is presented. Furthermore, the paper
illustrates the issues that are under-addressed by the recent algorithms and gives the trends in clustering process.
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1. Introduction

Clustering is one of the most useful tasks in data mining process for discovering groups and
identifying interesting distributions and patterns in the underlying data. Clustering problem
is about partitioning a given data set into groups (clusters) such that the data points in a
cluster are more similar to each other than points in different clusters (Guha et al., 1998).
For example, consider a retail database records containing items purchased by customers.
A clustering procedure could group the customers in such a way that customers with similar
buying patterns are in the same cluster. Thus, the main concern in the clustering process
is to reveal the organization of patterns into “sensible” groups, which allow us to discover
similarities and differences, as well as to derive useful conclusions about them. This idea is
applicable in many fields, such as life sciences, medical sciences and engineering. Clustering
may be found under different names in different contexts, such as unsupervised learning
(in pattern recognition), numerical taxonomy (in biology, ecology), typology (in social
sciences) and partition (in graph theory) (Theodoridis and Koutroubas, 1999).

In the clustering process, there are no predefined classes and no examples that would show
what kind of desirable relations should be valid among the data that is why it is perceived
as an unsupervised process (Berry and Linoff, 1996). On the other hand, classification is a
procedure of assigning a data item to a predefined set of categories (Fayyad et al., 1996).
Clustering produces initial categories in which values of a data set are classified during the
classification process.
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Figure 1. Steps of clustering process.

The clustering process may result in different partitioning of a data set, depending on
the specific criterion used for clustering. Thus, there is a need of preprocessing before we
assume a clustering task in a data set. The basic steps to develop clustering process are
presented in figure 1 and can be summarized as follows (Fayyad et al., 1996):

• Feature selection. The goal is to select properly the features on which clustering is to
be performed so as to encode as much information as possible concerning the task of
our interest. Thus, preprocessing of data may be necessary prior to their utilization in
clustering task.

• Clustering algorithm. This step refers to the choice of an algorithm that results in the
definition of a good clustering scheme for a data set. A proximity measure and a clustering
criterion mainly characterize a clustering algorithm as well as its efficiency to define a
clustering scheme that fits the data set.

i) Proximity measure is a measure that quantifies how “similar” two data points (i.e.
feature vectors) are. In most of the cases we have to ensure that all selected features
contribute equally to the computation of the proximity measure and there are no
features that dominate others.

ii) Clustering criterion. In this step, we have to define the clustering criterion, which
can be expressed via a cost function or some other type of rules. We should stress
that we have to take into account the type of clusters that are expected to occur in the
data set. Thus, we may define a “good” clustering criterion, leading to a partitioning
that fits well the data set.
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• Validation of the results. The correctness of clustering algorithm results is verified using
appropriate criteria and techniques. Since clustering algorithms define clusters that are
not known a priori, irrespective of the clustering methods, the final partition of data
requires some kind of evaluation in most applications (Rezaee et al., 1998).

• Interpretation of the results. In many cases, the experts in the application area have to
integrate the clustering results with other experimental evidence and analysis in order to
draw the right conclusion.

1.1. Clustering applications

Cluster analysis is a major tool in a number of applications in many fields of business and
science. Hereby, we summarize the basic directions in which clustering is used (Theodoridis
and Koutroubas, 1999):

• Data reduction. Cluster analysis can contribute in compression of the information in-
cluded in data. In several cases, the amount of available data is very large and its pro-
cessing becomes very demanding. Clustering can be used to partition data set into a
number of “interesting” clusters. Then, instead of processing the data set as an entity, we
adopt the representatives of the defined clusters in our process. Thus, data compression is
achieved.

• Hypothesis generation. Cluster analysis is used here in order to infer some hypotheses
concerning the data. For instance we may find in a retail database that there are two
significant groups of customers based on their age and the time of purchases. Then,
we may infer some hypotheses for the data, that it, “young people go shopping in the
evening”, “old people go shopping in the morning”.

• Hypothesis testing. In this case, the cluster analysis is used for the verification of the
validity of a specific hypothesis. For example, we consider the following hypothesis:
“Young people go shopping in the evening”. One way to verify whether this is true is
to apply cluster analysis to a representative set of stores. Suppose that each store is
represented by its customer’s details (age, job etc) and the time of transactions. If, after
applying cluster analysis, a cluster that corresponds to “young people buy in the evening”
is formed, then the hypothesis is supported by cluster analysis.

• Prediction based on groups. Cluster analysis is applied to the data set and the resulting
clusters are characterized by the features of the patterns that belong to these clusters.
Then, unknown patterns can be classified into specified clusters based on their simi-
larity to the clusters’ features. Useful knowledge related to our data can be extracted.
Assume, for example, that the cluster analysis is applied to a data set concerning patients
infected by the same disease. The result is a number of clusters of patients, according
to their reaction to specific drugs. Then for a new patient, we identify the cluster in
which he/she can be classified and based on this decision his/her medication can be
made.

More specifically, some typical applications of the clustering are in the following fields
(Han and Kamber, 2001):
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• Business. In business, clustering may help marketers discover significant groups in their
customers’ database and characterize them based on purchasing patterns.

• Biology. In biology, it can be used to define taxonomies, categorize genes with similar
functionality and gain insights into structures inherent in populations.

• Spatial data analysis. Due to the huge amounts of spatial data that may be obtained from
satellite images, medical equipment, Geographical Information Systems (GIS), image
database exploration etc., it is expensive and difficult for the users to examine spatial data
in detail. Clustering may help to automate the process of analysing and understanding
spatial data. It is used to identify and extract interesting characteristics and patterns that
may exist in large spatial databases.

• Web mining. In this case, clustering is used to discover significant groups of documents
on the Web huge collection of semi-structured documents. This classification of Web
documents assists in information discovery.

In general terms, clustering may serve as a pre-processing step for other algorithms, such
as classification, which would then operate on the detected clusters.

1.2. Clustering algorithms categories

A multitude of clustering methods are proposed in the literature. Clustering algorithms can
be classified according to:

• The type of data input to the algorithm.
• The clustering criterion defining the similarity between data points.
• The theory and fundamental concepts on which clustering analysis techniques are based

(e.g. fuzzy theory, statistics).

Thus according to the method adopted to define clusters, the algorithms can be broadly
classified into the following types (Jain et al., 1999):

• Partitional clustering attempts to directly decompose the data set into a set of disjoint
clusters. More specifically, they attempt to determine an integer number of partitions that
optimise a certain criterion function. The criterion function may emphasize the local or
global structure of the data and its optimization is an iterative procedure.

• Hierarchical clustering proceeds successively by either merging smaller clusters into
larger ones, or by splitting larger clusters. The result of the algorithm is a tree of clusters,
called dendrogram, which shows how the clusters are related. By cutting the dendrogram
at a desired level, a clustering of the data items into disjoint groups is obtained.

• Density-based clustering. The key idea of this type of clustering is to group neighbouring
objects of a data set into clusters based on density conditions.

• Grid-based clustering. This type of algorithms is mainly proposed for spatial data mining.
Their main characteristic is that they quantise the space into a finite number of cells and
then they do all operations on the quantised space.
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For each of above categories there is a wealth of subtypes and different algorithms for
finding the clusters. Thus, according to the type of variables allowed in the data set can be
categorized into (Guha et al., 1999; Huang et al., 1997; Rezaee et al., 1998):

• Statistical, which are based on statistical analysis concepts. They use similarity measures
to partition objects and they are limited to numeric data.

• Conceptual, which are used to cluster categorical data. They cluster objects according to
the concepts they carry.

Another classification criterion is the way clustering handles uncertainty in terms of
cluster overlapping.

• Fuzzy clustering, which uses fuzzy techniques to cluster data and they consider that
an object can be classified to more than one clusters. This type of algorithms leads to
clustering schemes that are compatible with everyday life experience as they handle the
uncertainty of real data. The most important fuzzy clustering algorithm is Fuzzy C-Means
(Bezdeck et al., 1984).

• Crisp clustering, considers non-overlapping partitions meaning that a data point either
belongs to a class or not. Most of the clustering algorithms result in crisp clusters, and
thus can be categorized in crisp clustering.

• Kohonen net clustering, which is based on the concepts of neural networks. The Kohonen
network has input and output nodes. The input layer (input nodes) has a node for each
attribute of the record, each one connected to every output node (output layer). Each
connection is associated with a weight, which determines the position of the correspond-
ing output node. Thus, according to an algorithm, which changes the weights properly,
output nodes move to form clusters.

In general terms, the clustering algorithms are based on a criterion for assessing the
quality of a given partitioning. More specifically, they take as input some parameters (e.g.
number of clusters, density of clusters) and attempt to define the best partitioning of a data
set for the given parameters. Thus, they define a partitioning of a data set based on certain
assumptions and not necessarily the “best” one that fits the data set.

Since clustering algorithms discover clusters, which are not known a priori, the final
partitions of a data set requires some sort of evaluation in most applications (Rezaee et al.,
1998). For instance questions like “how many clusters are there in the data set?”, “does the
resulting clustering scheme fits our data set?”, “is there a better partitioning for our data
set?” call for clustering results validation and are the subjects of methods discussed in the
literature. They aim at the quantitative evaluation of the results of the clustering algorithms
and are known under the general term cluster validity methods.

