and Ramasamy Uthurusamy, pages 181 — 192, Seattle, Washington, July 1994.

Efficient Algorithms for Discovering
Association Rules

Heikki Mannila Hannu Toivonen* A. Inkeri Verkamo

University of Helsinki, Department of Computer Science

P.O. Box 26 %Teollisuuskatu 23), FIN-00014 Helsinki, Finland

e-mail: {mannila, htoivone, verkamo }@cs.helsinki.fi

Abstract

Association rules are statements of the form “for 90 % of the rows of the relation,
if the row has value 1 in the columns in set W, then it has 1 also in column B”.
Agrawal, Imielinski, and Swami introduced the problem of mining association rules
from large collections of data, and gave a method based on successive passes over the
database. We give an improved algorithm for the problem. The method is based
on careful combinatorial analysis of the information obtained in previous passes;
this makes it possible to eliminate unnecessary candidate rules. Experiments on
a university course enrollment database indicate that the method outperforms the
previous one by a factor of 5. We also show that sampling is in general a very
efficient way of finding such rules.

Keywords: association rules, covering sets, algorithms, sampling.

1 Introduction

Data mining (database mining, knowledge discovery in databases) has recently been rec-
ognized as a promising new field in the intersection of databases, artificial intelligence, and
machine learning (see, e.g., [L1]). The area can be loosely defined as finding interesting
rules or exceptions from large collections of data.

Recently, Agrawal, Imielinski, and Swami introduced a class of regularities, association
rules, and gave an algorithm for finding such rules from a database with binary data [1].
An association rule is an expression W = B, where W is a set of attributes and B a
single attribute. The intuitive meaning of such a rule is that in the rows of the database
where the attributes in W have value true, also the attribute B tends to have value
true. For instance, a rule might state that students taking courses CS101 and CS120,
often also take the course CS130. This sort of information can be used, e.g., in assigning
classrooms for the courses. Applications of association rules include customer behavior

*On leave from Nokia Research Center.

181

analysis for example in a supermarket or banking environment, and telecommunications
alarm diagnosis and prediction.

In this paper we study the properties of association rule discovery in relations. We
give a new algorithm for the problem that outperforms the method in [1] by a factor of 5.
The algorithm is based on the same basic idea of repeated passes over the database as the
method in [1]. The difference is that our algorithm makes careful use of the combinatorial
information obtained from previous passes and in this way avoids considering many unnec-
essary sets in the process of finding the association rules. Our experimental data consists
of two databases, namely university course enrollment data and the fault management
database of a switching network. The empirical results show a good, solid performance
for our method. A same type of improvement has independently been suggested in [2].

We also study the theoretical properties of the problem of finding the association rules
that hold in a relation. We give a probabilistic analysis of two aspects of the problem,
showing that sampling is an efficient way of finding association rules, and that in random
relations almost all association rules are small. We also give a simple information-theoretic
lower bound for finding one rule, and show that an algorithm suggested by Loveland in
[7] in a different framework actually meets this lower bound.

The rest of this paper is organized as follows. Section 2 introduces the problem and the
notations. Section 3 describes our algorithm for finding association rules. The analysis of
sampling is given in Section 4. Empirical results and a comparison to the results of [1] are
given in Section 5. Section 6 is a short conclusion. Appendix A contains the probabilistic
analyses of random relations and the lower bound result. Appendix B gives an overview
of the implementation.

We refer to [1] for references about related work.

2 Problem

First we introduce some basic concepts, using the formalism presented in [1]. Let R =
{I1,15,....1,} be a set of attributes, also called items, over the binary domain {0,1}.
The input r = {t;,...,t,} for the data mining method is a relation over the relation
schema {I;,I5,..., 1.}, i.e., a set of binary vectors of size m. Each row can be considered
as a set of properties or items (that is, t[i] = 1 & I, € 1).

Let W C R be a set of attributes and ¢ € r a row of the relation. If {{A] = 1 for all
A € W, we write t{{IW] = 1. An association rule over r is an expression W = B, where
W C Rand B € R\ W. Given real numbers v (confidence threshold) and o (support
threshold), we say that r satisfies W = B with respect to v and o, if

{i | t;[WB] =1} > on
and i

LB =1

i | tW]=1} = ©

That is, at least a fraction o of the rows of r have 1’s in all the attributes of W B, and at
least a fraction ~ of the rows having a 1 in all attributes of W also have a 1 in B. Given

182

a set of attributes X, we say that X is covering' (with respect to the database and the
given support threshold o), if

{i | ti[X] =1} > on.

