

TE 412 TERM PROJECT

WSSUS-CHANNEL MODELS for BROADBAND MOBILE
COMMUNICATION SYSTEMS

SPRING 2004

by

Çiğdem Altay

5645

Onur Sarkan
5241

Introduction:

In order to compensate the need for high data rates and large bandwidths, new

communications systems have been developed and thus, in order to define these

channels new propagation models have been established. In this project, we have used

MATLAB to simulate and then to analyze the performance of broadband mobile

communication systems using WSSUS (Wide Sense Stationary Uncorrelated

Scattering) model.

The difference of WSSUS from the previously used models, such as COST 207 is that

WSSUS is a model that can define high bandwidth and high data rate channels such

as UMTS and DVB-T that have a bandwidth of 5MHz with a data rate of 2Mbits/sec

per user [1]. As will be explained in later sections of this report, the data rates that we

have mentioned are mainly affected by the service environment and the mobility

characteristics of the moving station [2]. Therefore, due to these changing

characteristics, the WSSUS channel has to be treated as a time-variant, multipath-

fading channel [1].

In this project, we have mainly used the channel propagation model presented by [1]

and WSSUS theory presented in [4]. The resulting simulation of the channel has then

been analyzed by plotting a BER vs. SNR graph.

Channel Response of WSSUS Propagation Models:

The channel response of wireless broadband channels is mainly affected by the noise

in the atmosphere and the paths that are subject to the environmental spectrum. Due to

this fact, WSSUS propagation models are defined and characterized by two variables,

namely the path delay (τ) and the Doppler frequency (fD). With these two variables,

the scattering function S(τ, fD) is formed, which is defined to be a function

characterizing the angular distribution of scattered radiation in terms of the scattering

angle. By using the Scattering Function, and integrating it with respect to the path

delay or the Doppler frequency variables, we reach two other important functions,

respectively the Power Delay Profile (PDP) and the Doppler Power Spectrum (DPS),

which describe the propagation effects.

PDP(τ) =
-

DPS(fD) =

Below in

Delay Pro

fDmax
 ∫ S(τ,fD) dfD (1)
fDmax
τmax
∫ S(τ,fD) dτ (2)

0

Figure 1 are examples of the above mentioned Scattering Function, Power

file and Doppler Power Spectrum.

Figure 1: Example of an idealized Scattering Function with its Power Delay Profile

and its Doppler Power Spectrum.

As the WSSUS-channel model is characterized by being wide sense stationary and

has uncorrelated scattering as the name indicates, the autocorrelation function of the

channel response is a function of only the time difference in the time domain and is

only a frequency difference in the frequency domain. Thus, the autocorrelation

function can be defined as:

RHH (∆f,∆t) = ½ E{H* (f,t) . H (f + ∆f, t + ∆t)} (3)

and is called the spaced frequency, spaced time correlation function [1] where,

H(f,t) = h(τ,t) . exp (-j2πfτ) dτ

In the above equation, it is important to note that h(τ,t) is the time-variant equivalent

lowpass response of the mobile channel.

The above defined spaced frequency, spaced time function and the scattering function

are related by the following equation:

∞ ∞

S(τ, fD) = ∫∫ rHH (∆f,∆t) . ej2π∆fτ ej2πfD∆t d(∆f)d(∆t) (4) 0 0

In order to model the WSSUS channel in MATLAB, we have used the Typical K

table in [1] which states the dedicated path delay τ, average power P (summation of

the deterministic and scattered parts), Rice factor K which is the result of the

summation of all the deterministic parts of the scattering function divided by the

summation of all the scattered parts of the scattering function, Doppler shift fDshift /

fDmax (fDshift is the Doppler frequency and fDmax is the maximum Doppler frequency),

and complex AR-filter coefficients to generate the Doppler power spectra for each

tap.