The remainder of the paper is organized as follows. In the next section we present the
main categories of clustering algorithms that are available in literature. Then, in Section 3
we discuss the main characteristics of these algorithms in a comparative way. In Section 4
we present the main concepts of clustering validity indices and the techniques proposed in
literature for evaluating the clustering results. Moreover, an experimental study based on
some of these validity indices is presented in Section 5, using synthetic and real data sets.
We conclude in Section 6 by summarizing and providing the trends in clustering.
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2. Clustering algorithms

In recent years, a number of clustering algorithms has been proposed and is available in the
literature. Some representative algorithms of the above categories follow.

2.1. Partitional algorithms

In this category, K-Means is a commonly used algorithm (MacQueen, 1967). The aim of
K-Means clustering is the optimisation of an objective function that is described by the
equation

E =
c∑

i=1

∑
x∈Ci

d(x, mi ) (1)

In the above equation, mi is the center of cluster Ci , while d(x, mi ) is the Euclidean
distance between a point x and mi . Thus, the criterion function Eattempts to minimize
the distance of each point from the center of the cluster to which the point belongs.
More specifically, the algorithm begins by initialising a set of c cluster centers. Then,
it assigns each object of the dataset to the cluster whose center is the nearest, and re-
computes the centers. The process continues until the centers of the clusters stop
changing.

Another algorithm of this category is PAM (Partitioning Around Medoids). The objective
of PAM is to determine a representative object (medoid) for each cluster, that is, to find
the most centrally located objects within the clusters. The algorithm begins by selecting an
object as medoid for each of c clusters. Then, each of the non-selected objects is grouped
with the medoid to which it is the most similar. PAM swaps medoids with other non-selected
objects until all objects qualify as medoid. It is clear that PAM is an expensive algorithm
as regards finding the medoids, as it compares an object with entire dataset (Ng and Han,
1994).

CLARA (Clustering Large Applications), is an implementation of PAM in a subset of the
dataset. It draws multiple samples of the dataset, applies PAM on samples, and then outputs
the best clustering out of these samples (Ng and Han, 1994).

CLARANS (Clustering Large Applications based on Randomized Search), combines the
sampling techniques with PAM. The clustering process can be presented as searching a graph
where every node is a potential solution, that is, a set of k medoids. The clustering obtained
after replacing a medoid is called the neighbour of the current clustering. CLARANS selects
a node and compares it to a user-defined number of their neighbours searching for a local
minimum. If a better neighbour is found (i.e., having lower-square error), CLARANS moves
to the neighbour’s node and the process start again; otherwise the current clustering is a local
optimum. If the local optimum is found, CLARANS starts with a new randomly selected
node in search for a new local optimum.

Finally K -prototypes, K-mode (Huang, 1997) are based on K -Means algorithm, but they
aim at clustering categorical data.
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2.2. Hierarchical algorithms

Hierarchical clustering algorithms according to the method that produce clusters can further
be divided into (Theodoridis and Koutroubas, 1999):

• Agglomerative algorithms. They produce a sequence of clustering schemes of decreasing
number of clusters at east step. The clustering scheme produced at each step results from
the previous one by merging the two closest clusters into one.

• Divisive algorithms. These algorithms produce a sequence of clustering schemes of in-
creasing number of clusters at each step. Contrary to the agglomerative algorithms the
clustering produced at each step results from the previous one by splitting a cluster into
two.

In sequel, we describe some representative hierarchical clustering algorithms.
BIRCH (Zhang et al., 1996) uses a hierarchical data structure called CF-tree for parti-

tioning the incoming data points in an incremental and dynamic way. CF-tree is a height-
balanced tree, which stores the clustering features and it is based on two parameters:
branching factor B and threshold T, which referred to the diameter of a cluster (the di-
ameter (or radius) of each cluster must be less than T ). BIRCH can typically find a good
clustering with a single scan of the data and improve the quality further with a few additional
scans. It is also the first clustering algorithm to handle noise effectively (Zhang et al., 1996).
However, it does not always correspond to a natural cluster, since each node in CF-tree can
hold a limited number of entries due to its size. Moreover, it is order-sensitive as it may
generate different clusters for different orders of the same input data.

CURE (Guha et al., 1998) represents each cluster by a certain number of points that are
generated by selecting well-scattered points and then shrinking them toward the cluster
centroid by a specified fraction. It uses a combination of random sampling and partition
clustering to handle large databases.

ROCK (Guha et al., 1999), is a robust clustering algorithm for Boolean and categorical
data. It introduces two new concepts, that is a point’s neighbours and links, and it is based
on them in order to measure the similarity/proximity between a pair of data points.

2.3. Density-based algorithms

Density based algorithms typically regard clusters as dense regions of objects in the data
space that are separated by regions of low density.

A widely known algorithm of this category is DBSCAN (Ester et al., 1996). The key idea in
DBSCAN is that for each point in a cluster, the neighbourhood of a given radius has to contain
at least a minimum number of points. DBSCAN can handle noise (outliers) and discover
clusters of arbitrary shape. Moreover, DBSCAN is used as the basis for an incremental
clustering algorithm proposed in Ester et al. (1998). Due to its density-based nature, the
insertion or deletion of an object affects the current clustering only in the neighbourhood
of this object and thus efficient algorithms based on DBSCAN can be given for incremental
insertions and deletions to an existing clustering (Ester et al., 1998).

In Hinneburg and Keim (1998) another density-based clustering algorithm, DENCLUE, is
proposed. This algorithm introduces a new approach to cluster large multimedia databases.
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The basic idea of this approach is to model the overall point density analytically as the sum
of influence functions of the data points. The influence function can be seen as a function,
which describes the impact of a data point within its neighbourhood. Then clusters can be
identified by determining density attractors. Density attractors are local maximum of the
overall density function. In addition, clusters of arbitrary shape can be easily described by a
simple equation based on overall density function. The main advantages of DENCLUE are
that it has good clustering properties in data sets with large amounts of noise and it allows a
compact mathematically description of arbitrary shaped clusters in high-dimensional data
sets. However, DENCLUE clustering is based on two parameters and as in most other
approaches the quality of the resulting clustering depends on the choice of them. These
parameters are (Hinneburg and Keim, 1998): i) parameter N which determines the influence
of a data point in its neighbourhood and ii) < describes whether a density-attractor is
significant, allowing a reduction of the number of density-attractors and helping to improve
the performance.

2.4. Grid-based algorithms

Recently a number of clustering algorithms have been presented for spatial data, known as
grid-based algorithms. These algorithms quantise the space into a finite number of cells and
then do all operations on the quantised space.

STING (Statistical Information Grid-based method) is representative of this category. It
divides the spatial area into rectangular cells using a hierarchical structure. STING (Wang
et al., 1997) goes through the data set and computes the statistical parameters (such as
mean, variance, minimum, maximum and type of distribution) of each numerical feature
of the objects within cells. Then it generates a hierarchical structure of the grid cells so as
to represent the clustering information at different levels. Based on this structure STING
enables the usage of clustering information to search for queries or the efficient assignment
of a new object to the clusters.

WaveCluster (Sheikholeslami et al., 1998) is the latest grid-based algorithm proposed in
literature. It is based on signal processing techniques (wavelet transformation) to convert
the spatial data into frequency domain. More specifically, it first summarizes the data by
imposing a multidimensional grid structure onto the data space (Han and Kamber, 2001).
Each grid cell summarizes the information of a group of points that map into the cell. Then it
uses a wavelet transformation to transform the original feature space. In wavelet transform,
convolution with an appropriate function results in a transformed space where the natural
clusters in the data become distinguishable. Thus, we can identify the clusters by finding
the dense regions in the transformed domain. A-priori knowledge about the exact number
of clusters is not required in WaveCluster.

2.5. Fuzzy clustering

The algorithms described above result in crisp clusters, meaning that a data point either
belongs to a cluster or not. The clusters are non-overlapping and this kind of partitioning is
further called crisp clustering. The issue of uncertainty support in clustering task leads to
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the introduction of algorithms that use fuzzy logic concepts in their procedure. A common
fuzzy clustering algorithm is the Fuzzy C-Means (FCM), an extension of classical C-Means
algorithm for fuzzy applications (Bezdeck et al., 1984). FCM attempts to find the most
characteristic point in each cluster, which can be considered as the “center” of the cluster
and, then, the grade of membership for each object in the clusters.

Another approach proposed in literature to solve the problems of crisp clustering is based
on probabilistic models. The basis of this type of clustering algorithms is the EM algorithm,
which provides a quite general approach to learning in presence of unobservable variables
(Mitchell, 1997). A common algorithm is the probabilistic variant of K -Means, which is
based on the mixture of Gaussian distributions. This approach of K -Means uses probability
density rather than distance to associate records with clusters (Berry and Linoff, 1996). More
specifically, it regards the centers of clusters as means of Gaussian distributions. Then, it
estimates the probability that a data point is generated by j th Gaussian (i.e., belongs to
j th cluster). This approach is based on Gaussian model to extract clusters and assigns the
data points to clusters assuming that they are generated by normal distribution. Also, this
approach is implemented only in the case of algorithms, which are based on EM (Expectation
Maximization) algorithm.