That is, at least a fraction o of the rows in the relation have 1’s in all the attributes of
X.

As an example, suppose support threshold ¢ = 0.3 and confidence threshold v = 0.9,
and consider the example database

ABCD,ABEFG,ABHIJ, BK.

Now, three of four rows contain the set { AB}, so the support is [{i | t;[AB] = 1}|/4 = 0.75;
supports of A, B, and C are 0.75, 1, and 0.25, correspondingly. Thus, {A}, {B}, and
{AB} have supports larger than the threshold o = 0.3 and are covering, but {C'} is not.
Further on, the database satisfies {A} = B, as {AB} is covering, and the confidence %
is larger than v = 0.9. The database does not satisfy { B} = A because the confidence
O'lﬁ is less than the threshold ~.

The coverage is monotone with respect to contraction of the set: if X is covering and
B C X, then t;[B] = 1 for any ¢ € {i | t;[X] = 1}, and therefore B is also covering.
On the other hand, association rules do not have monotonicity properties with respect
to expansion or contraction of the left-hand side: if W = B holds, then WA = B does
not necessarily hold, and if WA = B holds, then W = B does not necessarily hold. In
the first case the rule WA = B does not necessarily have sufficient support, and in the

second case the rule W = B does not necessarily hold with sufficient confidence.

3 Finding association rules

3.1 Basic algorithm

The approach in [1] to finding association rules is to first find all covering attribute
sets X, and then separately test whether the rule X \ {B} = B holds with sufficient
confidence.? We follow this approach and concentrate on the algorithms that search for
covering subsets.

To know if a subset X C R is not covering, one has to read at least a fraction 1 — o of
the rows of the relation, that is, for small values of support threshold o almost all of the
relation has to be considered. During one pass through the database we can, of course,
check for several subsets whether they are covering or not. If the database is large, it is
important to make as few passes over the data as possible. The extreme method would
be to do just one pass and check for each of the 2™ subsets of R whether they are covering
or not. This is infeasible for all but the smallest values of m.

! Agrawal et al. use the term large [1].

21t is easy to see that this approach is in a sense optimal: the problem of finding all covering subsets
of R can be reduced to the problem of finding all association rules that hold with a given confidence.
Namely, if we are given a relation r, we can find the covering sets by adding an extra column B with
all I’s to r and then finding the association rules that have B on the right-hand side and hold with
certainty 1.

183

The method of [1] makes multiple passes over the database. During a database pass,
new candidates for covering sets are generated, and support information is collected to
evaluate which of the candidates actually are covering. The candidates are derived from
the database tuples by extending previously found covering sets in the frontier. For
each database pass, the frontier consists of those covering sets that have not yet been
extended. Each set in the frontier is extended up to the point where the extension is no
longer expected to be covering. If such a candidate unexpectedly turns out to be covering,
it is included in the frontier for the next database pass. The expected support required for
this decision is derived from the frequency information of the items of the set. Originally
the frontier contains only the empty set.

An essential property of the method of [1] is that both candidate generation and
evaluation are performed during the database pass. The method of [1] further uses two
techniques to prune the candidate space during the database pass. These are briefly
described in Appendix B.

We take a slightly different approach. Our method tries to use all available information
from previous passes to prune candidate sets between the database passes; the passes are
kept as simple as possible. The method is as follows. We produce a set L as the collection
of all covering sets of size s. The collection Csyq will contain the candidates for Lsyq:
those sets of size s + 1 that can possibly be in Ls; 4, given the covering sets of L;.

C1:={{A} | A€ R};

s:=1;

while C; # () do
database pass: let Ly be the elements of (s that are covering;
candidate generation: compute C;y1 from Lg;

s:=s+1;

A

od:

?

The implementation of the database pass on line 4 is simple: one just uses a counter
for each element of 5. In candidate generation we have to compute a collection C;yq
that is certain to include all possible elements of L;,;, but which does not contain any
unnecessary elements. The crucial observation is the following. Recall that L, denotes
the collection of all covering subsets X of R with | X|=s. If Y € Ly, and ¢ > 0, then

Y includes (3 ;I_ e) sets from L;. This claim follows immediately from the fact that all

subsets of a covering set are covering. The same observation has been made independently
in [2].