The z-transform of the transfer function is then defined to be:

H(z) = 1
A

1

= (5)

1 + ∑ av z-v(z)

Table 1: Typical Suburban

/P[dB] K[dB] fDshift [µs]ד #

fDmax

AR-Coeff. (a1…a8)

1 0.00 0.0 -7.2 0.18 0.1466-0.0785i 0.2012-0.0619i

0.1977-0.0145i 0.1907-0.0187i

0.1479-0.0295i 0.1407-0.0032i

0.1075+0.0093i -0.0043+0.0108i

2 0.58 -8.6 -4.4 -0.11 -0.1182-0.0043i 0.0130-0.0345i

0.1970+0.0120i 0.1956+0.0321i

0.1075+0.0303i 0.1117+0.0426i

0.1258-0.0099i 0.0730-0.0194i

3 1.62 -8.8 -3.0 -0.11 -0.1182-0.0043i 0.0130-0.0345i

0.1970+0.0120i 0.1956+0.0321i

0.1075+0.0303i 0.1117+0.0426i

0.1258-0.0099i 0.0730-0.0194i

4 2.19 -6.6 -1.2 -0.27 -0.1095+0.0193i 0.0541+0.0267i

0.1813-0.0044i 0.1549+0.0028i

0.1407+0.0282i 0.1293+0.0234i

0.1127-0.0122i 0.0753+0.0198i

Table 2: Typical Urban

/P[dB] K[dB] fDshift [µs]ד #

fDmax

AR-Coeff. (a1…a8)

1 0.00 0.0 -6.1 -0.03 -0.0394-0.0131i 0.1924+0.0054i

0.2030+0.0188i 0.1820+0.0168i

0.1705+0.0048i 0.1164-0.0022i

0.1122-0.0118i 0.0658+0.0166i

2 0.35 -4.3 -7.3 -0.03 -0.0394-0.0131i 0.1924+0.0054i

0.2030+0.0188i 0.1820+0.0168i

0.1705+0.0048i 0.1164-0.0022i

0.1122-0.0118i 0.0658+0.0166i

3 0.86 -5.1 -4.0 -0.35 -0.1461-0.0046i 0.2111+0.0030i

0.1715+0.0296i 0.1524+0.0142i

0.1546+0.0155i 0.1079+0.0118i

0.0859-0.0156i 0.0657-0.0286i

4 1.31 -5.2 -3.0 -0.03 -0.1992-0.0461i 0.1982-0.0440i

0.1887+0.0013i 0.2075+0.0189i

0.1094+0.0405i 0.1560+0.0077i

0.1180+0.0369i 0.0725-0.0159i

5 1.71 -5.4 -3.0 -0.03 -0.1992-0.0461i 0.1982-0.0440i

0.1887+0.0013i 0.2075+0.0189i

0.1094+0.0405i 0.1560+0.0077i

0.1180+0.0369i 0.0725-0.0159i

Channel Model in the Simulation

The channel model that we have used in the simulation can be seen in the following

two figures. The first block diagram summarizes how the filter coefficients are

defined. The second diagram on the other hand shows how these coefficients are used

in the FIR filter designed.

Figure 1: Finding the filter coefficients for the Finite Impulse Response filter.

White Gaussian
noise with power

σm
2/2

White Gaussian
noise with power

σm
2/2

H(z)

σm
2 sqrt(K) cos(2π* fDm*t) σm

2sqrt(K) cos(2π* fDm* t)

Rm(t) Im(t)

H(z)

Cm(t)

Figure 2: Modeling the mobile multipath fading channel using Finite Impulse

Response filter.

r(t)
∑

c1(t) c2(t) c3(t) cM(t)

∆ Bד ∆ Bד ∆ Bד
s(t)

Using the above defined channel model, we have reached the below graphs as channel

responses:

Figure3: Channel Response of Typical Suburban using f = 10Mhz

Figure4: Channel Response of Typical Suburban using f = 20Mhz

Figure5: Channel Response of Typical Suburban using f = 50Mhz

Figure6: Channel Response of Typical Urban using f = 10Mhz

Figure7: Channel Response of Typical Urban using f = 20Mhz

Figure8: Channel Response of Typical Urban using f = 50Mhz

Equalization:

Due to the channel characteristics such as ISI, thermal noise and channel response of

the system, transmitted signal faces distortion. In order to overcome this distortion

and increase the quality of the received signal, we need to have an equalizer that we

will be passing our received signal through so that the signal can be recovered.

In order to maintain the total response of the system close to the impulse function, the

response of the equalizer should be approximately equal to the inverse of the channel

response.

In this project, we use two types of equalization techniques, which are Zero Forcing

Equalizer and Minimum Mean Square Equalizer.