3. Comparison of clustering algorithms

Clustering is broadly recognized as a useful tool in many applications. Researchers of many
disciplines have addressed the clustering problem. However, it is a difficult problem, which
combines concepts of diverse scientific fields (such as databases, machine learning, pattern
recognition, statistics). Thus, the differences in assumptions and context among different
research communities caused a number of clustering methodologies and algorithms to be
defined.

This section offers an overview of the main characteristics of the clustering algorithms
presented in a comparative way. We consider the algorithms categorized in four groups
based on their clustering method: partitional, hierarchical, density-based and grid-based
algorithms. Tables 1–4 summarize the main concepts and the characteristics of the most
representative algorithms of these clustering categories. More specifically our study is based
on the following features of the algorithms: i) the type of the data that an algorithm supports
(numerical, categorical), ii) the shape of clusters, iii) ability to handle noise and outliers,
iv) the clustering criterion and, v) complexity. Moreover, we present the input parameters of
the algorithms while we study the influence of these parameters to the clustering results.
Finally we describe the type of algorithms results, i.e., the information that an algorithm
gives so as to represent the discovered clusters in a data set.

As Table 1 depicts, partitional algorithms are applicable mainly to numerical data sets.
However, there are some variants of K-Means such as K-mode, which handle categorical
data. K-Mode is based on K-means method to discover clusters while it adopts new concepts
in order to handle categorical data. Thus, the cluster centers are replaced with “modes”, a
new dissimilarity measure used to deal with categorical objects. Another characteristic of
partitional algorithms is that they are unable to handle noise and outliers and they are not
suitable to discover clusters with non-convex shapes. Moreover, they are based on certain
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assumption to partition a data set. Thus, they need to specify the number of clusters in
advance except for CLARANS, which needs as input the maximum number of neighbours
of a node as well as the number of local minima that will be found in order to define a
partitioning of a dataset. The result of clustering process is the set of representative points
of the discovered clusters. These points may be the centers or the medoids (most centrally
located object within a cluster) of the clusters depending on the algorithm. As regards the
clustering criteria, the objective of algorithms is to minimize the distance of the objects
within a cluster from the representative point of this cluster. Thus, the criterion of K-Means
aims at the minimization of the distance of objects belonging to a cluster from the cluster
center, while PAM from its medoid. CLARA and CLARANS, as mentioned above, are
based on the clustering criterion of PAM. However, they consider samples of the data set
on which clustering is applied and as a consequence they may deal with larger data sets
than PAM. More specifically, CLARA draws multiple samples of the data set and it applies
PAM on each sample. Then it gives the best clustering as the output. The problem of this
approach is that its efficiency depends on the sample size. Also, the clustering results are
produced based only on samples of a data set. Thus, it is clear that if a sample is biased,
a good clustering based on samples will not necessarily represent a good clustering of the
whole data set. On the other hand, CLARANS is a mixture of PAM and CLARA. A key
difference between CLARANS and PAM is that the former searches a subset of dataset in
order to define clusters (Ng and Han, 1994). The subsets are drawn with some randomness
in each step of the search, in contrast to CLARA that has a fixed sample at every stage. This
has the benefit of not confining a search to a localized area. In general terms, CLARANS is
more efficient and scalable than both CLARA and PAM. The algorithms described above
are crisp clustering algorithms, that is, they consider that a data point (object) may belong
to one and only one cluster. However, the boundaries of a cluster can hardly be defined
in a crisp way if we consider real-life cases. FCM is a representative algorithm of fuzzy
clustering which is based on K-means concepts in order to partition a data set into clusters.
However, it introduces the concept of uncertainty and it assigns the objects to the clusters
with an attached degree of belief. Thus, an object may belong to more than one cluster with
different degree of belief.

A summarized view of the characteristics of hierarchical clustering methods is pre-
sented in Table 2. The algorithms of this category create a hierarchical decomposition of
the database represented as dendrogram. They are more efficient in handling noise and
outliers than partitional algorithms. However, they break down due to their non-linear time
complexity (typically, complexity O(n2), where n is the number of points in the dataset) and
huge I /O cost when the number of input data points is large. BIRCH tackles this problem
using a hierarchical data structure called CF-tree for multiphase clustering. In BIRCH, a
single scan of the dataset yields a good clustering and one or more additional scans can
be used to improve the quality further. However, it handles only numerical data and it is
order-sensitive (i.e., it may generate different clusters for different orders of the same input
data). Also, BIRCH does not perform well when the clusters do not have uniform size and
shape since it uses only the centroid of a cluster when redistributing the data points in the
final phase. On the other hand, CURE employs a combination of random sampling and
partitioning to handle large databases. It identifies clusters having non-spherical shapes and



CLUSTERING VALIDATION TECHNIQUES 121

wide variances in size by representing each cluster by multiple points. The representative
points of a cluster are generated by selecting well-scattered points from the cluster and
shrinking them toward the centre of the cluster by a specified fraction. However, CURE is
sensitive to some parameters such as the number of representative points, the shrink fac-
tor used for handling outliers, number of partitions. Thus, the quality of clustering results
depends on the selection of these parameters. ROCK is a representative hierarchical clus-
tering algorithm for categorical data. It introduces a novel concept called “link” in order to
measure the similarity/proximity between a pair of data points. Thus, the ROCK clustering
method extends to non-metric similarity measures that are relevant to categorical data sets.
It also exhibits good scalability properties in comparison with the traditional algorithms
employing techniques of random sampling. Moreover, it seems to handle successfully data
sets with significant differences in the sizes of clusters.

The third category of our study is the density-based clustering algorithms (Table 3). They
suitably handle arbitrary shaped collections of points (e.g. ellipsoidal, spiral, cylindrical) as
well as clusters of different sizes. Moreover, they can efficiently separate noise (outliers).
Two widely known algorithms of this category, as mentioned above, are: DBSCAN and
DENCLUE. DBSCAN requires the user to specify the radius of the neighbourhood of a
point, Eps, and the minimum number of points in the neighbourhood, MinPts. Then, it
is obvious that DBSCAN is very sensitive to the parameters Eps and MinPts, which are
difficult to determine. Similarly, DENCLUE requires careful selection of its input param-
eters’ value (i.e., σ and ξ), since such parameters may influence the quality of clustering
results. However, the major advantage of DENCLUE in comparison with other clustering
algorithms are (Han and Kamber, 2001): i) it has a solid mathematical foundation and gen-
eralized other clustering methods, such as partitional, hierarchical, ii) it has good clustering
properties for data sets with large amount of noise, iii) it allows a compact mathematical
description of arbitrary shaped clusters in high-dimensional data sets, iv) it uses grid cells
and only keeps information about the cells that actually contain points. It manages these
cells in a tree-based access structure and thus it is significant faster than some influential
algorithms such as DBSCAN. In general terms the complexity of density based algorithms
is O(nlogn). They do not perform any sort of sampling, and thus they could incur substantial
I/O costs. Finally, density-based algorithms may fail to use random sampling to reduce the
input size, unless sample’s size is large. This is because there may be substantial difference
between the density in the sample’s cluster and the clusters in the whole data set.

The last category of our study (see Table 4) refers to grid-based algorithms. The basic
concept of these algorithms is that they define a grid for the data space and then do all the
operations on the quantised space. In general terms these approaches are very efficient for
large databases and are capable of finding arbitrary shape clusters and handling outliers.
STING is one of the well-known grid-based algorithms. It divides the spatial area into
rectangular cells while it stores the statistical parameters of the numerical features of the
objects within cells. The grid structure facilitates parallel processing and incremental up-
dating. Since STING goes through the database once to compute the statistical parameters
of the cells, it is generally an efficient method for generating clusters. Its time complexity
is O(n). However, STING uses a multiresolution approach to perform cluster analysis and
thus the quality of its clustering results depends on the granularity of the lowest level of grid.
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Moreover, STING does not consider the spatial relationship between the children and their
neighbouring cells to construct the parent cell. The result is that all cluster boundaries are
either horizontal or vertical and thus the quality of clusters is questionable (Sheikholeslami
et al., 1998). On the other hand, WaveCluster efficiently achieves to detect arbitrary shape
clusters at different scales exploiting well-known signal processing techniques. It does not
require the specification of input parameters (e.g. the number of clusters or a neighbourhood
radius), though a-priori estimation of the expected number of clusters helps in selecting the
correct resolution of clusters. In experimental studies, WaveCluster was found to outper-
form BIRCH, CLARANS and DBSCAN in terms of efficiency and clustering quality. Also,
the study shows that it is not efficient in high dimensional space (Han and Kamber, 2001).

4. Cluster validity assessment

One of the most important issues in cluster analysis is the evaluation of clustering results
to find the partitioning that best fits the underlying data. This is the main subject of cluster
validity. In the sequel we discuss the fundamental concepts of this area while we present
the various cluster validity approaches proposed in literature.

4.1. Problem specification

The objective of the clustering methods is to discover significant groups present in a data
set. In general, they should search for clusters whose members are close to each other (in
other words have a high degree of similarity) and well separated. A problem we face in
clustering is to decide the optimal number of clusters that fits a data set.

In most algorithms’ experimental evaluations 2D-data sets are used in order that the
reader is able to visually verify the validity of the results (i.e., how well the clustering
algorithm discovered the clusters of the data set). It is clear that visualization of the data
set is a crucial verification of the clustering results. In the case of large multidimensional
data sets (e.g. more than three dimensions) effective visualization of the data set would be
difficult. Moreover the perception of clusters using available visualization tools is a difficult
task for humans that are not accustomed to higher dimensional spaces.