Despite its triviality, this observation is powerful. For example, if we know that
Ly, = {AB,BC,AC,AE, BE, AF,CG}, we can conclude that ABC and ABF are the
only possible members of L3, since they are the only sets of size 3 whose all subsets of
size 2 are included in L. This further means that L4 must be empty.

In particular, if X € Ls11, then X must contain s+1 sets from L;. Thus a specification
for the computation of Cyy is to take all sets with this property:

Csy1 ={X CR||X|=s5+41and X includes s + 1 members of L,} (1)

184

This is, in fact, the smallest possible candidate collection C,y; in general. For any
L, there are relations such that the collection of covering sets of size s is Ly, and the
collection of coverings sets of size s + 1 is (44, as specified above.?

The computation of the collection Csyq so that (1) holds is an interesting combinatorial
problem. A ftrivial solution would be to inspect all subsets of size s + 1, but this is
obviously wasteful. One possibility is the following. First compute a collection C , by
forming pairwise unions of such covering sets of size s that have all but one attribute in
common:

Copy ={XUX'| X, X €L, | XNnX'|=5—1}.

Then Csyq C C§+17 and Csyq can be computed by checking for each set in O§+1 whether

the defining condition of Csyq holds. The time complexity is
O(s|La|* + |Coya |s|Ls]);

further, |C7_,| = O(|L,|?), but this bound is very rough.
An alternative method is to form unions of sets from L, and L;:

C' o ={XUX'|XeL,X €L,X'¢ X},

and then compute Csyq by checking the inclusion condition. (Note that the work done in
generating Cs;1 does not depend on the size of the database, but only on the size of the
collection Lj.)

Instead of computing Csyq from L, one can compute several families
Css1y-..,Csye for some e > 1 directly from L.

The computational complexity of the algorithms can be analyzed in terms of the
quantities |Ls|, |Cs|, |C!|, and the size n of the database. The running time is linear in
n and exponential in the size of the largest covering set. For reasons of space we omit
here the more detailed analysis. The database passes dominate the running time of the
methods, and for very large values of n the algorithms can be quite slow. However, in the
next section we shall see that by analyzing only small samples of the database we obtain
a good approximation of the covering sets.

4 Analysis of sampling

We now consider the use of sampling in finding covering sets. We show that small samples
are usually quite good for finding covering sets.

Let 7 be the support of a given set X of attributes. Consider a random sample
with replacement of size h from the relation. Then the number of rows in the sample
that contain X is a random variable z distributed according to B(h,7), i.e., binomial
distribution of A trials, each having success probability 7.

The Chernoff bounds [3, 6] state that for all @ we have

Prlz > hr 4+ a] < e 2/,

3Results on the possible relative sizes of Ly and Cs4; can be found in [4].

185

That is, the probability that the estimated support is off by at least « is
Priz > h(t 4+ a)] < g2 e_QO‘Qh,

i.e., bounded by a quantity exponential in k. For example, if @ = 0.02, then for 2 = 3000
the probability is e™?* &~ 0.09. (Similar results could be even more easily obtained by
using the standard normal approximation.)

This means that sampling is a powerful way of finding association rules. Even for fairly
low values of support threshold o, a sample consisting of 3000 rows gives an extremely
good approximation of the coverage of an attribute set. Therefore algorithms working in
main memory are quite useful for the problem of finding association rules.

Appendix A contains an analysis of covering sets in random relations and a lower
bound result for the problem of finding association rules.

5 Experiments

To evaluate the efficiency of our methods, we compare the original algorithm in [1] to
our algorithm. Candidate generation is performed by extending sets in Ly with other
sets in L, to achieve (at most) e-extensions. We compare a less aggressive extending
strategy with e = 1 and a more aggressive strategy with e = s, where the size of the
candidate sets is doubled during each iteration step. (We refer to our algorithm as off-
line candidate determination; the variants are noted in the following as OCD, and OCD..)
In addition to the original algorithm of [1] (noted in the following by AIS,.,), we also
implemented a minor modification of it that refrains from extending any set with an item
that is not a covering set by itself (noted in the following by AIS,..). Details about the
implementations can be found in Appendix B.

5.1 Data

We have used two datasets to evaluate the algorithms. The first is a course enrollment
database, including registration information of 4734 students (one tuple per student).
Each row contains the courses that a student has registered for, with a total of 127
possible courses. On the average, each row contains 4 courses. A simplified version of the
database includes only the students with at least 2 courses (to be interesting for generating
rules); this database consists of 2836 tuples, with an average of 6.5 items per tuple. The
figures and tables in this paper represent this latter course enrollment data.