Zero Forcing Equalizer:

This type of equalizer aims that the total time domain impulse response of the channel

and equalizer to be the impulse at time zero and zero otherwise. Therefore the

frequency response of the equalizer is very approximate to the inverse of the channel

response up to the equalizer length. However this type of equalizer doesn’t consider

the noise power and is therefore not immune to high noise power. It can boost the

noise power at the frequencies where the channel response is small, therefore at high

noise level and in a highly disturbed channel response the zero forcing equalizer

doesn’t show a high performance.

Figure9: Zero-forcing equalizer at f = 10Mhz

Figure10: Zero-forcing equalizer at f = 20Mhz

Figure11: Zero-forcing equalizer at f = 50Mhz

Minimum Mean Square Equalizer:

This type of equalizer optimizes the weight of the equalizer taps by considering the

channel distortion and the noise power both. Therefore the total response of the

channel and the equalizer is not equal to the impulse function in the presence of noise

but the noise is not boosted in some frequencies. Therefore the equalizer is optimized

due to the noise power and therefore it should have a better performance than the

previously shown equalizer in the presence of noise.

Figure12: MMSE for Suburban at f = 10Mhz

Figure13: MMSE Suburban at f = 20Mhz

Figure14: MMSE Suburban at f = 50Mhz

Graphical User Interface (GUI):

As can be seen from the example figures, the graphical user interface has three main

parts: inputs, channel response plot and BER vs SNR plot. The inputs are simply the

type of the channel, the response length, the type of equalization used and the

equalizer length. Then the “PLOT” button is used in order to plot the channel impulse

response, the equalizer impulse response and the SNR vs BER graph. Below you can

see two simulations that describe the function of the GUI.

Figure15: WSSUS Channel Model Simulation where the channel type is Typical

Suburban, the response length is 50, and no equalizer is used.

s

Figure16: WSSUS Channel Model Simulation where the channel type is Typical

Suburban, the response length is 50, Zero Forcing equalization is used with an

equalizer length of 50.

Conclusion:

According to our result, we can see that equalization improve our snr versus ber ratio.

Especially, minimum mean square error equalization is better than zero forcing

equalization.

References:

[1] St. Bug, Ch. Wengerter, I. Gaspard, R. Jakoby “WSSUS-Channel Models for

Broadband Communication Systems,” IEEE Vehicular Technology

Conference, Birmingham, Alabama, 2002.

[2] F. Muratore, “UMTS: Mobile Communications for the Future” Wiley, USA,

2001.

[2] P.A. Bello “Characterization of randomly time-variant linear channels,” IEEE

Trans. Comm. Syst. , Bd. CS-11, no. 4, 1963, pp. 360-393.

Appendix:

Channel_response.m

%TE 304 Digital Communication

%Term Project :

%By Onur Sarkan & Çigdem Altay

%This function produce impulse response of channel.

%INPUTS:

%type: type of channel(like 1,2,3..)

%ntaps:Length of channel impulse response

%OUTPUT:

%h_n: Channel impulse response vector.

function h_n = new_channel_response(type,ntaps);

%Channel parameters are initialized according to type of channel.

if type=='1'

 %typical suburban ar-coefficients

 a = [1 0.1466-0.0785i 0.2012-0.0619i 0.1977-0.0145i 0.1907-0.0187i 0.1479-

0.0295i 0.1407-0.0032i 0.1075+0.0093i -0.0043+0.0108i; 1 -0.1182-0.0043i 0.0130-

0.0345i 0.1970+0.0120i 0.1956+0.0321i 0.1075+0.0303i 0.1117+0.0426i 0.1258-

0.0099i 0.0730-0.0194i; 1 -0.1182-0.0043i 0.0130-0.0345i 0.1970+0.0120i

0.1956+0.0321i 0.1075+0.0303i 0.1117+0.0426i 0.1258-0.0099i 0.0730-0.0194i; 1 -

0.1095+0.0193i 0.0541+0.0267i 0.1813-0.0044i 0.1549+0.0028i 0.1407+0.0282i

0.1293+0.0234i 0.1127-0.0122i 0.0753+0.0198i];

 k=[-7.2 -4.4 -3 -1.2];

 f=[0.18 -0.11 -0.11 -0.27];

 tao=[0 0.6 1.6 2.2];

 power=[0 -8.6 -8.8 -6.6];

 path_num=4;

elseif type=='2'