The various clustering algorithms behave in a different way depending on:

i) the features of the data set (geometry and density distribution of clusters),
ii) the input parameters values

For instance, assume the data set in figure 2a. It is obvious that we can discover three
clusters in the given data set. However, if we consider a clustering algorithm (e.g. K -
Means) with certain parameter values (in the case of K -means the number of clusters)
so as to partition the data set in four clusters, the result of clustering process would be the
clustering scheme presented in figure 2b. In our example the clustering algorithm (K -Means)
found the best four clusters in which our data set could be partitioned. However, this is not
the optimal partitioning for the considered data set. We define, here, the term “optimal”
clustering scheme as the outcome of running a clustering algorithm (i.e., a partitioning) that
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Figure 2. (a) A data set that consists of 3 clusters, (b) The results from the application of K -means when we ask
four clusters.

best fits the inherent partitions of the data set. It is obvious from figure 2b that the depicted
scheme is not the best for our data set i.e., the clustering scheme presented in figure 2b does
not fit well the data set. The optimal clustering for our data set will be a scheme with three
clusters.

As a consequence, if the clustering algorithm parameters are assigned an improper value,
the clustering method may result in a partitioning scheme that is not optimal for the specific
data set leading to wrong decisions. The problems of deciding the number of clusters better
fitting a data set as well as the evaluation of the clustering results has been subject of several
research efforts (Dave, 1996; Gath and Geva, 1989; Rezaee et al., 1998; Smyth, 1996;
Theodoridis and Koutroubas, 1999; Xie and Beni, 1991).

In the sequel, we discuss the fundamental concepts of clustering validity and we present
the most important criteria in the context of clustering validity assessment.

4.2. Fundamental concepts of cluster validity

The procedure of evaluating the results of a clustering algorithm is known under the term
cluster validity. In general terms, there are three approaches to investigate cluster validity
(Theodoridis and Koutroubas, 1999). The first is based on external criteria. This implies
that we evaluate the results of a clustering algorithm based on a pre-specified structure,
which is imposed on a data set and reflects our intuition about the clustering structure
of the data set. The second approach is based on internal criteria. We may evaluate the
results of a clustering algorithm in terms of quantities that involve the vectors of the data
set themselves (e.g. proximity matrix). The third approach of clustering validity is based on
relative criteria. Here the basic idea is the evaluation of a clustering structure by comparing
it to other clustering schemes, resulting by the same algorithm but with different parameter
values. There are two criteria proposed for clustering evaluation and selection of an optimal
clustering scheme (Berry and Linoff, 1996):

1. Compactness, the members of each cluster should be as close to each other as possible.
A common measure of compactness is the variance, which should be minimized.
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2. Separation, the clusters themselves should be widely spaced. There are three common
approaches measuring the distance between two different clusters:

• Single linkage: It measures the distance between the closest members of the clusters.
• Complete linkage: It measures the distance between the most distant members.
• Comparison of centroids: It measures the distance between the centers of the clusters.

The two first approaches are based on statistical tests and their major drawback is their
high computational cost. Moreover, the indices related to these approaches aim at measuring
the degree to which a data set confirms an a-priori specified scheme. On the other hand, the
third approach aims at finding the best clustering scheme that a clustering algorithm can be
defined under certain assumptions and parameters.

A number of validity indices have been defined and proposed in literature for each of
above approaches (Halkidi et al., 2000; Rezaee et al., 1998; Sharma, 1996; Theodoridis and
Koutroubas, 1999; Xie and Beni, 1991).

4.3. Validity indices

In this section, we discuss methods suitable for quantitative evaluation of the clustering
results, known as cluster validity methods. However, we have to mention that these methods
give an indication of the quality of the resulting partitioning and thus they can only be
considered as a tool at the disposal of the experts in order to evaluate the clustering results.
In the sequel, we describe the fundamental criteria for each of the above described cluster
validity approaches as well as their representative indices.

4.3.1. External criteria. In this approach the basic idea is to test whether the points of
the data set are randomly structured or not. This analysis is based on the Null Hypothesis,
H0, expressed as a statement of random structure of a dataset, let X . To test this hypothesis
we are based on statistical tests, which lead to a computationally complex procedure. In
the sequel Monde Carlo techniques are used as a solution to high computational problems
(Theodoridis and Koutroubas, 1999).

4.3.1.1. How Monde Carlo is used in cluster validity. The goal of using Monde Carlo
techniques is the computation of the probability density function of the defined statistic
indices. First, we generate a large amount of synthetic data sets. For each one of these
synthetic data sets, called Xi , we compute the value of the defined index, denoted qi . Then
based on the respective values of qi for each of the data sets Xi , we create a scatter-plot. This
scatter-plot is an approximation of the probability density function of the index. In figure 3
we see the three possible cases of probability density function’s shape of an index q. There
are three different possible shapes depending on the critical interval Dρ , corresponding to
significant level ρ (statistic constant). As we can see the probability density function of a
statistic index q , under H0, has a single maximum and the Dρ region is either a half line,
or a union of two half lines.
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Figure 3. Confidence interval for (a) two-tailed index, (b) right-tailed index, (c) left-tailed index, where q0
p is

the ρ proportion of q under hypothesis H0. (Theodoridis and Koutroubas, 1999).

Assuming that this shape is right-tailed (figure 3b) and that we have generated the scatter-
plot using r values of the index q , called qi , in order to accept or reject the Null Hypothesis
H0 we examine the following conditions (Theodoridis and Koutroubas, 1999):

We reject (accept) H0 If q’s value for our data set, is gr-
eater (smaller) than (1->)·r of qi values, of the respective
synthetic data sets Xi.
Assuming that the shape is left-tailed (figure 3c), we rej-
ect (accept) H0 if q’s value for our data set, is smaller
(greater) than > · r of qi values.
Assuming that the shape is two-tailed (figure 3a) we acc-
ept H0 if q is greater than (>/2)·r number of qi values and
smaller than (1- >/2)·r of qi values.

Based on the external criteria we can work in two different ways. Firstly, we can evaluate
the resulting clustering structure C, by comparing it to an independent partition of the data
P built according to our intuition about the clustering structure of the data set. Secondly,
we can compare the proximity matrix P to the partition P.

4.3.1.2. Comparison of C with partition P (not for hierarchy of clustering). Consider C =
{C1· · ·Cm} is a clustering structure of a data set X and P = {P1· · ·Ps} is a defined partition
of the data. We refer to a pair of points (xv, xu) from the data set using the following
terms:
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• SS: if both points belong to the same cluster of the clustering structure C and to the same
group of partition P.

• SD: if points belong to the same cluster of C and to different groups of P.
• DS: if points belong to different clusters of C and to the same group of P.
• DD: if both points belong to different clusters of C and to different groups of P.

Assuming now that a, b, c and d are the number of SS, SD, DS and DD pairs respectively,
then a +b + c +d = M which is the maximum number of all pairs in the data set (meaning,
M = N (N − 1)/2 where N is the total number of points in the data set).

Now we can define the following indices to measure the degree of similarity between C
and P:

• Rand Statistic: R = (a + d)/M ,
• Jaccard Coefficient: J = a/(a + b + c),

The above two indices take values between 0 and 1, and are maximized when m = s.
Another index is the:

• Folkes and Mallows index:

FM = a/
√

m1m2 =
√

a

a + b
· a

a + c
(2)

where m1 =  (a + b), m2 =  (a + c).
For the previous three indices it has been proven that high values of indices indicate great

similarity between C and P. The higher the values of these indices are the more similar C
and P are. Other indices are:

• Huberts � statistic:

� = (1/M)

N−1∑
i=1

N∑
j=i+1

X (i, j)Y (i, j) (3)

High values of this index indicate a strong similarity between X and Y .
• Normalized � statistic:

�̄ =
[
(1/M)

N−1∑
i=1

N∑
j=i+1

(X (i, j) − µx )(Y (i, j) − µY )

]/
σXσY (4)

where X (i, j) and Y (i, j) are the (i, j) element of the matrices X ,Y respectively that we have
to compare. Also µx , µy , σx , σy are the respective means and variances of X ,Y matrices.
This index takes values between −1 and 1.

All these statistics have right-tailed probability density functions, under the random
hypothesis. In order to use these indices in statistical tests we must know their respective
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probability density function under the Null Hypothesis H0, which is the hypothesis of
random structure of our data set. This means that using statistical tests, if we accept the
Null Hypothesis then our data are randomly distributed. However, the computation of the
probability density function of these indices is difficult. A solution to this problem is to use
Monde Carlo techniques. The procedure is as follows:

1. For i = 1 to r

• Generate a data set Xi with N vectors (points) in the area of X , which means that the
generated vectors have the same dimension with those of the data set X .

• Assign each vector y j,i of Xi to the group that x j ∈ X belongs, according to the partition
P.

• Run the same clustering algorithm used to produce structure C , for each Xi , and let
Ci the resulting clustering structure.

• Compute q(Ci ) value of the defined index q for P and Ci .

End For
2. Create scatter-plot of the r validity index values, q(Ci ) (that computed into the for loop).