The second database is a telephone company fault management database, containing
some 30,000 records of switching network notifications. The total number of attributes
is 210. The database is basically a string of events, and we map it to relational form by
considering it in terms of overlapping windows. The experiments on this data support
the conclusions achieved with the course database.

The database sizes we have used are representative for sampling which would result
in very good approximations, as was concluded in Section 4.

186

Size Support o
0.40 0.20 0.18 0.16 0.14 0.12 0.10 0.08
1 2 11 13 14 14 14 16 18
2 10 17 26 35 53 68 79
3 4 5 12 22 52 102 192
4 1 1 1 5 19 69 171
5 1 19 76
6 1 29
7 3
> 2 26 36 53 76 139 275 568

Table 1: Number of covering sets.

Support o
0.40 0.20 0.18 0.16 0.14 0.12 0.10 0.08
Count 0 26 30 48 81 196 544 1426
Max size 0 4 4 4 4 5 6 7

Table 2: Number and maximal size of rules (y = 0.7).

5.2 Results

Each algorithm finds, of course, the same covering sets and the same rules. The number
of covering sets found with different support thresholds is presented in Table 1. Corre-
spondingly, the number of association rules is presented in Table 2; we used a confidence
threshold « of 0.7 during all the experiments. The tables show that the number of covering
sets (and rules) increases very fast with a decreasing support threshold.

Figure la presents the total time (in seconds) as a function of the inverse of the support
threshold o; we prefer to use the inverse of o since it corresponds to the common sense
idea of the “rarity” of the items.

Figure la shows clearly that OCD is much more time efficient than AIS. The time
requirement of OCD is typically 10-20 % of the time requirement of AIS, and the advan-
tage of OCD increases as we lower 0. However, the difference between the algorithms is
notable even with a large 0. The difference between the two variants of OCD is not large,
and the modification we implemented in AIS did not affect its performance significantly.
When we look at the total time as a function of ||, the number of covering sets (presented
in Figure 1b), we observe that both algorithms behave more or less linearly with respect
to | L], but the time requirements of OCD increase much more slowly.

As an abstract measure of the amount of database processing we examine the effective
volume of the candidates, denoted by V.. It is the total volume of candidates that are
evaluated, weighted by the number of database tuples that must be examined to evaluate
them. This measure is representative of the amount of processing needed during the
database passes, independent of implementation details.

187

6000 [FAIY 6000 A
5000 8 5000 1
. 4000 8 . 4000 .
Time Time s
3000 8 3000 AlS 1
2000 0CD 2000 B . 1
1000 = . 1000 ' OCD.. oo
0 " 0CD, 0 . .
4 6 8 10 12 14 100 200 300 400 500 600
Inverse o{ s)upport o Number of covering sets
a

Figure 1: Total time in seconds (a) as a function of the inverse of support and (b) as a
function of the number of covering sets.

6000 [' ' 6000 7
5000 | 5000 1
4000 4000 1
eff eff
3000 | 3000 - q
2000 2000 8
1000 1 1000 | 1
0 1 1 1 1 1 0 1 1 1 1 1
2 4 6 8 10 12 14 0 100 200 300 400 500 600
Inverse of s)upport o Number of covering sets
a

Figure 2: Effective volume of candidates (a) as a function of the inverse of support and
(b) as a function of the number of covering sets.

The principal reason for the performance difference of AIS and OCD can be seen in
Figures 2a and b. They present the behavior of V_; as the support threshold o decreases
and |L|, the number of covering sets, increases. The number of candidate sets (and
their volume) considered by OCD is always smaller than that of AIS and the difference
increases as more sets are found. These figures also explain why the more aggressively
extending variant OCD, does not perform better than the basic OCD,: even though a
more aggressive strategy can reduce the number of passes, it also results in so many more
candidates that the reduction in time is offset.

Table 3 presents the number of candidates considered by each method. The numbers
for AIS are much higher, as it may generate the same candidates over and over again
during the database pass. On the other hand, OCD only generates any candidate once
(during the generation time) and checks that its subsets are covering before evaluating
it against the database. While the number of potential candidates generated by OCD is
much smaller than that for AIS, still fewer candidates need to be evaluated during the
database pass.