 %typical urban3 ar-coefficients

 a=[1 -0.0394-0.0131i 0.1924+0.0054i 0.2030+0.0188i 0.1820+0.0168i

0.1705+0.0048i 0.1164-0.0022i 0.1122-0.0118i 0.0658+0.0166i; 1 -0.0394-0.0131i

0.1924+0.0054i 0.2030+0.0188i 0.1820+0.0168i 0.1705+0.0048i 0.1164-0.0022i

0.1122-0.0118i 0.0658+0.0166i; 1 -0.1461-0.0046i 0.2111+0.0030i 0.1715+0.0296i

0.1524+0.0142i 0.1546+0.0155i 0.1079+0.0118i 0.0859-0.0156i 0.0657-0.0286i; 1 -

0.1992-0.0461i 0.1982-0.0440i 0.1887+0.0013i 0.2075+0.0189i 0.1094+0.0405i

0.1560+0.0077i 0.1180+0.0369i 0.0725-0.0159i; 1 -0.1992-0.0461i 0.1982-0.0440i

0.1887+0.0013i 0.2075+0.0189i 0.1094+0.0405i 0.1560+0.0077i 0.1180+0.0369i

0.0725-0.0159i];

 k=[-6.1 -7.3 -4 -3 -3];

 f=[-0.03 -0.03 -0.35 -0.03 -0.03];

 tao=[0 0.4 0.9 1.3 1.7];

 power=[0 -4.3 -5.1 -5.2 -5.4];

 path_num=5;

end

%Random noise is generated for each delay path

noise=zeros(1,path_num);

for x=1:1:path_num

 w_n=0;

 for y=1:1:100

 w_n=w_n+wgn(1,1,power(x));

 end

 w_n=w_n/100;

 noise(x)=w_n;

end

k=k/20;

%Output of H(z) is calculated.

y_noise=zeros(1,path_num);

for x=1:1:path_num

 y_noise(x)=filter(1,a(x,:),noise(x));

end

%C_m are generated.

C_m=zeros(1,path_num);

for x=1:1:path_num

 sigma_m=sqrt(2*(10^(power(x)/10)));

 C_m(x)=sigma_m*sqrt(k(x))*cos(2*pi*f(x)*tao(x)*1e-

6)+i*sigma_m*sqrt(k(x))*sin(2*pi*f(x)*tao(x)*1e-6);

end

pre_h_n=zeros(1,ntaps);

for x=1:1:path_num

 pre_h_n(round(ntaps/2+(ntaps/5)*tao(x)))=C_m(x);

end

h_n=abs(pre_h_n);

Zfe.m:

%TE 304 Digital Communication

%Term Project : Twisted pair cable transmission simulation

%By Onur Sarkan & Çigdem Altay

%Zero Forcing Equalizer:

%This function produce Zero forcing equalizer coefficients.

%Input Parameters:

%h:channel's impulse response

%ntaps:number of taps in the equalizer

%Outputs:

%weq:equalizer's tap coefficients

function weq=zfe(h,ntaps)

if (length(h)+1)/2 < ntaps

 %Zero padding from both sides.

 h=[zeros(1,ceil(ntaps-(length(h)+1)/2)) h zeros(1,floor(ntaps-(length(h)+1)/2))];

end

C=h(ceil(length(h)/2):ceil(length(h)/2+ntaps-1));

R=fliplr(h(ceil(length(h)/2-ntaps+1):ceil(length(h)/2)));

x=toeplitz(C,R); %z=xc

z=[zeros(ceil((ntaps-1)/2),1); 1; zeros(floor((ntaps-1)/2),1)]; %z

weq=(inv(x)*z).'; %weq=c=(1/x)*z

Mmse.m:

%TE 304 Digital Communication

%Term Project :

%By Onur Sarkan & Çigdem Altay

%Minimum mean square equalizer:

%This function produce minimum mean square equalizer coefficients according

%to variance of noise, bit representation, channel impulse response, and

%number of taps in the equalizer.