After having plotted the approximation of the probability density function of the defined
statistic index, we compare its value, let q, to the q(Ci ) values, let qi . The indices R, J ,
FM, � defined previously are used as the q index mentioned in the above procedure.

Example: Assume a given data set, X , containing 100 three-dimensional vectors (points).
The points of X form four clusters of 25 points each. Each cluster is generated by a normal
distribution. The covariance matrices of these distributions are all equal to 0.2I , where I
is the 3 × 3 identity matrix. The mean vectors for the four distributions are [0.2, 0.2, 0.2]T,
[0.5, 0.2, 0.8]T, [0.5, 0.8, 0.2]T, and [0.8, 0.8, 0.8]T. We independently group data set X in
four groups according to the partition P for which the first 25 vectors (points) belong to the
first group P1, the next 25 belong to the second group P2, the next 25 belong to the third
group P3 and the last 25 vectors belong to the fourth group P4. We run k-means clustering
algorithm for k = 4 clusters and we assume that C is the resulting clustering structure. We
compute the values of the indices for the clustering C and the partition P, and we get R =
0.91, J = 0.68, FM = 0.81 and � = 0.75. Then we follow the steps described above in order
to define the probability density function of these four statistics. We generate 100 data sets
Xi , i = 1, . . . , 100, and each one of them consists of 100 random vectors (in 3 dimensions)
using the uniform distribution. According to the partition P defined earlier for each Xi we
assign the first 25 of its vectors to P1 and the second, third and forth groups of 25 vectors
to P2, P3 and P4 respectively. Then we run k-means i-times, one time for each Xi , so as
to define the respective clustering structures of datasets, denoted Ci . For each of them we
compute the values of the indices Ri , Ji , FMi , �i , i = 1, . . . , 100. We set the significance
level ρ = 0.05 and we compare these values to the R, J , FM and � values corresponding
to X . We accept or reject the null hypothesis whether (1 − ρ) · r = (1 − 0.05)100 = 95
values of Ri , Ji , FMi , �i are greater or smaller than the corresponding values of R, J , FM,
�. In our case the Ri , Ji , FMi , �i values are all smaller than the corresponding values of
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R, J , FM, and �, which lead us to the conclusion that the null hypothesis H0 is rejected.
Something that we were expecting because of the predefined clustering structure of data set
X .

4.3.1.3. Comparison of P (proximity matrix) with partition P. Partition P can be considered
as a mapping

g : X → {1 · · · nc}.

Assuming matrix Y : Y (i, j) = {1, if g(xi ) �= g(x j ) and 0, otherwise}, i, j = 1 · · · N , we
can compute � (or normalized �) statistic using the proximity matrix P and the matrix Y .
Based on the index value, we may have an indication of the two matrices’ similarity.

To proceed with the evaluation procedure we use the Monde Carlo techniques as men-
tioned above. In the “Generate” step of the procedure we generate the corresponding map-
pings gi for every generated Xi data set. So in the “Compute” step we compute the matrix
Yi , for each Xi in order to find the �i corresponding statistic index.

4.3.2. Internal criteria. Using this approach of cluster validity our goal is to evaluate the
clustering result of an algorithm using only quantities and features inherent to the dataset.
There are two cases in which we apply internal criteria of cluster validity depending on the
clustering structure: a) hierarchy of clustering schemes, and b) single clustering scheme.

4.3.2.1. Validating hierarchy of clustering schemes. A matrix called cophenetic matrix, Pc,
can represent the hierarchy diagram that produced by a hierarchical algorithm. The Pc(i, j)
element of cophenetic matrix represents the proximity level at which the two vectors xi

and x j are found in the same cluster for the first time. We may define a statistical index to
measure the degree of similarity between Pc and P (proximity matrix) matrices. This index
is called Cophenetic Correlation Coefficient and defined as:

CPCC = (1/M)
∑N−1

i=1

∑N
j=i+1 di j ci j − µPµc√[

(1/M)
∑N−1

i=1

∑N
j=i+1 d2

i j − µ2
P

][
(1/M)

∑N−1
i=1

∑N
j=i+1 c2

i j − µ2
C

] ,

− 1 ≤ CPCC ≤ 1 (5)

where M = N · (N − 1)/2 and N is the number of points in a dataset. Also, µpand µc are
the means of matrices P and Pc respectively, and are given by Eq. (6):

µP = (1/M)

N−1∑
i=1

N∑
j=i+1

P(i, j), µC = (1/M)

N−1∑
i=1

N∑
j=i+1

Pc(i, j) (6)

Moreover, di j , ci j are the (i, j) elements of P and Pc matrices respectively. A value of
the index close to 0 is an indication of a significant similarity between the two matrices.
The procedure of the Monde Carlo techniques described above is also used in this case of
validation.
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4.3.2.2. Validating a single clustering scheme. The goal here is to find the degree of
agreement between a given clustering scheme C , consisting of nc clusters, and the proximity
matrix P . The defined index for this approach is Hubert’s � statistic (or normalized �

statistic). An additional matrix for the computation of the index is used, that is Y (i, j) =
{1, if xi and x j belong to different clusters, and 0 , otherwise}, i, j = 1, . . . , N .

The application of Monde Carlo techniques is also here the way to test the random
hypothesis in a given data set.

4.3.3. Relative criteria. The basis of the above described validation methods is statistical
testing. Thus, the major drawback of techniques based on internal or external criteria is their
high computational demands. A different validation approach is discussed in this section.
It is based on relative criteria and does not involve statistical tests. The fundamental idea of
this approach is to choose the best clustering scheme of a set of defined schemes according
to a pre-specified criterion. More specifically, the problem can be stated as follows:

“Let Palg the set of parameters associated with a specific clustering algorithm (e.g. the
number of clusters nc). Among the clustering schemes Ci , i = 1, . . . , nc, defined by a specific
algorithm, for different values of the parameters in Palg, choose the one that best fits the
data set.”
Then, we can consider the following cases of the problem:

I) Palg does not contain the number of clusters, nc, as a parameter. In this case, the
choice of the optimal parameter values are described as follows: We run the algorithm
for a wide range of its parameters’ values and we choose the largest range for which nc
remains constant (usually nc << N (number of tuples)). Then we choose as appropriate
values of the Palg parameters the values that correspond to the middle of this range.
Also, this procedure identifies the number of clusters that underlie our data set.

II) Palg contains nc as a parameter. The procedure of identifying the best clustering
scheme is based on a validity index. Selecting a suitable performance index, q, we
proceed with the following steps:

• We run the clustering algorithm for all values of nc between a minimum ncmin and a
maximum ncmax. The minimum and maximum values have been defined a-priori by
user.

• For each of the values of nc, we run the algorithm r times, using different set of values
for the other parameters of the algorithm (e.g. different initial conditions).

• We plot the best values of the index q obtained by each nc as the function of nc.

Based on this plot we may identify the best clustering scheme. We have to stress that
there are two approaches for defining the best clustering depending on the behaviour of q
with respect to nc. Thus, if the validity index does not exhibit an increasing or decreasing
trend as nc increases we seek the maximum (minimum) of the plot. On the other hand,
for indices that increase (or decrease) as the number of clusters increase we search for the
values of nc at which a significant local change in value of the index occurs. This change
appears as a “knee” in the plot and it is an indication of the number of clusters underlying
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the dataset. Moreover, the absence of a knee may be an indication that the data set possesses
no clustering structure.

In the sequel, some representative validity indices for crisp and fuzzy clustering are
presented.

4.3.3.1. Crisp clustering. This section discusses validity indices suitable for crisp cluster-
ing.

The modified Hubert � statistic. The definition of the modified Hubert � statistic is given
by the equation

� = (1/M)

N−1∑
i=1

N∑
j=i+1

P(i, j) · Q(i, j) (7)

where M = N (N − 1)/2, P is the proximity matrix of the data set and Q is an N × N
matrix whose (i, j) element is equal to the distance between the representative points (vci ,
vcj ) of the clusters where the objects xi and x j belong.

Similarly, we can define the normalized Hubert � statistic (given by Eq. (4)). If the d(vci ,
vcj ) is close to d(xi , x j ) for i, j = 1, 2, . . . , N , P and Q will be in close agreement and the
values of � and

∧
� (normalized �) will be high. Conversely, a high value of � (

∧
�) indicates

the existence of compact clusters. Thus, in the plot of normalized � versus nc, we seek a
significant knee that corresponds to a significant increase of normalized �. The number of
clusters at which the knee occurs is an indication of the number of clusters that underlie the
data. We note, that for nc = 1 and nc = N the index is not defined.