If sampling is not used or the samples are large, the data does not remain in the

188

Support o
0.40 0.20 0.18 0.16 0.14 0.12 0.10 0.08
OoCD, | 128 196 242 289 362 552 950 1756
oCD, | 128 217 300 434 625 1084 1799 4137
AlS,, | 8517 37320 42175 48304 52415 65199 95537 118369
AIS,... | 9106 38068 42983 48708 53359 66704 96992 120749

Table 3: Generated candidates.

1000 T T I T T T

800 1

600 0CD,
400

200

Iteration pass

Figure 3: Effective volume of candidates during each iteration pass.

main memory between passes, but it has to be reloaded for each pass. Thus it would be
important to minimize the number of data passes. Also, if we want to overlap the database
reads and the processing, the amount of processing performed during each database pass
should be small. Figure 3 presents a typical profile of V¢ during the passes of one run
(with o = 0.1). While the area beneath the curve corresponds to the total volume, the
height of the curve at each point describes how much processing is needed during that
pass. High peaks correspond to passes where the overlapping of 1/O and processing may
be endangered if the database is large.

Since the confidence threshold « affects only the number of rules generated from the
covering sets, we have not varied it in our experiments. On the other hand, suitable values
for the support threshold o depend very much on the database.

6 Concluding remarks

Association rules are a simple and natural class of database regularities, useful in various
analysis or prediction tasks. We have considered the problem of finding the association
rules that hold in a given relation. Following the work of [1], we have given an algorithm
that uses all existing information between database passes to avoid checking the cover-
age of redundant sets. The algorithm gives clear empirical improvement when compared
against the previous results, and it is simple to implement. See also [2] for similar re-
sults. The algorithm can be extended to handle nonbinary attributes by introducing new

189

indicator variables and using their special properties in the candidate generation process.

We have also analyzed the theoretical properties of the problem of finding association
rules. We showed that sampling is an efficient technique for finding rules of this type,
and that algorithms working in main memory can give extremely good approximations.
In Appendix A we give some additional theoretical results. We also give a simple lower
bound for a special case of the problem, and note that an algorithm from the different
framework of [7] actually matches this bound. We have considered finding association
rules from sequential data in [8].

Several problems remain open. Some of the pruning ideas in [1] are probably quite
useful in certain situations; recognizing when to use such methods would help in practice.
An algorithmic problem is how to find out as efficiently as possible what candidate sets
occur in a given database row. Currently we simply check each candidate separately,
ie., if AB and AC are two candidates, the A entry of each row is checked twice. On
certain stages of the search the candidates are heavily overlapping, and it could be useful
to utilize this information.

A general problem in data mining is how to choose the interesting rules among the
large collection of all rules. The use of support and confidence thresholds is one way
of pruning uninteresting rules, but some other methods are still needed. In the course
enrollment database many of the discovered rules correspond to normal process in the
studies. This could be eliminated by considering a partial ordering among courses and by
saying that a rule W = B is not interesting if B is greater than all elements of W with
respect to this ordering.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 International Conference on

Management of Data (SIGMOD 93), pages 207 — 216, May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In VLDB 94, Sept. 1994.

[3] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley Inc., New York,
1992.

[4] B. Bollobas. Combinatorics. Cambridge University Press, Cambridge, 1986.

[5] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

[6] T. Hagerup and C. Riib. A guided tour of Chernoff bounds. Information Processing
Letters, 33:305-308, 1989/90.

[7] D. W. Loveland. Finding critical sets. Journal of Algorithms, 8:362 — 371, 1987.

[8] H. Mannila, H. Toivonen, and A. I. Verkamo. Association rules in sequential data.
Manuscript, July 1994.

190

[9] K. Mehlhorn. Data Structures and Algorithms, Volumes 1-3. Springer-Verlag, Berlin,
1984.

[10] S. Ndher. LEDA user manual, version 3.0. Technical report, Max-Planck-Institut fiir
Informatik, Im Stadtwald, D-6600 Saarbriicken, 1992.

[11] G. Piatetsky-Shapiro and W. J. Frawley, editors. Knowledge Discovery in Databases.
AAAI Press / The MIT Press, Menlo Park, CA, 1991.

A Probabilistic analysis and a lower bound

In this appendix, we present some results describing the theoretical properties of the
problem of finding association rules.