%Input Parameters:

%h:channel's impulse response

%ntaps:number of taps in the equalizer

%nvar:noise variance

%alpha_1:input bit 1

%alpha_0:input bit 0

%Output:

%weq:equalizer's tap coefficients

function weq = mmse(h,ntaps,nvar,alpha_1,alpha_0);

C=[h(length(h)) zeros(1,ntaps-1)];

R=[fliplr(h) zeros(1,ntaps-1)];

x=toeplitz(C,R);

response=[zeros(floor((length(h)+ntaps-1)/2),1); 1; zeros(floor((length(h)+ntaps)/2-

1),1)];

d=((alpha_1-alpha_0)/2)^2*eye(length(h)+ntaps-1)+((alpha_1+alpha_0)/2)^2;

weq = flipud(inv((x*d*x')+(nvar*eye(ntaps)))*x*response);

Atd.m:

%Onur Sarkan 5241

%te 304 Digital Communication

%Homework 4

%Adaptive Threshold Detection

function opt_threshold = atd(type_of_channel,type_of_equalizer,snr);

h_n=channel_response(type_of_channel,50);

if type_of_equalizer=='2'

 weq=zfe(h_n,50);

elseif type_of_equalizer=='3'

 weq=mmse(h_n,50,snr,1,0);

else

 weq=zeros(1,50);

 weq(25)=1;

end

thresh=[-0.5:0.1:1];

h_total=conv(h_n,weq);

x = randsrc(1,1000,[[0 1]; [0.5 0.5]]);

yeq=conv(h_total,x);

yeq=yeq(49:1049);

thresh=thresh+0.5;

yeq=yeq(floor((length(yeq)-length(x))/2+1):floor((length(yeq)+length(x))/2));

temp=repmat(thresh',1,length(yeq));

y=repmat(yeq,length(thresh),1);

z=logical(y>temp);

z=z-repmat(x,length(thresh),1);

[t,index]=min(abs(sum(z,2)));

opt_threshold=thresh(index);

Snr_ber.m:

%TE 304 Digital Communication

%Term Project :

%By Onur Sarkan & Çigdem Altay

function [snr, ber] = snr_ber(type_of_channel,type_of_equalizer);

 h_n=channel_response(type_of_channel,50);

if type_of_equalizer=='2'

 h_n=channel_response('2',50);

 weq=zfe(h_n,50);

 h_total=conv(h_n,weq);

 message = randsrc(1,10000,[[0 1]; [0.5 0.5]]);

 signal=zeros(1,500000);

 for i=1:1:10000

 for j=1:1:50

 signal((i-1)*50+j)=message(i);

 end

 end

 out_signal=conv(h_total,signal);

 deneme=out_signal(50:500000);

 snr=zeros(1,25);

 ber=zeros(1,25);

 thresh=atd(type_of_channel,type_of_equalizer,0);

 for i=0:1:24

 noisy=awgn(out_signal,i);

 demodulated_signal=demodulate_signal(noisy,thresh);

 ber(i+1)=sum(abs((message-demodulated_signal)/10000));

 snr(i+1)=i;

 end

elseif type_of_equalizer=='3'

 h_n=channel_response(type_of_channel,50);

 message = randsrc(1,10000,[[0 1]; [0.5 0.5]]);

 signal=zeros(1,500000);

 for i=1:1:10000

 for j=1:1:50

 signal((i-1)*50+j)=message(i);

 end

 end

 snr=zeros(1,25);

 ber=zeros(1,25);

 for i=0:1:24

 thresh=atd(type_of_channel,type_of_equalizer,0);

 weq=mmse(h_n,50,0,1,0);

 h_total=conv(h_n,weq);

 out_signal=conv(h_total,signal);

 deneme=out_signal(50:500000);

 noisy=awgn(out_signal,5*i);

 demodulated_signal=demodulate_signal(noisy,thresh);

 ber(i+1)=sum(abs((message-demodulated_signal)/1000000));

 snr(i+1)=i;

 end

else

 weq=zeros(1,50);

 weq(25)=1;

 h_n=channel_response(type_of_channel,50);

 h_total=conv(h_n,weq);

 message = randsrc(1,10000,[[0 1]; [0.5 0.5]]);

 signal=zeros(1,500000);

 for i=1:1:10000

 for j=1:1:50

 signal((i-1)*50+j)=message(i);

 end

 end

 out_signal=conv(h_total,signal);

 deneme=out_signal(50:500000);

 snr=zeros(1,25);

 ber=zeros(1,25);

 thresh=atd(type_of_channel,type_of_equalizer,0);

 for i=0:1:24

 noisy=awgn(out_signal,i);

 demodulated_signal=demodulate_signal(noisy,thresh);

 ber(i+1)=sum(abs((message-demodulated_signal)/10000));

 snr(i+1)=i;

 end

end

%figure;plot(snr,ber);