Dunn and Dunn-like indices. A cluster validity index for crisp clustering proposed in
Dunn (1974), attempts to identify “compact and well separated clusters”. The index is
defined by Eq. (8) for a specific number of clusters

Dnc = min
i=1,...,nc

{
min

j=i+1,...,nc

(
d(ci , c j )

maxk=1,...,ncdiam (ck)

)}
(8)

where d(ci , c j ) is the dissimilarity function between two clusters ci and c j defined as

d(ci , c j ) = min
x∈ci ,y∈c j

d(x, y) , (9)

and diam(c) is the diameter of a cluster, which may be considered as a measure of dispersion
of the clusters. The diameter of a cluster C can be defined as follows:

diam(C) = max
x,y∈C

d(x, y) (10)

It is clear that if the dataset contains compact and well-separated clusters, the distance
between the clusters is expected to be large and the diameter of the clusters is expected to
be small. Thus, based on the Dunn’s index definition, we may conclude that large values of
the index indicate the presence of compact and well-separated clusters.
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The index Dnc does not exhibit any trend with respect to number of clusters. Thus,
the maximum in the plot of Dnc versus the number of clusters can be an indication of
the number of clusters that fits the data. The implications of the Dunn index are: i) the
considerable amount of time required for its computation, ii) the sensitive to the presence
of noise in datasets, since these are likely to increase the values of diam(c) (i.e., dominator
of Eq. (8))

Three indices, are proposed in Pal and Biswas (1997) that are more robust to the presence
of noise. They are widely known as Dunn-like indices since they are based on Dunn index.
Moreover, the three indices use for their definition the concepts of the minimum spanning
tree (MST), the relative neighbourhood graph (RNG) and the Gabriel graph respectively
(Theodoridis and Koutroubas, 1999).

Consider the index based on MST. Let a cluster ci and the complete graph Gi whose
vertices correspond to the vectors of ci . The weight, we, of an edge, e, of this graph equals
the distance between its two end points, x , y. Let EMST

i be the set of edges of the MST of
the graph Gi and eMST

i the edge in EMST
i with the maximum weight. Then the diameter of

Ci is defined as the weight of eMST
i . Then the Dunn-like index based on the concept of the

MST is given by equation

Dnc = min
i=1,...,nc

{
min

j=i+1,...,nc

(
d(ci , c j )

maxk=1,...,ncdiamMST
k

)}
(11)

The number of clusters at which DMST
m takes its maximum value indicates the number of

clusters in the underlying data. Based on similar arguments we may define the Dunn-like
indices for GG nad RGN graphs.

The Davies-Bouldin (DB) index. A similarity measure Ri j between the clusters Ci and
C j is defined based on a measure of dispersion of a cluster Ci and a dissimilarity measure
between two clusters di j . The Ri j index is defined to satisfy the following conditions (Davies
and Bouldin, 1979):

1. Ri j ≥ 0
2. Ri j = R ji

3. if si = 0 and s j = 0 then Ri j = 0
4. if s j > sk and di j = dik then Ri j > Rik

5. if s j = sk and di j < dik then Ri j < Rik .

These conditions state that Ri j is nonnegative and symmetric.
A simple choice for Ri j that satisfies the above conditions is Davies and Bouldin

(1979):

Ri j = (si + s j )/di j . (12)
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Then the DB index is defined as

DBnc = 1

nc

nc∑
i=1

Ri

(13)
Ri = max

i=1,...,nc,i �= j
Ri j , i = 1, . . . , nc

It is clear for the above definition that DBnc is the average similarity between each cluster
ci , i = 1, . . . , nc and its most similar one. It is desirable for the clusters to have the minimum
possible similarity to each other; therefore we seek clusterings that minimize DB. The DBnc

index exhibits no trends with respect to the number of clusters and thus we seek the minimum
value of DBnc in its plot versus the number of clusters.

Some alternative definitions of the dissimilarity between two clusters as well as the
dispersion of a cluster, ci , is defined in Davies and Bouldin (1979).

Moreover, in Pal and Biswas (1997) three variants of the DBnc index are proposed. They
are based on MST, RNG and GG concepts similarly to the cases of the Dunn-like indices.

Other validity indices for crisp clustering have been proposed in Dave (1996) and Mil-
ligan et al. (1983). The implementation of most of these indices is very computationally
expensive, especially when the number of clusters and number of objects in the data set
grows very large (Xie and Beni, 1991). In Milligan and Cooper (1985), an evaluation study
of thirty validity indices proposed in literature is presented. It is based on small data sets
(about 50 points each) with well-separated clusters. The results of this study (Milligan
and Cooper, 1985) place Caliski and Harabasz (1974), Je(2)/Je(1) (1984), C-index (1976),
Gamma and Beale among the six best indices. However, it is noted that although the re-
sults concerning these methods are encouraging they are likely to be data dependent. Thus,
the behaviour of indices may change if different data structures were used (Milligan and
Cooper, 1985). Also, some indices based on a sample of clustering results. A representative
example is Je(2)/Je(1) which is computed based only on the information provided by the
items involved in the last cluster merge.

RMSSDT, SPR, RS, CD. In this point we will give the definitions of four validity indices,
which have to be used simultaneously to determine the number of clusters existing in the
data set. These four indices can be applied to each step of a hierarchical clustering algorithm
and they are known as (Sharma, 1996):

• Root-mean-square standard deviation (RMSSTD) of the new cluster
• Semi-partial R-squared (SPR)
• R-squared (RS)
• Distance between two clusters.

Getting into a more detailed description of them we can say that:
RMSSTD of a new clustering scheme defined in a level of clustering hierarchy is the

square root of the pooled sample variance of all the variables (attributes used in the clustering
process). This index measures the homogeneity of the formed clusters at each step of the
hierarchical algorithm. Since the objective of cluster analysis is to form homogeneous
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groups the RMSSTD of a cluster should be as small as possible. In case that the values of
RMSSTD are higher at this step than the ones of the previous step, we have an indication
that the new clustering scheme is not homogenous.

In the following definitions we shall use the symbolism SS, which means Sum of Squares
and refers to the equation: SS = ∑n

i=1 (Xi − X̄)
2
. Along with this we shall use some addi-

tional symbolism like:

i) SSw referring to the within group sum of squares,
ii) SSb referring to the between groups sum of squares.

iii) SSt referring to the total sum of squares, of the whole data set.

SPR of the new cluster is the difference between the pooled SSw of the new cluster
and the sum of the pooled SSw’s values of clusters joined to obtain the new cluster (loss
of homogeneity), divided by the pooled SSt for the whole data set. This index measures
the loss of homogeneity after merging the two clusters of a single algorithm step. If the
index value is zero then the new cluster is obtained by merging two perfectly homogeneous
clusters. If its value is high then the new cluster is obtained by merging two heterogeneous
clusters.

RS of the new cluster is the ratio of SSb to SSt. As we can understand SSb is a measure
of difference between groups. Since SSt = SSb + SSw the greater the SSb the smaller the
SSw and vise versa. As a result, the greater the differences between groups are the more
homogenous each group is and vise versa. Thus, RS may be considered as a measure of the
degree of difference between clusters. Furthermore, it measures the degree of homogeneity
between groups. The values of RS range between 0 and 1. In case that the value of RS
is zero (0) indicates that no difference exists among groups. On the other hand, when RS
equals 1 there is an indication of significant difference among groups.

The CD index measures the distance between the two clusters that are merged in a
given step. This distance is measured each time depending on the selected representatives
for the hierarchical clustering we perform. For instance, in case of Centroid hierarchical
clustering the representatives of the formed clusters are the centers of each cluster, so CD
is the distance between the centers of the clusters. In case that we use single linkage CD
measures the minimum Euclidean distance between all possible pairs of points. In case of
complete linkage CD is the maximum Euclidean distance between all pairs of data points,
and so on.

Using these four indices we determine the number of clusters that exist into our data set,
plotting a graph of all these indices values for a number of different stages of the clustering
algorithm. In this graph we search for the steepest knee, or in other words, the greater jump
of these indices’ values from higher to smaller number of clusters.

Example: Assume the data set presented in Table 5. After running hierarchical clustering
with Centroid method we evaluate our clustering structure using the above-defined indices.
The Agglomerative Schedule presented in Table 6 gives us the way that the algorithm
worked. Thus the indices computed as follows:
‘At stage (step) 4 for instance (see Table 6), the clusters 3 and 5 merged (meaning tuples
{S3, S4} and {S5, S6}). Merging these subjects the resulting cluster is called 3 (S3, S4).
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Table 5. Data set used in the example.

Subject Id Income ($ thous.) Education (years)

S1 5 5

S2 6 6

S3 15 14

S4 16 15

S5 25 20

S6 30 19

Table 6. Hierarchical algorithm results (centroid method).

Agglomeration schedule

Stage cluster first appearsCluster combined

Stage Cluster 1 Cluster 2 Coefficients Cluster 1 Cluster 2 Next Stage

1 3 4 2.000 0 0 4

2 1 2 2.000 0 0 5

3 5 6 26.000 0 0 4

4 3 5 169.000 1 3 5

5 1 3 388.250 2 4 0

The new cluster is denoted using the smaller label number of the clusters’ labels that are
merged. At stage (step) 4:

RMSSTD: Sample variances and sample means analytic equation are:

S2 = 1

n − 1

n∑
i=1

(Xi − X̄)2, X̄ = 1

n

n∑
i=1

Xi ,

for variable income S2 = 157/3 = 52.333, and
for variable education S2 = 26/3 = 8.667. Then

RMSSTD =
√∑n

i=1(Xi − X̄)2
income + ∑m

e=1(Xe − X̄)2
education

(n − 1)income + (m − 1)education

where n, m (here m = n) are the respective number of values that variables income, education
have. From the previous equation we compute that RMSSTD = 5.523.