We first first show that in one model of random relations all covering sets are small.
Consider a random relation r = {t1,...,t,} over attributes R = {I, 5, ..., [, }; assume
that each entry t;[A;] of the relation is 1 with probability ¢ and 0 with probability 1 — ¢,
and assume that the entries are independent. Then the probability that ¢;[X] = 1 is ¢",
where h = |X|. The number z of such rows is distributed according to B(n,¢"), and we
can again use the Chernoff bounds to obtain

Pr[z > on] = Prlz > ng" + n(s — ¢")] < e 2=,
This is furthermore bounded by e=°", if ¢ > 2¢". (For ¢ = 0.01 and ¢ = 0.5, this means
h > 8, and for o = 0.01 and ¢ = 0.1 it means h > 3.) Now the expected number of covering
sets of size h is bounded by m”e=". This is less than 0.5, provided on > hlnm + In2.
Thus a random relation typically has only very few covering sets. Of course, relations
occurring in practice are not random.

Next we describe some lower bound observations. Note first that a relation with one
row consisting of all 1’s satisfies all association rules. Thus the output of an algorithm
that produces all association rules holding in a relation can be of exponential size in the
number of attributes in the relation.

We now give an information-theoretic lower bound for finding one association rule in
a restricted model of computation. We consider a model of computation where the only
way of getting information from relation r is by asking questions of the form “is the set
X covering”. This model is realistic in the case the relation r is large and stored using
a database system, and the model is also quite close to the one underlying the design of
the algorithm in [1].

Assume the relation r has n attributes. In the worst case one needs at least

log (Z) ~ klog(n/k)

questions of the form “is the set X covering” to locate one maximal covering set, where
k is the size of the covering set.
The proof of this claim is simple. Consider relations with exactly 1 maximal covering

set of size k. There are (Z) different possible answers to the problem of finding the

191

maximal covering set. Each question of the form “is the set X covering” provides at most
1 bit of information.

Loveland [7] has considered the problem of finding “critical sets”. Given a function
f: P(R) — {0,1} that is downwards monotone (i.e., if f(X) =1 and Y C X, then
fY)=1), aset X is eritical if f(X) =1, but f(Z) = 0 for all supersets Z of X. Thus
maximal covering sets are critical sets of the function f(X) = 1, if X is covering, and
f(X) =0, otherwise. The lower bound above matches exactly the upper bound provided
by one of Loveland’s algorithms. The lower bound above can easily be extended to the
case where the task is to find k£ maximal covering sets. An interesting open problem is
whether Loveland’s algorithm can be extended to meet the generalized lower bound.

B Pruning methods and implementations

The method of [1] uses two techniques to prune the candidate space during the database
pass. In the “remaining tuples optimization”, the occurrences of each frontier set are
counted. A candidate is pruned by the optimization method, when there are less occur-
rences of the frontier set left than are needed for the candidate to be covering. Remember
that the total number of occurrences of a frontier set has been evaluated in earlier passes.
In the “pruning function optimization”, items are assigned weights based on their rarity,
and tuples are assigned weights from their items with synthesized functions. This method
prunes a candidate, if—based on its weight—it is so rare that it can not be covering. To
know the weight threshold for each set in the frontier, for each candidate set that is not
expected to be covering—and thus could be in the frontier in the next database pass—on
highest total weights of database rows containing the set are maintained. The lowest
of these values is then stored, and the weights of candidates are compared against this
weight threshold of the corresponding frontier set. The success of this method depends
on the distributional properties of items.

The implementations of the algorithms have been kept reasonably straightforward.
Attention was paid to the realization of the ideas rather than to optimizations of time
or space. We wrote the algorithms in C++ [5], and used data structures from LEDA
library [10]. Implementations of both algorithms use the same basic data structures and
algorithms for representing and manipulating sets of attributes. This ensures that timing
comparisons are fair. Attributes are represented by their names as strings. Attribute sets
are implemented as sorted sequences of strings, and collections of attribute sets, i.e. C;
and L;, as sorted sequences of attribute sets. The sorted sequences are implemented as
(2,4)-trees [9].

The above mentioned pruning methods of [1] require additional data structures. “Re-
maining tuples optimization” only needs a counter for each frontier set, plus checking of
the pruning condition when the support count for a candidate is being increased. For
“pruning function optimization”, the weights of items are stored in a randomized search
tree during the first database pass. The weight thresholds are stored in another random-
ized search tree each database pass, to be utilized in the next iteration. The candidates
are pruned by this method as soon as they are created. We have not implemented any
memory saving techniques referred to in [1] that might decrease the precision of the prun-
ing.

192