Demodulate_signal.m:

%TE 304 Digital Communication

%Term Project :

%By Onur Sarkan & Çigdem Altay

function output = demodulate_signal(input,thresh);

sizes=size(input);

bit_num=floor((sizes(2)/50)-1);

pre_output=zeros(1,bit_num);

for i=1:1:bit_num

 sig=0;

 for j=1:1:50

 sig=sig+input((i-1)*50+j+50);

 end

 if floor(sig/50)>thresh

 pre_output(i)=1;

 else

 pre_output(i)=0;

 end

end

output=pre_output;

Proje.m:

function varargout = proje(varargin)

% PROJE M-file for proje.fig

% PROJE, by itself, creates a new PROJE or raises the existing

% singleton*.

%

% H = PROJE returns the handle to a new PROJE or the handle to

% the existing singleton*.

%

% PROJE('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in PROJE.M with the given input arguments.

%

% PROJE('Property','Value',...) creates a new PROJE or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before proje_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to proje_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help proje

% Last Modified by GUIDE v2.5 18-Jun-2004 14:32:06

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @proje_OpeningFcn, ...

 'gui_OutputFcn', @proje_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin & isstr(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before proje is made visible.

function proje_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to proje (see VARARGIN)

% Choose default command line output for proje

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes proje wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = proje_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.

function listbox1_CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on selection change in listbox1.

function listbox1_Callback(hObject, eventdata, handles)

% hObject handle to listbox1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns listbox1 contents as cell array

% contents{get(hObject,'Value')} returns selected item from listbox1

% --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

% str2double(get(hObject,'String')) returns contents of edit1 as a double

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function listbox2_CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on selection change in listbox2.

function listbox2_Callback(hObject, eventdata, handles)

% hObject handle to listbox2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns listbox2 contents as cell array

% contents{get(hObject,'Value')} returns selected item from listbox2

% --- Executes during object creation, after setting all properties.

function edit3_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit3_Callback(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text

% str2double(get(hObject,'String')) returns contents of edit3 as a double

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function listbox3_CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on selection change in listbox3.

function listbox3_Callback(hObject, eventdata, handles)

% hObject handle to listbox3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns listbox3 contents as cell array

% contents{get(hObject,'Value')} returns selected item from listbox3

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

response_length = str2num(get(handles.edit1, 'String'));

channel_type = num2str(get(handles.listbox1, 'Value'));

h_n=channel_response(channel_type,response_length);

axes(handles.axes3);

stem(h_n);

set(handles.axes3,'XMinorTick','on');

grid on;

eq_type = num2str(get(handles.listbox2, 'Value'));

equalizer_length = str2num(get(handles.edit3, 'String'));

if eq_type=='2'

 weq=zfe(h_n,equalizer_length);

elseif eq_type=='3'

 SNR = str2num(get(handles.edit5, 'String'));

 weq=mmse(h_n,equalizer_length,SNR,1,0);

elseif eq_type=='1'

 weq=zeros(1,50);

 weq(25)=1;

end

axes(handles.axes4);

stem(weq);

set(handles.axes4,'XMinorTick','on');

grid on;

[a,b]=snr_ber(channel_type,eq_type);

plot(a,b,'Parent',handles.axes5);

% --- Executes during object creation, after setting all properties.

function edit5_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit5_Callback(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text

% str2double(get(hObject,'String')) returns contents of edit5 as a double

	TE 412 TERM PROJECT
	WSSUS-CHANNEL MODELS for BROADBAND MOBILE COMMUNICATION SYST
	SPRING 2004
	by
	Çiğdem Altay
	5645
	Onur Sarkan
	5241
	Introduction:
	Channel Model in the Simulation
	Channel_response.m