RS: Lets now compute RS index of the two merging clusters 3 ({S3, S4}) and 5 ({S5,
S6}). SSw(income)3 = 157 for variable income of cluster 3, and SSw(income)5 = 0.5 of cluster 5,
giving the total SSw(income) = 157.5 for variable income. Similarly for variable education we
have SSw(education)3 = 26, SSw(income)5 = 0.5 giving SSw(income) = 26.5. So the pooled sum



CLUSTERING VALIDATION TECHNIQUES 135

Table 7. Indices values.

Stage (step) RMSSTD SPR RS CD

1 0.707107 0.001425 0.998575 1.4142

2 0.707107 0.001425 0.997150 1.4142

3 2.549510 0.018527 0.978622 5.0990

4 5.522681 0.240855 0.737767 13

5 8.376555 0.737767 0.000000 19.7041

of squares within clusters among all the variables is SSw = 157,5 + 26.5 = 184. SSt pooled
from all the variables of the data set is 701.166, then SSb = SSt − SSw = 701.166 − 184 =
517.166. Using these we can compute RS = 517.166/701.166 = 0.738.

SPR: at this stage 4, the Loh(loss of homogeneity) = SSw(of new cluster 3) − [SSw(cl3) +
SSw(cl5)], so SPR = Loh/SSt = [0*(183) − (1+13)]/701.166 = 0.241.

CD: This index is shown at Table 6, in coefficients column.

The same procedure is followed to find the values of each index for the rest of the
algorithm’s stages. Table 7 summarizes all these values. Based on these values we plot the
graphs shown in figure 4. In these graphs we search for a point at which a significant change
in values of each of the consider indices occur.

In the case of nonhierarchical clustering (e.g. K -Means) we may also use some of these
indices in order to evaluate the resulting clustering. The indices that are more meaningful
to use in this case are RMSSTD and RS. The idea, here, is to run the algorithm a number of
times for different number of clusters each time. Then we plot the respective graphs of the
validity indices for these clusterings and as the previous example shows, we search for the
significant “knee” in these graphs. The number of clusters at which the “knee” is observed
indicates the optimal clustering for our data set. In this case the validity indices described

Figure 4. Validity graphs.
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before take the following form:

RMSSTD =



∑
i=1...nc
j=1...d

∑ni j

k=1 (xk − x̄ j )
2

∑
i=1...nc
j=1...d

(ni j − 1)




1
2

(14)

RS=
{∑

j=1···d
[∑n j

k=1 (xk − x̄ j )
2
]} −

{∑
i=1···nc
j=1···d

[∑ni j

k=1 (xk − x̄ j )
2
]}

∑
j=1···d

[∑n j

k=1 (xk − x̄ j )2
] (15)

where nc is the number of clusters, d the number of variables(data dimension), n j is the
number of data values of j dimension while ni j corresponds to the number of data values
of j dimension that belong to cluster i . Also x j is the mean of data values of j dimension.

The SD validity index. A most recent clustering validity approach is proposed in Halkidi,
et al. (2000). The SD validity index is defined based on the concepts of the average scattering
for clusters and total separation between clusters. In the sequel, we give the fundamental
definition for this index.
Average scattering for clusters. The average scattering for clusters is defined as

Scat (nc) = 1

nc

nc∑
i=1

‖σ(vi )‖/‖σ(X)‖ (16)

Total separation between clusters. The definition of total scattering (separation) between
clusters is given by Eq. (17)

Dis(nc) = Dmax

Dmin

nc∑
k=1

(
nc∑

z=1

‖vk − vz‖
)−1

(17)

where Dmax = max(‖vi − v j‖) ∀i, j ∈ {1, 2, 3, . . . , nc} is the maximum distance between
cluster centers. The Dmin = min(‖vi − v j‖) ∀i, j ∈ {1, 2, . . . , nc} is the minimum distance
between cluster centers.

Now, we can define a validity index based on Eqs. (16) and (17), as follows

SD(nc) = a · Scat(nc) + Dis(nc) (18)

where K is a weighting factor equal to Dis(cmax) where cmax is the maximum number of
input clusters.

The first term (i.e., Scat(nc) is defined by Eq. (16) indicates the average compactness of
clusters (i.e., intra-cluster distance). A small value for this term indicates compact clusters
and as the scattering within clusters increases (i.e., they become less compact) the value
of Scat(nc) also increases. The second term Dis(nc) indicates the total separation between
the nc clusters (i.e., an indication of inter-cluster distance). Contrary to the first term the
second one, Dis(nc), is influenced by the geometry of the clusters centres and increase with
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the number of clusters. It is obvious for previous discussion that the two terms of SD are of
the different range, thus a weighting factor is needed in order to incorporate both terms in a
balanced way. The number of clusters, nc, that minimizes the above index can be considered
as an optimal value for the number of clusters present in the data set. Also, the influence
of the maximum number of clusters cmax, related to the weighting factor, in the selection
of the optimal clustering scheme is discussed in Halkidi et al. (2000). It is proved that SD
proposes an optimal number of clusters almost irrespectively of cmax. However, the index
cannot handle properly arbitrary shaped clusters. The same applies to all the aforementioned
indices.

4.3.3.2. Fuzzy clustering. In this section, we present validity indices suitable for fuzzy
clustering. The objective is to seek clustering schemes where most of the vectors of the
dataset exhibit high degree of membership in one cluster. We note, here, that a fuzzy
clustering is defined by a matrix U = [ui j ], where ui j denotes the degree of membership
of the vector xi in the j cluster. Also, a set of the cluster representatives has been defined.
Similarly to the crisp clustering case we define validity index, q, and we search for the
minimum or maximum in the plot of q versus m. Also, in case that q exhibits a trend with
respect to the number of clusters, we seek a significant knee of decrease (or increase) in the
plot of q .

In the sequel two categories of fuzzy validity indices are discussed. The first category
uses only the memberships values, ui j , of a fuzzy partition of data. On the other hand the
latter one involves both the U matrix and the dataset itself.

Validity Indices involving only the membership values. Bezdek proposed in Bezdeck et al.
(1984) the partition coefficient, which is defined as

PC = 1

N

N∑
i=1

nc∑
j=1

u2
i j (19)

The PC index values range in [1/nc, 1], where nc is the number of clusters. The closer
to unity the index the “crisper” the clustering is. In case that all membership values to a
fuzzy partition are equal, that is, ui j=1/nc, the PC obtains its lower value. Thus, the closer
the value of PC is to 1/nc, the fuzzier the clustering is. Furthermore, a value close to 1/nc
indicates that there is no clustering tendency in the considered dataset or the clustering
algorithm failed to reveal it.

The partition entropy coefficient is another index of this category. It is defined as

PE = − 1

N

N∑
i=1

nc∑
j=1

ui j · loga(ui j ) (20)

where a is the base of the logarithm. The index is computed for values of nc greater than 1
and its values ranges in [0, loganc]. The closer the value of PE to 0, the harder the clustering
is. As in the previous case, the values of index close to the upper bound (i.e., loganc),
indicate absence of any clustering structure in the dataset or inability of the algorithm to
extract it.
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The drawbacks of these indices are:

i) their monotonous dependency on the number of clusters. Thus, we seek significant
knees of increase (for PC) or decrease (for PE) in plot of the indices versus the number
of clusters.,

ii) their sensitivity to the fuzzifier, m. More specifically, as m →1 the indices give the
same values for all values of nc. On the other hand when m → ∞, both PC and PE
exhibit significant knee at nc = 2.

iii) the lack of direct connection to the geometry of the data (Dave, 1996), since they do
not use the data itself.

Indices involving the membership values and the dataset. The Xie-Beni index (Xie and
Beni, 1991), XB, also called the compactness and separation validity function, is a repre-
sentative index of this category.

Consider a fuzzy partition of the data set X = {x j ; j = 1, . . . , n} with vi (i = 1, . . . , nc}
the centers of each cluster and ui j the membership of data point j belonging to cluster i .

The fuzzy deviation of x j form cluster i , di j , is defined as the distance between x j and the
center of cluster weighted by the fuzzy membership of data point j belonging to cluster i .

di j = ui j‖x j − vi‖ (21)

Also, for a cluster i , the summation of the squares of fuzzy deviation of the data point in
X , denoted σi , is called variation of cluster i .

The summation of the variations of all clusters, σ , is called total variation of the data set.
The quantity π = (σi/ni ), is called compactness of cluster i . Since ni is the number of

point in cluster belonging to cluster i , π , is the average variation in cluster i .
Also, the separation of the fuzzy partitions is defined as the minimum distance between

cluster centres, that is

dmin = min‖vi − v j‖

Then the XB index is defined as

XB = π/N · dmin

where N is the number of points in the data set.
It is clear that small values of XB are expected for compact and well-separated clusters.

We note, however, that XB is monotonically decreasing when the number of clusters nc gets
very large and close to n. One way to eliminate this decreasing tendency of the index is to
determine a starting point, cmax, of the monotonic behaviour and to search for the minimum
value of XB in the range [2, cmax]. Moreover, the values of the index XB depend on the
fuzzifier values, so as if m → ∞ then XB → ∞.
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Another index of this category is the Fukuyama-Sugeno index, which is defined as

FSm =
N∑

i=1

nc∑
j=1

um
i j

(‖xi − vj‖2
A − ‖v j − v‖2

A

)
(22)

where v is the mean vector of X and A is an 1 × 1 positive definite, symmetric matrix.
When A = I , the above distance become the squared Euclidean distance. It is clear that
for compact and well-separated clusters we expect small values for FSm. The first term in
the parenthesis measures the compactness of the clusters and the second one measures the
distances of the clusters representatives.

Other fuzzy validity indices are proposed in Gath and Geva (1989), which are based on
the concepts of hypervolume and density. Let � j the fuzzy covariance matrix of the j-th
cluster defined as

� j =
∑N

i=1 um
i j
(xi − v j )(xi − v j )

T∑N
i=1 um

i j

(23)

The fuzzy hyper volume of j-th cluster is given by equation

Vj = |� j |1/2

where |� j | is the determinant of � j and is a measure of cluster compactness.
Then the total fuzzy hyper volume is given by the equation

FH =
nc∑
j=1

Vj (24)

Small values of FH indicate the existence of compact clusters.
The average partition density is also an index of this category. It can be defined as

PA = 1

nc

nc∑
j=1

Sj

Vj
(25)

Then Sj = ∑
x∈X j

ui j , where X j is the set of data points that are within a pre-specified
region around v j (i.e., the center of j cluster), is called the sum of the central members of
the j cluster

A different measure is the partition density index that is defined as

PD = S/FH (26)

where

S =
nc∑
j=1

Sj .
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A few other indices are proposed and discussed in Krishnapuram et al. (1993), Rezaee et al.
(1998).

4.4. Other approaches for cluster validity

Another approach for finding the best number of cluster of a data set proposed in Smyth
(1996). It introduces a practical clustering algorithm based on Monte Carlo cross-validation.
More specifically, the algorithm consists of M cross-validation runs over M chosen train/test
partitions of a data set, D. For each partition u, the EM algorithm is used to define nc clusters
to the training data, while nc is varied from 1 to cmax. Then, the log-likelihood Lu

c (D) is
calculated for each model with nc clusters. It is defined using the probability density function
of the data as

Lk(D) =
N∑

i=1

log fk(xi/�k) (27)

where fk is the probability density function for the data and �k denotes parameters that have
been estimated from data. This is repeated M times and the M cross-validated estimates are
averaged for each nc. Based on these estimates we may define the posterior probabilities
for each value of the number of clusters nc, p(nc/D). If one of p(nc/D) is near 1, there is
strong evidence that the particular number of clusters is the best for our data set.

The evaluation approach proposed in Smyth (1996) is based on density functions consid-
ered for the data set. Thus, it is based on concepts related to probabilistic models in order
to estimate the number of clusters, better fitting a data set, and it does not use concepts
directly related to the data, (i.e., inter-cluster and intra-clusters distances).

5. An experimental study of validity indices

In this section we present a comparative experimental evaluation of the important validity
measures, aiming at illustrating their advantages and disadvantages.

We consider the known relative validity indices proposed in the literature, such as RS-
RMSSTD (Sharma, 1996), DB (Theodoridis and Koutroubas, 1999) and the recent one SD
(Halkidi et al., 2000). The definitions of these validity indices can be found in Section 4.3.

RMSSTD and RS have to be taken into account simultaneously in order to find the
correct number of clusters. The optimal values of the number of clusters are those for
which a significant local change in values of RS and RMSSTD occurs. As regards DB, an
indication of the optimal clustering scheme is the point at which it takes its minimum value.

For our study, we used four synthetic two-dimensional data sets further referred to as
DataSet1, DataSet2, DataSet3 and DataSet4 (see figure 5a–d) and a real data set Real Data1
(figure 5e), representing a part of Greek road network (Theodoridis, 1999).

Table 8 summarizes the results of the validity indices (RS, RMSSDT, DB, SD), for
different clustering schemes of the above-mentioned data sets as resulting from a clustering
algorithm. For our study, we use the results of the algorithms K -means and CURE with
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Figure 5. Datasets.

their input value (number of clusters), ranging between 2 and 8. Indices RS, RMSSTD
propose the partitioning of DataSet1 into three clusters while DB selects six clusters as
the best partitioning. On the other hand, SD selects four clusters as the best partitioning
for DataSet1, which is the correct number of clusters fitting the data set. Moreover, the
index DB selects the correct number of clusters (i.e., seven) as the optimal partitioning
for DataSet3 while RS, RMSSTD and SD select the clustering scheme of five and six
clusters respectively. Also, all indices propose three clusters as the best partitioning for
Real Data1. In the case of DataSet2, DB and SD select three clusters as the optimal scheme,
while RS-RMSSDT selects two clusters (i.e., the correct number of clusters fitting the
data set).

Moreover, SD finds the correct number of clusters (three) for DataSet4, on the
contrary to RS–RMSSTD and DB indices, which propose four clusters as the best
partitioning.
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Table 8. Optimal number of clusters proposed by validity indices RS.

DataSet1 DataSet2 DataSet3 DataSet4 Real Data1

Optimal number of clusters

RS, RMSSTD 3 2 5 4 3

DB 6 3 7 4 3

SD 4 3 6 3 3

Here, we have to mention that the validity indices are not clustering algorithms them-
selves but a measure to evaluate the results of clustering algorithms and give an indication
of a partitioning that best fits a data set. The essence of clustering is not a totally re-
solved issue and depending on the application domain we may consider different aspects
as more significant. For instance, for a specific application it may be important to have
well separated clusters while for another to consider more the compactness of the clus-
ters. Having an indication of a good partitioning as proposed by the index, the domain
experts may analyse further the validation procedure results. Thus, they could select some
of the partitioning schemes proposed by indices, and select the one better fitting their
demands for crisp or overlapping clusters. For instance DataSet2 can be considered as
having three clusters with two of them slightly overlapping or having two well-separated
clusters.

6. Conclusions and trends in clustering

Cluster analysis is one of the major tasks in various research areas. However, it may be
found under different names in different contexts such as unsupervised learning in pattern
recognition, taxonomy in biology, partition in graph theory. The clustering aims at identi-
fying and extract significant groups in underlying data. Thus based on a certain clustering
criterion the data are grouped so that data points in a cluster are more similar to each other
than points in different clusters.

Since clustering is applied in many fields, a number of clustering techniques and al-
gorithms have been proposed and are available in literature. In this paper we presented
the main characteristics and applications of clustering algorithms. Moreover, we discussed
the different categories in which algorithms can be classified (i.e., partitional, hierchical,
density-based, grid-based, fuzzy clustering) and we presented representative algorithms
of each category. We concluded the discussion on clustering algorithms by a comparative
presentation and stressing the pros and cons of each category.

Another important issue that we discussed in this paper is the cluster validity. This is
related to the inherent features of the data set under concern. The majority of algorithms
are based on certain criteria in order to define the clusters in which a data set can be par-
titioned. Since clustering is an unsupervised method and there is no a-priori indication for
the actual number of clusters presented in a data set, there is a need of some kind of cluster-
ing results validation. We presented a survey of the most known validity criteria available
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in literature, classified in three categories: external, internal, and relative. Moreover, we
discussed some representative validity indices of these criteria along with sample experi-
mental evaluation.

6.1. Trends in clustering process

Though cluster analysis is subject of thorough research for many years and in a variety of
disciplines, there are still several open of research issues. We summarize some of the most
interesting trends in clustering as follows:

i) Discovering and finding representatives of arbitrary shaped clusters. One of the re-
quirements in clustering is the handling of arbitrary shaped clusters and there are some
efforts in this context. However, there is no well-established method to describe the
structure of arbitrary shaped clusters as defined by an algorithm. Considering that
clustering is a major tool for data reduction, it is important to find the appropriate repre-
sentatives of the clusters describing their shape. Thus, we may effectively describe the
underlying data based on clustering results while we achieve a significant compression
of the huge amount of stored data (data reduction).

ii) Non-point clustering. The vast majority of algorithms have only considered point ob-
jects, though in many cases we have to handle sets of extended objects such as (hyper)-
rectangles. Thus, a method that handles efficiently sets of non-point objects and dis-
covers the inherent clusters presented in them is a subject of further research with
applications in diverse domains (such as spatial databases, medicine, biology).

iii) Handling uncertainty in the clustering process and visualization of results. The major-
ity of clustering techniques assumes that the limits of clusters are crisp. Thus each data
point may be classified into at most one cluster. Moreover all points classified into a
cluster, belong to it with the same degree of belief (i.e., all values are treated equally in
the clustering process). The result is that, in some cases “interesting” data points fall
out of the cluster limits so they are not classified at all. This is unlikely to everyday life
experience where a value may be classified into more than one categories. Thus a further
work direction is taking in account the uncertainty inherent in the data. Another inter-
esting direction is the study of techniques that efficiently visualize multidimensional
clusters taking also in account uncertainty features.

iv) Incremental clustering. The clusters in a data set may change as insertions/updates and
deletions occur through out its life cycle. Then it is clear that there is a need of evaluating
the clustering scheme defined for a data set so as to update it in a timely manner.
However, it is important to exploit the information hidden in the earlier clustering
schemes so as to update them in an incremental way.

v) Constraint-based clustering. Depending on the application domain we may consider
different clustering aspects as more significant. It may be important to stress or ignore
some aspects of data according to the requirements of the considered application. In
recent years, there is a trend so that cluster analysis is based on less parameters but on
more constraints. These constrains may exist in data space or in users’ queries. Then a
clustering process has to be defined so as to take in account these constrains and define
the inherent clusters fitting a dataset.
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